Skip to main content
Log in

The Cyclopentanone Self-condensation Over Calcined and Uncalcined TiO2–ZrO2 with Different Acidic Properties

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The self-condensation of cyclopentanone has been studied over calcined and uncalcined TiO2–ZrO2. The catalyst properties were examined by XRD, FTIR, SEM, N2 adsorption–desorption, and pyridine FTIR. Compared with calcined TiO2–ZrO2, uncalcined TiO2–ZrO2 exhibited superior catalytic performance (94% conversion of cyclopentanone and 86% yield of dimer). This might be because uncalcined TiO2–ZrO2 has both Lewis and Brønsted acids, while calcined TiO2–ZrO2 only contains Lewis acids. Kinetics analysis indicated that C–C coupling was the rate-limiting step on the two catalysts. For uncalcined TiO2–ZrO2, the C–C coupling occurred between the two species on the catalyst surface. Through the H bond, the cyclopentanone was firmly adsorbed on the catalyst surface by Brønsted acid sites, then the enol intermediate could attack another cyclopentanone polarized by adjacent Lewis acid sites. As a consequence, the coexistence of Brønsted and Lewis acids in catalysts exhibited enhanced activity in cyclopentanone self-condensation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9
Scheme 2
Scheme 3
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lai J, Zhou S, Liu X et al (2019) Catalytic transfer hydrogenation of biomass-derived ethyl levulinate into gamma-valerolactone over graphene oxide-supported zirconia catalysts. Catal Lett 149:2749–2757

    Article  CAS  Google Scholar 

  2. Desai DS, Yadav GD (2019) Green synthesis of furfural acetone by solvent-free aldol condensation of furfural with acetone over La2O3–MgO mixed oxide catalyst. Ind Eng Chem Res 58:16096–16105

    Article  CAS  Google Scholar 

  3. Li Z, Zhang J, Nielsen MM et al (2018) Efficient C–C bond formation between two levulinic acid molecules to produce C10 compounds with the cooperation effect of Lewis and Brønsted Acids. ACS Sustainable Chem Eng 6:5708–5711

    Article  Google Scholar 

  4. Pholjaroen B, Li N, Yang J et al (2014) Production of renewable jet fuel range branched alkanes with xylose and methyl isobutyl ketone. Ind Eng Chem Res 53:13618–13625

    Article  CAS  Google Scholar 

  5. Smolakova L, Frolich K, Kocík J et al (2017) Surface properties of hydrotalcite based Zn(Mg)Al oxides and their catalytic activity in aldol condensation of furfural with acetone. Ind Eng Chem Res 56:4638–4648

    Article  CAS  Google Scholar 

  6. Liang G, Wang A, Zhao X et al (2016) Selective aldol condensation of biomass-derived levulinic acid and furfural in aqueousphase over MgO and ZnO. Green Chem 18:3430–3438

    Article  CAS  Google Scholar 

  7. Ngo DT, Sooknoi T, Resasco DE et al (2019) Aldol condensation of cyclopentanone on hydrophobized MgO. Promotional role of water and changes in rate-limiting step upon organosilane functionalization. ACS Catal 9:2831–2841

    Article  CAS  Google Scholar 

  8. Wang Y, Liu C, Zhang X et al (2020) One-step encapsulation of bimetallic Pd–Co nanoparticles within UiO-66 for selective conversion of furfural to cyclopentanone. Catal Lett 150:2158–2166

    Article  CAS  Google Scholar 

  9. Hronec M, Fulajtarová K, Liptaj T et al (2014) Cyclopentanone: a raw material for production of C15 and C17 fuel precursors. Biomass Bioenerg 63:291–299

    Article  CAS  Google Scholar 

  10. Wang W, Li N, Li G et al (2017) Synthesis of renewable high-density fuel with cyclopentanone derived from hemicellulose. ACS Sustainable Chem Eng 5:1812–1817

    Article  CAS  Google Scholar 

  11. Li G, Dissanayake S, Suib SL et al (2020) Activity and stability of mesoporous CeO2 and ZrO2 catalysts for the selfcondensation of cyclopentanone. Appl Catal B 267:118373

    Article  CAS  Google Scholar 

  12. Sheng X, Xu Q, Wang X et al (2019) Waste seashells as a highly active catalyst for cyclopentanone self-aldol condensation. Catal 9:661

    Article  CAS  Google Scholar 

  13. Liang D, Li G, Liu Y et al (2016) Controllable self-aldol condensation of cyclopentanone over MgO–ZrO2 mixed oxides: origin of activity & selectivity. Catal Commun 81:33–36

    Article  CAS  Google Scholar 

  14. Yang J, Li N, Li G et al (2014) Synthesis of renewable high-density fuel with cyclopentanone derived from hemicellulose. Chem Commun 50:2572–2574

