Skip to main content

Advertisement

Log in

Comparative study of mouse adipose- and bone marrow mesenchymal stem cells in diabetic model with critical limb ischemia

  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

The aim of this research is to compare the capabilities of Adipose tissue mesenchymal stem cells (AT-MSCs) and bone marrow mesenchymal stem cells (BM-MSCs) in the treatment of diabetic male mice with CLI model. Supernatants were collected from C57BL/6 mice isolated AT-MSCs and BM-MSCs, afterward their effects on human umbilical vein endothelial (HUVEC) migration potential were evaluated. Diabetes mellitus type 1 was induced by streptozotocin injection. Diabetic mice with CLI model were divided into three groups and injected with AT-MSCs, BM-MSCs, or PBS then the efficacy of them was assessed. Survival of MSCs was analysed by SRY-specific gene. The conditioned medium of AT-MSCs and BM-MSCs stimulated HUVECs migration and the donor cells were detected till 21 day in two groups. BM-MSCs and AT-MSCs improved significantly functional recovery and ischemia damage. Neovascularization in ischemic muscle was significantly higher in mice treated with AT-MSCs and BM-MSCs and they improved muscle regeneration. In vivo and in vitro findings show that AT-MSCs and BM-MSCs transplantation could be proposed as a promising therapy to promote angiogenesis and muscle regeneration through secretion of proangiogenic factors, cytokines and growth factors in diabetic mice with CLI model wherein blood supply is insufficient and disrupted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Abbreviations

CLI:

Critical limb ischemia

PAD:

Peripheral arterial disease

MSCs:

Mesenchymal stem cells

AT-MSC:

Adipose tissue mesenchymal stem cell

BM-MSCs:

Bone marrow mesenchymal stem cells

HUVECs:

Humanumbilical vein endothelial cell

MVD:

Microvessel density

DM:

Diabetes mellitus

VEGF:

Vascular endothelial growth factor

STZ:

Streptozotocin

PBS:

Phosphate-buffered saline

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

Fetal bovine serum

IP:

Intraperitoneal

IM:

Intramuscular

H&E:

Hematoxylin and eosin

IHC:

Immunohistochemical

PFA:

Paraformaldehyde

TBS:

Buffered Saline

DAB:

Diaminobenzidine tetrahydrochloride

SD:

Standard deviation

RMANOVA:

Two-way analysis of variance test with repeated measurements

References

  • Adolfsson E, Helenius G, Friberg Ö, Samano N, Frøbert O, Johansson K (2020) Bone marrow-and adipose tissue-derived mesenchymal stem cells from donors with coronary artery disease; growth, yield, gene expression and the effect of oxygen concentration. Scand J Clin Lab Invest 80(4):1–9

    Article  Google Scholar 

  • Anderson P, Carrillo-Gálvez AB, García-Pérez A, Cobo M, Martín F (2013) CD105 (endoglin)-negative murine mesenchymal stromal cells define a new multipotent subpopulation with distinct differentiation and immunomodulatory capacities. PLoS ONE 8:e76979

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Beugels J, De Munter J, Van der Hulst R, Kramer B, Wolters E (2019) Efficacy of different doses of human autologous adult bone mar-row stem cell transplantation on angiogenesis in an immune deficient rat model with hind limb ischemia. J Stem Cell Res Dev Ther 5:S1002

    Google Scholar 

  • Brenes RA, Jadlowiec CC, Bear M, Hashim P, Protack CD, Li X, Lv W, Collins MJ, Dardik A (2012) Toward a mouse model of hind limb ischemia to test therapeutic angiogenesis. J Vasc Surg 56:1669–1679

    Article  PubMed  PubMed Central  Google Scholar 

  • Carstens MH, Zelaya M, Calero D, Rivera C, Correa D (2020) Adipose-derived stromal vascular fraction (SVF) cells for the treatment of non-reconstructable peripheral vascular disease in patients with critical limb ischemia: a 6-year follow-up showing durable effects. Stem Cell Res 49:102071

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Okeke E, Ayalew D, Wang D, Shahid L, Dokun AO (2017) Modulation of miR29a improves impaired post-ischemic angiogenesis in hyperglycemia. Exp Biol Med 242:1432–1443

    Article  CAS  Google Scholar 

  • Cleary M, Narcisi R, Focke K, Van der Linden R, Brama P, van Osch G (2016) Expression of CD105 on expanded mesenchymal stem cells does not predict their chondrogenic potential. Osteoarthr Cartil 24:868–872

    Article  CAS  Google Scholar 

  • Dash NR, Dash SN, Routray P, Mohapatra S, Mohapatra PC (2009) Targeting nonhealing ulcers of lower extremity in human through autologous bone marrow-derived mesenchymal stem cells. Rejuvenation Res 12:359–366

