Skip to main content

Advertisement

Log in

The Role of P53 in Myocardial Ischemia-Reperfusion Injury

  • Review Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

P53 is one of the key tumor suppressors. In normal cells, p53 is maintained at low levels by the ubiquitination of the ubiquitinated ligase MDM2. In contrast, under stress conditions such as DNA damage and ischemia, the interaction between p53 and MDM2 is blocked and activated by phosphorylation and acetylation, thereby mediating the trans-activation of p53 through its target genes to regulate a variety of cellular responses. Previous studies have shown that the expression of p53 is negligible in normal myocardium, tends to increase in myocardial ischemia and is maximally induced in ischemia-reperfused myocardium, demonstrating a possible key role of p53 in the development of MIRI. In this review, we detail and summarize recent studies on the mechanism of action of p53 in MIRI and describe the therapeutic agents targeting the relevant targets to provide new strategies for the prevention and treatment of MIRI.

Methods

We collected 161 relevant papers mainly from Pubmed and Web of Science (search terms "p53" and "myocardial ischemia-reperfusion injury"). After that, we selected pathway studies related to p53 and classified them according to their contents. We eventually analyzed and summarized them.

Results and conclusion

In this review, we detail and summarize recent studies on the mechanism of action of p53 in MIRI and validate its status as an important intermediate affecting MIRI. On the one hand, p53 is regulated and modified by multiple factors, especially non-coding RNAs; on the other hand, p53 regulates apoptosis, programmed necrosis, autophagy, iron death and oxidative stress in MIRI through multiple pathways. More importantly, several studies have reported medications targeting p53-related therapeutic targets. These medications are expected to be effective options for the alleviation of MIRI, but further safety and clinical studies are needed to convert them into clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Del Re DP, Amgalan D, Linkermann A, Liu Q, Kitsis RN. Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev. 2019;99(4):1765–817.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Du J, Li Y, Zhao W. Autophagy and Myocardial Ischemia. Adv Exp Med Biol. 2020;1207:217–22.

    Article  CAS  PubMed  Google Scholar 

  3. Toldo S, Mauro AG, Cutter Z, Abbate A. Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol. 2018;315(6):H1553–H68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhao W, Wu Y, Ye F, et al. Tetrandrine ameliorates myocardial ischemia reperfusion injury through miR-202-5p/TRPV2. Biomed Res Int. 2021;2021:8870674.

    PubMed  PubMed Central  Google Scholar 

  5. Sun MY, Li LP. MiR-140-5p targets BCL2L1 to promote cardiomyocyte apoptosis. Eur Rev Med Pharmacol Sci. 2021;25(1):1.

    PubMed  Google Scholar 

  6. Ghafouri-Fard S, Shoorei H, Taheri M. Non-coding RNAs participate in the ischemia-reperfusion injury. Biomed Pharmacother. 2020;129:110419.

    Article  CAS  PubMed  Google Scholar 

  7. Hu J, Cao J, Topatana W, et al. Targeting mutant p53 for cancer therapy: direct and indirect strategies. J Hematol Oncol. 2021;14(1):157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Beckerman R, Prives C. Transcriptional regulation by p53. Cold Spring Harb Perspect Biol. 2010;2(8):a000935.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kawauchi K, Wolf SJ. Understanding p53: new insights into tumor suppression. Expert Rev Anticancer Ther. 2014;14(10):1101–3.

    Article  CAS  PubMed  Google Scholar 

  10. Maulik N, Sasaki H, Addya S, Das DK. Regulation of cardiomyocyte apoptosis by redox-sensitive transcription factors. FEBS Lett. 2000;485(1):7–12.

    Article  CAS  PubMed  Google Scholar 

  11. Yano T, Abe K, Tanno M, et al. Does p53 inhibition suppress myocardial ischemia-reperfusion injury? J Cardiovasc Pharmacol Ther. 2018;23(4):350–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Liu Y, Tavana O, Gu W. p53 modifications: exquisite decorations of the powerful guardian. J Mol Cell Biol. 2019;11(7):564–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Joerger AC, Fersht AR. The p53 pathway: origins, inactivation in cancer, and emerging therapeutic approaches. Annu Rev Biochem. 2016;85:375–404.

    Article  CAS  PubMed  Google Scholar 

  14. Wang L, He G, Zhang P, et al. Interplay between MDM2, MDMX, Pirh2 and COP1: the negative regulators of p53. Mol Biol Rep. 2011;38(1):229–36.

    Article  CAS  PubMed  Google Scholar 

  15. Song Y, Liu Y, Pan S, et al. Role of the COP1 protein in cancer development and therapy. Semin Cancer Biol. 2020;67(Pt 2):43–52.

    Article  CAS  PubMed  Google Scholar 

  16. Liu J, Zhang C, Hu W, Feng Z. Tumor suppressor p53 and metabolism. J Mol Cell Biol. 2019;11(4):284–92.

    Article  CAS  PubMed  Google Scholar 

  17. Munisamy M, Mukherjee N, Thomas L, et al. Therapeutic opportunities in cancer therapy: targeting the p53-MDM2/MDMX interactions. Am J Cancer Res. 2021;11(12):5762–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Xia Z, Kon N, Gu AP, Tavana O, Gu W. Deciphering the acetylation code of p53 in transcription regulation and tumor suppression. Oncogene. 2022;41(22):3039–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nagasaka M, Miyajima C, Aoki H, Aoyama M, Morishita D, Inoue Y, Hayashi H. Insights into regulators of p53 acetylation. Cells. 2022;11(23):3825. https://doi.org/10.3390/cells11233825.