    Article  CAS  Google Scholar 

  15. Kikhtyanin O, Kubicka D, Cejka J et al (2015) Toward understanding of the role of Lewis acidity in aldol condensation of acetone and furfural using MOF and zeolite catalysts. Catal Today 24:158–162

    Article  Google Scholar 

  16. Abello S, Vijaya-Shankar D, Perez-Ramrrez J et al (2008) Stability, reutilization, and scalability of activated hydrotalcites in aldol condensation. Appl Catal A 342:119–125

    Article  CAS  Google Scholar 

  17. Zhang H, Ibrahim MYS, Flaherty DW et al (2018) Aldol condensation among acetaldehyde and ethanol reactants on TiO2: experimental evidence for the kinetically relevant nucleophilic attack of enolates. J Catal 361:290–302

    Article  Google Scholar 

  18. Young ZD, Hanspal S, Davis RJ et al (2016) Aldol condensation of acetaldehyde over titania, hydroxyapatite, and magnesia. ACS Catal 6:23193–23202

    Article  Google Scholar 

  19. Zhao L, An H, Zhao X et al (2017) TiO2-catalyzed n-valeraldehyde self-condensation reaction mechanism and kinetics. ACS Catal 7:4451–4461

    Article  CAS  Google Scholar 

  20. Wang Y, Yan R, Lv Z et al (2016) Lanthanum and cesium-loaded SBA-15 catalysts for MMA synthesis by aldol condensation of methyl propionate and formaldehyde. Catal Lett 146:1808–1818

    Article  CAS  Google Scholar 

  21. Deng Q, Nie G, Pan L et al (2015) Highly selective self-condensation of cyclic ketones using MOF encapsulating phosphotungstic acid for renewable high-density fuel. Green Chem 17:4473–4481

    Article  CAS  Google Scholar 

  22. Li G, Wang B, Chen B et al (2019) Role of water in cyclopentanone self-condensation reaction catalyzed by MCM-41 functionalized with sulfonic acid groups. J Catal 377:245–254

    Article  CAS  Google Scholar 

  23. Hajek J, Vandichel M, Van de Voorde B et al (2015) Mechanistic studies of aldol condensations in UiO-66 and UiO-66-NH2 metal organic frameworks. J Catal 331:1–12

    Article  CAS  Google Scholar 

  24. Gao L, Li G, Sheng Z et al (2020) Alkali-metal-ions promoted Zr–Al–Beta zeolite with high selectivity and resistance to coking in the conversion of furfural toward furfural alcohol. J Catal 389:623–630

    Article  CAS  Google Scholar 

  25. Jeong MS, Frei H (2000) Acetaldehyde as a probe for the chemical properties of aluminophosphate molecular sieves. An in situ FT-IR study. J Mol Catal A 156:245–253

    Article  CAS  Google Scholar 

  26. Dumitriu E, Hulea V, Fechete I et al (2001) The aldol condensation of lower aldehydes over MFI zeolites with different acidic properties. Microporous Mesoporous Mater 43:341–359

    Article  CAS  Google Scholar 

  27. Kim JY, Kim CS, Chang HK et al (2010) Effects of ZrO2 addition on phase stability and photocatalytic activity of ZrO2/TiO2 nanoparticles. Adv Powder Technol 21:141–144

    Article  CAS  Google Scholar 

  28. Burri A, Jiang N, Park SE et al (2012) High surface area TiO2–ZrO2 prepared by caustic solution treatment, and its catalytic efficiency in the oxidehydrogenation of para-ethyltoluene by CO2. Catal Sci Technol 2:514–520

    Article  CAS  Google Scholar 

  29. Manriquez ME, Lopez T, Gomez R et al (2004) Preparation of TiO2–ZrO2 mixed oxides with controlled acid-basic properties. J Mol Catal A 220:229–237

    Article  CAS  Google Scholar 

  30. Burri A, Jiang N, Yahyaoui K et al (2015) Ethylbenzene to styrene over alkali doped TiO2–ZrO2 with CO2 as soft oxidant. Appl Catal A 495:192–199

    Article  CAS  Google Scholar 

  31. Kondoh H, Tanaka K, Nakasaka Y et al (2016) Catalytic cracking of heavy oil over TiO2–ZrO2 catalysts under superheated steam conditions. Fuel 167:288–294

    Article  CAS  Google Scholar 

  32. Li H, Deng A, Ren J et al (2014) A modified biphasic system for the dehydration of d-xylose into furfural using SO42-/TiO2-ZrO2/La3+ as a solid catalyst. Catal Today 234:251–256