    Article  PubMed  CAS  Google Scholar 

  • Dubský M, Jirkovska A, Bem R, Nemcova A, Fejfarova V, Jude EB (2017) Cell therapy of critical limb ischemia in diabetic patients–State of art. Diabetes Res Clin Pract 126:263–271

    Article  PubMed  Google Scholar 

  • Fan W, Sun D, Liu J, Liang D, Wang Y, Narsinh KH, Li Y, Qin X, Liang J, Tian J (2012) Adipose stromal cells amplify angiogenic signaling via the VEGF/mTOR/Akt pathway in a murine hindlimb ischemia model: a 3D multimodality imaging study. PLoS ONE 7(9):e45621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fikry EM, Safar MM, Hasan WA, Fawzy HM, El-Denshary EEDS (2015) Bone marrow and adipose-derived mesenchymal stem cells alleviate methotrexate-induced pulmonary fibrosis in rat: comparison with dexamethasone. J Biochem Mol Toxicol 29:321–329

    Article  PubMed  CAS  Google Scholar 

  • Fu X, Liu G, Halim A, Ju Y, Luo Q, Song G (2019) Mesenchymal stem cell migration and tissue repair. Cells 8:784

    Article  PubMed Central  CAS  Google Scholar 

  • Hioki H, Miyashita Y, Miura T, Ebisawa S, Motoki H, Izawa A, Tomita T, Koyama J, Ikeda U (2015) Prognostic improvement by multidisciplinary therapy in patients with critical limb ischemia. Angiol 66:187–194

    Article  Google Scholar 

  • Kaushik R, Sree B, Attri AK (2002) Spontaneous auto-amputation of the foot in a case of diabetes, atherosclerosis and gangrene. J Indian Med Assoc 100:573–574

    PubMed  Google Scholar 

  • Khajeh S, Razban V, Talaei-Khozani T, Soleimani M, Asadi-Golshan R, Dehghani F, Ramezani A, Mostafavi-Pour Z (2018) Enhanced chondrogenic differentiation of dental pulp-derived mesenchymal stem cells in 3D pellet culture system: effect of mimicking hypoxia. Biologia 73:715–726

    Article  CAS  Google Scholar 

  • Kohli N, Al-Delfi IR, Snow M, Sakamoto T, Miyazaki T, Nakajima H, Uchida K, Johnson WE (2019) CD271-selected mesenchymal stem cells from adipose tissue enhance cartilage repair and are less angiogenic than plastic adherent mesenchymal stem cells. Sci Rep 9:1–12

    Article  Google Scholar 

  • Lauvrud AT, Kelk P, Wiberg M, Kingham PJ (2017) Characterization of human adipose tissue-derived stem cells with enhanced angiogenic and adipogenic properties. J Tissue Eng Regen Med 11:2490–2502

    Article  PubMed  CAS  Google Scholar 

  • Liang L, Li Z, Ma T, Han Z, Du W, Geng J, Jia H, Zhao M, Wang J, Zhang B (2017) Transplantation of human placenta-derived mesenchymal stem cells alleviates critical limb ischemia in diabetic nude rats. Cell Transplant 26:45–61

    Article  PubMed  PubMed Central  Google Scholar 

  • Liew A, O’Brien T (2012) Therapeutic potential for mesenchymal stem cell transplantation in critical limb ischemia. Stem Cell Res Ther 3:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Hao H, Xia L, Ti D, Huang H, Dong L, Tong C, Hou Q, Zhao Y, Liu H (2015) Hypoxia pretreatment of bone marrow mesenchymal stem cells facilitates angiogenesis by improving the function of endothelial cells in diabetic rats with lower ischemia. PLoS ONE 10:e0126715

    Article  PubMed  PubMed Central  Google Scholar 

  • López Y, Lutjemeier B, Seshareddy KM, Trevino E, Sue HK, Musch IT, Borgarelli ML, Weiss M (2013) Wharton’s jelly or bone marrow mesenchymal stromal cells improve cardiac function following myocardial infarction for more than 32 weeks in a rat model: a preliminary report. Curr Stem Cell 8:46–59

    Article  Google Scholar 

  • Lotfy A, Salama M, Zahran F, Jones E, Badawy A, Sobh M (2014) Characterization of mesenchymal stem cells derived from rat bone marrow and adipose tissue: a comparative study. Int J Stem Cells 7:135

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu D, Chen B, Liang Z, Deng W, Jiang Y, Li S, Xu J, Wu Q, Zhang Z, Xie B (2011) Comparison of bone marrow mesenchymal stem cells with bone marrow-derived mononuclear cells for treatment of diabetic critical limb ischemia and foot ulcer: a double-blind, randomized, controlled trial. Diabetes Res Clin Pract 92:26–36

