Skip to main content
Log in

A highly active bi-crystalline photocatalyst consisting of TiO2 (B) nanotube and anatase particle for producing H2 gas from neat ethanol

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Sodium titanate nanotubes (NaTNTs) are converted into monoclinic TiO2 (B) nanotubes by rinsing with 0.10 M HCl followed by drying at 573 K. As calcination temperature is increased to 673 K, these TiO2 (B) nanotubes start to transform into anatase nanoparticles producing a bi-crystalline mixture consisting of TiO2 (B) nanotubes and anatase nanoparticles. The primary particle size of the anatase particles was estimated to be around 10 nm using Scherrer equation. After being promoted with 1% Pt, this bi-crystalline material becomes a very active photocatalyst producing 20% more H2 gas than 1% Pt/Degussa P-25 TiO2 in the photocatalytic dehydrogenation of neat ethanol after 2 h of UV light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. Kasuga T., Hiramatsu M., Hoson A. (1998) Langmuir 14:3160

    Article  CAS  Google Scholar 

  2. Kasuga T., Hiramatsu M., Hoson A., Sekino T., Niihara K. (1999) Adv. Mater. 11:1307

    Article  CAS  Google Scholar 

  3. Chen Q., Du G.H., Zhang S., Peng L.-M. (2002) Acta Cryst. B 58:587

    Article  CAS  Google Scholar 

  4. Zhang M., Jin Z., Zhang J., Guo X., Yang J., Li W., Wang X., Zhang Z. (2004) J. Mol. Catal. 217:203

    Article  CAS  Google Scholar 

  5. Ma R., Bando Y., Sasaki T. (2003) Chem. Phys., Lett. 380:577

    Article  CAS  Google Scholar 

  6. Sun X., Li Y. (2003) Chem. Eur. J. 9:2229

    Article  CAS  Google Scholar 

  7. Tsai C.-C., Teng H. (2006) Chem. Mater. 18:367

    Article  CAS  Google Scholar 

  8. J. Yang, Z. Jin, X. Wang, W. Li, J. Zhang, S. Zhang, X Guo, and Z. Zhang, Dalton Trans., (2003) 3898

  9. Bavykin D.V., Lapkin A.A., Plucinski P.K., Friedrich J.M., Walsh F.C. (2005) J. Catal. 235:10

    Article  CAS  Google Scholar 

  10. Idakiev V., Yuan Z.Y., Tabakova T., Su B.-L. (2005) Apply. Cataly. A: General 281:149

    Article  CAS  Google Scholar 

  11. Guo X., Zhu H., Pan G., Ye S., Lan Y., Wu F., Song D. (2004) J. Phy. Chem. B 108:2868

    Article  CAS  Google Scholar 

  12. Feist T.P., Morcarski S.J., Davies P.K., Jacobson A.J., Lewandowski A.J. (1988) Solid State Ionics 28–30:1338

    Article  Google Scholar 

  13. Lin C.-H., Chien S.-H., Chao J.-H., Sheu C.-Y., Huang Y.-J. (2002) Catal. Lett. 80:153

    Article  CAS  Google Scholar 

  14. Feist T.P., Davies P.K. (1992) J. Solid State Chem. 101:275

    Article  CAS  Google Scholar 

  15. Nichizawa H., Aoki Y. (1985) J. Solid State Chem. 56:158

    Article  Google Scholar 

  16. Armstrong A.R., Armstrong G., Canales J., Bruce P.J. (2004) Angew Chem., Int. Ed. 43:2286

    Article  CAS  Google Scholar 

  17. G. Armstrong, A.R. Armstrong, J. Canales, and P.J. Bruce, Chem. Commun., (2005), 2454

  18. Debeila M.A., Raphulu M.C., Mokoena E., Avalos M., Petranovskii V., Coville N.J., Scurrell M.S. (2005) Mater. Sci. & Eng. A 396:70

    Article  CAS  Google Scholar 

  19. Teratani S., Nakamichi J., Taya K., Tanaka K. (1982) Bull. Chem. Soc. Jpn. 55:1688

    Article  CAS  Google Scholar 

  20. Lin C.-H., Lee C.-H., Chao J.-H., Kuo C.-Y., Cheng Y.-C., Huang W.-N., Chang H.-W., Huang Y.-M., Shih M.-K. (2004) Catal. Lett. 98:61

    Article  CAS  Google Scholar 

  21. Ohbtani B., Ogawa Y., Nishimoto S.-I. (1997) J. Phys. Chem. 101:3746

    Google Scholar 

  22. Zhang Q., Gao L., Guo J. (2000) Appl. Catal. B: Environ. 26:207

    Article  CAS  Google Scholar 

  23. Hoffmann M.R., Martin S.T., Choi W., Bahnemann D.W. (1995) Chem. Rev. 95:69

    Article  CAS  Google Scholar 

  24. Anpo M., Shima T., Kodama S., Kubokama Y. (1987) J. Phys. Chem. 91:4305

    Article  CAS  Google Scholar 

  25. Zhang Z., Wang C.-C., Zacaria R., Ying Y.J. (1998) J. Chem. Phys. B 102:10871

    Article  CAS  Google Scholar 

  26. J. C. Yu, J. Yu, W. Ho, and L. Zhang, Chem. Commun. (2001) 1942

Download references

Acknowledgments

C.-H. Lin is grateful for a grant from Nation Science Council of Taiwan (NSC-93-2113-M-018-006) and Miss Ya-Shun Lin of National ChungHsing University for the technical assistance in FE-SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiu-Hsun Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuo, HL., Kuo, CY., Liu, CH. et al. A highly active bi-crystalline photocatalyst consisting of TiO2 (B) nanotube and anatase particle for producing H2 gas from neat ethanol. Catal Lett 113, 7–12 (2007). https://doi.org/10.1007/s10562-006-9009-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-006-9009-1

Keywords

Navigation