    Article  CAS  Google Scholar 

  33. Kitajima H, Higashino Y, Matsuda S et al (2016) Isomerization of glucose at hydrothermal condition with TiO2, ZrO2, CaO–doped ZrO2 or TiO2–doped ZrO2. Catal Today 274:67–72

    Article  CAS  Google Scholar 

  34. Li T, Wang CK, Wang I et al (2011) Esterification of lactic acid over TiO2–ZrO2 catalysts. Appl Catal B 392:180–183

    Article  CAS  Google Scholar 

  35. Yang T, Li H, He J et al (2017) Porous Ti/Zr microspheres for efficient transfer hydrogenation of biobased ethyl levulinate to γ-valerolactone. ACS Omgea 2:1047–1054

    Article  CAS  Google Scholar 

  36. Yuki S, Tomohisa Y, Keizo N et al (2019) Preparation and characterization of organic chelate ligand (OCL)-templated TiO2–ZrO2 nanofiltration membranes. J Membrane Sci 59:117304

    Google Scholar 

  37. Chen D, Cao L, Hanley TL et al (2012) Facile synthesis of monodisperse mesoporous zirconium titanium oxide microspheres with varying compositions and high surface areas for heavy metal ion sequestration. Adv Funct Mater 22:1966–1971

    Article  CAS  Google Scholar 

  38. Wang X, Chen D, Cao L et al (2013) Mesoporous titanium zirconium oxide nanospheres with potential for drug delivery applications. ACS Appl Mater Interfaces 5:10926–10932

    Article  CAS  PubMed  Google Scholar 

  39. Zhang J, Dong KJ, Luo W et al (2018) Selective transfer hydrogenation of furfural into furfuryl alcohol on Zr-containing catalysts using lower alcohols as hydrogen donors. ACS Omega 3:6206–6216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang H, Sun S, Ding H et al (2020) Effect of calcination temperature on the structure and properties of SiO2 microspheres/nano-TiO2 composites. Mat Sci Semicon Proc 115:105099

    Article  CAS  Google Scholar 

  41. Das D, Mishra HK, Parida KM et al (2002) Preparation, physico–chemical characterization and catalytic activity of sulphated ZrO2–TiO2 mixed oxides. J Mol Catal A 189:271–282

    Article  CAS  Google Scholar 

  42. Barrera MC, Escobar J, Reyes JADL et al (2006) Effect of solvo-thermal treatment temperature on the properties of sol–gel ZrO2–TiO2 mixed oxides as HDS catalyst supports. Catal Today 116:498–504

    Article  CAS  Google Scholar 

  43. Zou H, Lin YS (2004) Structural and surface chemical properties of sol–gel derived TiO2–ZrO2 oxides. Appl Catal A 256:35–42

    Article  Google Scholar 

  44. Saleem AM, Rajasekar S, Kaviyarasu K et al (2019) Green combustion synthesis of CeO2 and TiO2 nanoparticles doped with same oxide materials of ZrO2 investigation of in vitro assay with antibiotic resistant bacterium(ARB) and anticancer effect. EJMP 30:52799

    Google Scholar 

  45. Silahua-Pavóna AA, Espinosa-González CG, Ortiz-Chi F et al (2019) Production of 5-HMF from glucose using TiO2-ZrO2 catalysts: effect of the sol–gel synthesis additive. Catal Commun 129:105723

    Article  Google Scholar 

  46. Pérez-Hernández R, Gómez-Cortés A, Arenas-Alatorre J et al (2005) SCR of NO by CH4 on Pt/ZrO2-TiO2 sol–gel catalysts. Catal Today 107:149–156

    Article  Google Scholar 

  47. Khalaf MM, Abdelhamid AA (2016) Sol–gel derived mixed oxide zirconia: titania green heterogeneous catalysts and their performance in acridine derivatives synthesis. Catal Lett 146:645–655

    Article  CAS  Google Scholar 

  48. Manriquez ME, Picquart M, Bokhimi X et al (2008) X-Ray diffraction, and raman scattering study of nanostructured ZrO2-TiO2 oxides prepared by sol–gel. J Nanosci Nanotechnol 8:6623–6629

    Article  CAS  PubMed  Google Scholar 

  49. Schiller R, Weiss CK, Landfester K et al (2010) Phase stability and photocatalytic activity of Zr–doped anatase synthesized in miniemulsion. Nanotechnology 21:405603–405614

    Article  PubMed  Google Scholar 

  50. An M, Li L, Cao Y et al (2019) Photocatalytic performance of bipyramidal anatase TiO2 toward the degradation organic dyes and its catalyst poisoning effect. Mol Catal 475:110482

    Article  CAS  Google Scholar 

  51. Sun C, Liu L, Qi L et al (2011) Effect of ZrO2–doped TiO2 hollow nanospheres with enhanced photocatalytic activity of rhodamine B degradation. J Colloid Interf Sci 364:288–297

