Skip to main content
Log in

Efficient and Selective Oxidation of 5-Hydroxymethylfurfural into 2, 5-Diformylfuran Catalyzed by Magnetic Vanadium-Based Catalysts with Air as Oxidant

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, a new kind of magnetic vanadium-based catalyst was successfully prepared and employed to produce 2, 5-diformylfuran (DFF) in the liquid phase through selective oxidation of biomass-derived 5-hydroxymethylfurfur (HMF) with air as oxidant. It was found that magnetic Fe3O4 nanoparticles supported NH4·V3O8 showed excellent catalytic performance with the achievement of 95.5% HMF conversion along with 82.9% selectivity to DFF under optimal reaction conditions. More importantly, the catalyst could be readily separated from the reaction mixture by a permanent magnet, and recycled several times without the loss of its catalytic activity.

Graphic Abstract

The NH4·V3O8/Fe3O4 catalyst showed high activity for selective oxidation of 5-hydroxymethylfurfural into 2, 5-diformylfuran.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2
Fig. 10

Similar content being viewed by others

References

  1. Zhong RY, Sels BF (2018) Appl Catal B 236:518–545

    Article  CAS  Google Scholar 

  2. Chen LF, Yang WY, Gui ZY, Saravanamurugan S, Riisager A, Cao WR, Qi ZW (2019) Catal Today 319:105–112

    Article  CAS  Google Scholar 

  3. Liu XX, Xu Q, Liu JY, Yin DL, Su SP, Ding H (2016) Fuel 164:46–50

    Article  CAS  Google Scholar 

  4. Deng WP, Wang YZ, Zhang S, Gupta KM, Hülsey MJ, Asakura H, Liu LM, Han Y, Karp EM, Beckham GT, Dyson PJ, Jiang JW, Tanaka T, Wang Y, Yan N (2018) Proc Natl Acad Sci USA 115:5093–5098

    Article  CAS  Google Scholar 

  5. Yan Y, Li K, Zhao J, Cai W, Yang Y, Lee JM (2017) Appl Catal B 207:358–365

    Article  CAS  Google Scholar 

  6. Xia HA, Hu H, Xu SQ, Xiao KH, Zuo SL (2018) Biomass Bioenergy 108:426–432

    Article  CAS  Google Scholar 

  7. Ilkaeva M, Krivtsov I, García-López EI, Marcì G, Khainakova O, García JR, Palmisano L, Díaz E, Ordóñez S (2018) J Catal 359:212–222

    Article  CAS  Google Scholar 

  8. Liu XX, Ding H, Xu Q, Zhong WZ, Yin DL, Su SP (2016) J Energy Chem 25:117–121

    Article  CAS  Google Scholar 

  9. Amarasekara AS, Green D, Mcmillan E (2008) Catal Commun 9:286–288

    Article  CAS  Google Scholar 

  10. Cottier L, Descotes G, Viollet E, Lewkowski J, Skowroñski R (2010) J Heterocycl Chem 32:927–930

    Article  Google Scholar 

  11. El-Hajj T, Martin JC, Descotes G (1983) J Heterocycl Chem 20:233–235

    Article  CAS  Google Scholar 

  12. Yadav GD, Sharma RV (2014) Appl Catal B 147:293–301

    Article  CAS  Google Scholar 

  13. Liu B, Zhang ZH (2016) Chemsuschem 9:2015–2036

    Article  CAS  Google Scholar 

  14. Sajid M, Zhao X, Liu D (2018) Green Chem 20:5427–5453

    Article  CAS  Google Scholar 

  15. Zhu Y, Shen M, Xia Y, Lu M (2015) Catal Commun 64:37–43

    Article  CAS  Google Scholar 

  16. Zhu Y, Lu M (2015) RSC Adv 5:85579–85585

    Article  CAS  Google Scholar 

  17. Sarmah B, Satpati B, Srivastava R (2018) ACS Omega 3:7944–7954

    Article  CAS  Google Scholar 

  18. Sarmah B, Satpati B, Srivastava R (2018) Catal Sci Technol 8:2870–2882

    Article  CAS  Google Scholar 

  19. Kumar A, Srivastava R (2019) Mol Catal 465:68–79

    Article  CAS  Google Scholar 

  20. Sarmah B, Srivastava R (2019) Mol Catal 462:92–103

    Article  CAS  Google Scholar 

  21. Liu B, Zhang ZH, Lv KL, Deng KJ, Duan H (2014) Appl Catal A 472:64–71

    Article  CAS  Google Scholar 

  22. Tong XL, Yu LH, Chen H, Zhuang XL, Liao SY, Cui HG (2017) Catal Commun 90:91–94

    Article  CAS  Google Scholar 

  23. Lv GQ, Wang HL, Yang YX, Deng TS, Chen CM, Zhu YL, Hou XL (2015) ACS Catal 5:5636–5646

    Article  CAS  Google Scholar 

  24. Berenguer R, Fornells J, García-Mateos FJ, Guerrero-Pérez MO, Rodríguez-Mirasol J, Cordero T (2016) Catal Today 277:266–273

    Article  CAS  Google Scholar 

  25. Lai JH, Liu K, Zhou SL, Zhang D, Liu XX, Xu Q, Yin DL (2019) RSC Adv 9:14242–14246

    Article  CAS  Google Scholar 

  26. Liu XX, Xiao JF, Ding H, Zhong WZ, Xu Q, Su SP, Yin DL (2016) Chem Eng J 283:1315–1321

    Article  CAS  Google Scholar 

  27. He C, Sasaki T, Shimizu Y, Koshizaki N (2008) Appl Surf Sci 254:2196–2202

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grant Nos. 21606082, 21776068), Hunan Provincial Natural Science Foundation of China (2018JJ3334), the China Postdoctoral Science Foundation (2019M662787), the Opening Fund of CAS Key Laboratory of Renewable Energy (Y807kc1001), and Hunan Provincial Innovation Foundation for Postgraduate (CX2018B295).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianxiang Liu or Dulin Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, J., Zhou, S., Cheng, F. et al. Efficient and Selective Oxidation of 5-Hydroxymethylfurfural into 2, 5-Diformylfuran Catalyzed by Magnetic Vanadium-Based Catalysts with Air as Oxidant. Catal Lett 150, 1301–1308 (2020). https://doi.org/10.1007/s10562-019-03041-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-03041-w

Keywords

Navigation