    Article  PubMed  Google Scholar 

  • Ma N, Cheng H, Lu M, Liu Q, Chen X, Yin G, Zhu H, Zhang L, Meng X, Tang Y (2015) Magnetic resonance imaging with superparamagnetic iron oxide fails to track the long-term fate of mesenchymal stem cells transplanted into heart. Sci Rep 5:1–9

    Google Scholar 

  • Mohamed-Ahmed S, Fristad I, Lie SA, Suliman S, Mustafa K, Vindenes H, Idris SB (2018) Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison. Stem Cell Res Ther 9:168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mottaghi S, Larijani B, Sharifi AM (2012) Apelin 13: a novel approach to enhance efficacy of hypoxic preconditioned mesenchymal stem cells for cell therapy of diabetes. Med Hypotheses 79:717–718

    Article  PubMed  CAS  Google Scholar 

  • Parikh PP, Liu Z-J, Velazquez OC (2017) A molecular and clinical review of stem cell therapy in critical limb ischemia. Stem Cells Int 2017:1–10

    Article  Google Scholar 

  • Razban V, Khajeh S, Lotfi AS, Mohsenifar A, Soleimani M, Khoshdel A, Hashemi E (2014) Engineered heparan sulfate-collagen IV surfaces improve human mesenchymal stem cells differentiation to functional hepatocyte-like cells. J Biomater Tissue Eng 4:811–822

    Article  Google Scholar 

  • Russell KC, Phinney DG, Lacey MR, Barrilleaux BL, Meyertholen KE, O’Connor KC (2010) In vitro high-capacity assay to quantify the clonal heterogeneity in trilineage potential of mesenchymal stem cells reveals a complex hierarchy of lineage commitment. Stem Cells 28:788–798

    Article  PubMed  CAS  Google Scholar 

  • Sherman AB, Gilger BC, Berglund AK, Schnabel LV (2017) Effect of bone marrow-derived mesenchymal stem cells and stem cell supernatant on equine corneal wound healing in vitro. Stem Cell Res Ther 8:120

    Article  PubMed  PubMed Central  Google Scholar 

  • Shu J, Santulli G (2018) Update on peripheral artery disease: Epidemiology and evidence-based facts. Atherosclerosis 275:379–381

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song P, Rudan D, Zhu Y, Fowkes FJ, Rahimi K, Fowkes FGR, Rudan I (2019) Global, regional, and national prevalence and risk factors for peripheral artery disease in 2015: an updated systematic review and analysis. Lancet Glob Health 7:e1020–e1030

    Article  PubMed  Google Scholar 

  • Tebebi PA, Kim SJ, Williams RA, Milo B, Frenkel V, Burks SR, Frank JA (2017) Improving the therapeutic efficacy of mesenchymal stromal cells to restore perfusion in critical limb ischemia through pulsed focused ultrasound. Sci Rep 7:41550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira-Machado JA (2018) Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis 9:1–9

    Article  CAS  Google Scholar 

  • Vu NB, Phi LT, Dao TT-T, Le HT-N, Van Pham P (2016) Adipose derived stem cell transplantation is better than bone marrow mesenchymal stem cell transplantation in treating hindlimb ischemia in mice. Biomed Res Ther 3:46

    Article  Google Scholar 

  • Wu Y, Chen L, Scott PG, Tredget EE (2007) Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis. Stem Cells 25:2648–2659

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The present study was financially supported by Shahid Sadoughi University of Medical Sciences, Yazd, Iran and Shiraz University of Medical Sciences, Shiraz, Iran. Also, the authors would like to thank the Research Consulting Center of Shiraz University of Medical Sciences (RCC) for their assistance in statistical analysis.

Funding

This work was supported by Shahid Sadoughi University of Medical Sciences Foundation (5984).

Author information

Authors and Affiliations

Authors

Contributions

SLAY: Conceptualization, Methodology, Investigation, Data curation, Project administration, Writing - original draft. PN: Conceptualization, Methodology, Investigation, Data curation. MS: Supervision, Writing - review & editing, Data curation, Validation, Funding acquisition. SMBT: Supervision, Writing - review & editing, Funding acquisition. SD: Methodology, Investigation, Data curation. HN: Data curation, Validation. ML: Data curation, Validation. VR: Supervision, Writing - review & editing, Data curation, Validation. The authors read and approved the final manuscript.

Corresponding authors

Correspondence to Mohammad Hasan Sheikhha or Vahid Razban.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethics approval and consent to participate

All methods were performed in accordance with the regulations and guidelines approved by the ethics committee of Shahid Sadoughi University of Medical Sciences (IR.SSU.MEDICINE.REC.1397.031).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asadi-Yousefabad, SL., Nammian, P., Sheikhha, M.H. et al. Comparative study of mouse adipose- and bone marrow mesenchymal stem cells in diabetic model with critical limb ischemia. Cell Tissue Bank 23, 923–936 (2022). https://doi.org/10.1007/s10561-022-10007-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-022-10007-7

Keywords

Navigation