    Article  CAS  Google Scholar 

  52. Chary KVR, Sagar GV, Naresh D et al (2005) Characterization and reactivity of copper oxide catalysts supported on TiO2–ZrO2. J Phys Chem B 109:9437–9444

    Article  CAS  PubMed  Google Scholar 

  53. Yu Y, Zhou Z, Ding Z et al (2019) Simultaneous arsenic and fluoride removal using {201}TiO2–ZrO2: fabrication, characterization, and mechanism. J Hazard Mater 377:267–273

    Article  CAS  PubMed  Google Scholar 

  54. Azizi Y, Pitchon V, Petit C et al (2010) Effect of support parameters on activity of gold catalysts: studies of ZrO2, TiO2 and mixture. Appl Catal A 385:170−177

    Article  CAS  Google Scholar 

  55. Ikawa H, Yamada T, Kojima K et al (1991) X-ray photoelectron spectroscopy study of high-and low-temperature forms of zirconium titanate. J Am Ceram Soc 74:1459–1462

    Article  CAS  Google Scholar 

  56. Wang S, Goulas K, Iglesia E et al (2016) Condensation and esterification reactions of alkanals, alkanones, and alkanols on TiO2: elementary steps, site requirements, and synergistic effects of bifunctional strategies. J Catal 340:302–320

    Article  CAS  Google Scholar 

  57. Herrmann S, Iglesia E (2017) Elementary steps in acetone condensation reactions catalyzed by aluminosilicates with diverse void structures. J Catal 346:134–153

    Article  CAS  Google Scholar 

  58. Cosimo JID, Díez VK, Xu M et al (1998) Structure and surface and catalytic properties of Mg–Al basic oxides. J Catal 178:499–510

    Article  Google Scholar 

  59. Fu G, Cirujano FG, Krajnc A et al (2020) Unexpected linker-dependent Brønsted acidity in the (Zr)UiO-66 metal organic framework and application to biomass valorization. Catal Sci Technol 10:4002–4009

    Article  CAS  Google Scholar 

  60. Sluban M, Cojocaru B, Parvulescu VI et al (2017) Protonated titanate nanotubes as solid acid catalyst for aldol condensation. J Catal 346:161–169

    Article  CAS  Google Scholar 

  61. Lia X, Xu R, Liu Q et al (2019) Valorization of corn stover into furfural and levulinic acid over SAPO-18 zeolites: effect of Brønsted to Lewis acid sites ratios. Ind Crops Prod 141:111759

    Article  Google Scholar 

  62. Wan J, Fu L, Yang H et al (2020) TiO2–ZrO2 composite oxide as an acid−base bifunctional catalyst for self-condensation of cyclopentanone. Ind Eng Chem Res 59:19918–19928

    Article  CAS  Google Scholar 

  63. Panov AG, Fripiat JJ (1998) Acetone condensation reaction on acid catalysts. J Catal 178:188–197

    Article  CAS  Google Scholar 

  64. Weingarten R, Tompsett GA, Conner WC et al (2011) Design of solid acid catalysts for aqueous-phase dehydration of carbohydrates: the role of Lewis and Brønsted acid sites. J Catal 279:174–182

    Article  CAS  Google Scholar 

  65. Ordomsky VV, Van der Schaaf J, Schouten JC et al (2012) Fructose dehydration to 5-hydroxymethylfurfural over solid acid catalysts in a biphasic system. Chemsuschem 5:1812–1819

    Article  CAS  PubMed  Google Scholar 

  66. Wang F, Chen Z, Chen H et al (2019) Interplay of lewis and Brønsted acid sites in Zr-based metal-organic frameworks for efficient esterification of biomass-derived levulinic acid. ACS Appl Mater Interfaces 11:32090–33209

    Article  CAS  PubMed  Google Scholar 

  67. Li G, Wang B, Resasco DE et al (2020) Oxide-catalyzed self- and cross-condensation of cycloketones. Kinetically relevant steps that determine product distribution. J Catal 391:163–174

    Article  CAS  Google Scholar 

  68. Singh M, Zhou N, Paul DK et al (2008) IR spectral evidence of aldol condensation: acetaldehyde adsorption over TiO2 surface. J Catal 260:371–379

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 21878255), and the Hunan Provincial Natural Science Foundation of China (Grant No. 2018JJ2385)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Langsheng Pan or Yongfei Li.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, J., Yang, H., Fu, L. et al. The Cyclopentanone Self-condensation Over Calcined and Uncalcined TiO2–ZrO2 with Different Acidic Properties. Catal Lett 152, 806–820 (2022). https://doi.org/10.1007/s10562-021-03655-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03655-z

Keywords

Navigation