  20. Chen S, Seiler J, Santiago-Reichelt M, et al. Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7. Mol Cell. 2013;52(3):303–13.

    Article  CAS  PubMed  Google Scholar 

  21. Hill M, Tran N. miRNA interplay: mechanisms and consequences in cancer. Dis Model Mech. 2021;14(4):dmm047662. https://doi.org/10.1242/dmm.047662.

  22. Carbonell T, Gomes AV. MicroRNAs in the regulation of cellular redox status and its implications in myocardial ischemia-reperfusion injury. Redox Biol. 2020;36:101607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Siebert V, Allencherril J, Ye Y, Wehrens XHT, Birnbaum Y. The role of non-coding RNAs in ischemic myocardial reperfusion injury. Cardiovasc Drugs Ther. 2019;33(4):489–98.

    Article  CAS  PubMed  Google Scholar 

  24. Schmitz SU, Grote P, Herrmann BG. Mechanisms of long noncoding RNA function in development and disease. Cell Mol Life Sci. 2016;73(13):2491–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li J, Xuan Z, Liu C. Long non-coding RNAs and complex human diseases. Int J Mol Sci. 2013;14(9):18790–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang H, Bu YZ, Zhang XY, et al. LINC01433 promotes hepatocellular carcinoma progression via modulating the miR-1301/STAT3 axis. J Cell Physiol. 2019;234(5):6116–24.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang H, Wang J, Du A, Li Y. MiR-483-3p inhibition ameliorates myocardial ischemia/reperfusion injury by targeting the MDM4/p53 pathway. Mol Immunol. 2020;125:9–14.

    Article  CAS  PubMed  Google Scholar 

  28. Choudhry H, Harris AL. Advances in Hypoxia-Inducible Factor Biology. Cell Metab. 2018;27(2):281–98.

    Article  CAS  PubMed  Google Scholar 

  29. Zheng J, Chen P, Zhong J, Cheng Y, Chen H, He Y, Chen C. HIF-1α in myocardial ischemia-reperfusion injury (Review). Mol Med Rep. 2021;23(5):352. https://doi.org/10.3892/mmr.2021.11991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Strowitzki MJ, Cummins EP, Taylor CT. Protein hydroxylation by hypoxia-inducible factor (HIF) hydroxylases: unique or ubiquitous? Cells. 2019;8(5):384. https://doi.org/10.3390/cells8050384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xie L, Pi X, Wang Z, et al. Depletion of PHD3 protects heart from ischemia/reperfusion injury by inhibiting cardiomyocyte apoptosis. J Mol Cell Cardiol. 2015;80:156–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiang M, Jia K, Wang L, et al. Alterations of DNA damage response pathway: Biomarker and therapeutic strategy for cancer immunotherapy. Acta Pharm Sin B. 2021;11(10):2983–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vadivel Gnanasundram S, Bonczek O, Wang L, Chen S, Fahraeus R. p53 mRNA metabolism links with the DNA damage response. Genes (Basel). 2021;12(9):1446. https://doi.org/10.3390/genes12091446.

  34. Manna PT, Munsey TS, Abuarab N, et al. TRPM2-mediated intracellular Zn2+ release triggers pancreatic beta-cell death. Biochem J. 2015;466(3):537–46.

    Article  CAS  PubMed  Google Scholar 

  35. Colvin RA, Fontaine CP, Laskowski M, Thomas D. Zn2+ transporters and Zn2+ homeostasis in neurons. Eur J Pharmacol. 2003;479(1-3):171–85.

    Article  CAS  PubMed  Google Scholar 

  36. Sikora J, Ouagazzal AM. Synaptic zinc: an emerging player in parkinson’s disease. Int J Mol Sci. 2021;22(9):4724. https://doi.org/10.3390/ijms22094724.

  37. Lin CL, Tseng HC, Chen RF, et al. Intracellular zinc release-activated ERK-dependent GSK-3beta-p53 and Noxa-Mcl-1 signaling are both involved in cardiac ischemic-reperfusion injury. Cell Death Differ. 2011;18(10):1651–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zebrowski DC, Alcendor RR, Kirshenbaum LA, Sadoshima J. Caspase-3 mediated cleavage of MEKK1 promotes p53 transcriptional activity. J Mol Cell Cardiol. 2006;40(5):605–18.

    Article  CAS  PubMed  Google Scholar 

  39. Pei YH, Chen J, Wu X, et al. LncRNA PEAMIR inhibits apoptosis and inflammatory response in PM2.5 exposure aggravated myocardial ischemia/reperfusion injury as a competing endogenous RNA of miR-29b-3p. Nanotoxicology. 2020;14(5):638–53.

    Article  CAS  PubMed  Google Scholar 

  40. Su Q, Lv XW, Xu YL, et al. Exosomal LINC00174 derived from vascular endothelial cells attenuates myocardial I/R injury via p53-mediated autophagy and apoptosis. Mol Ther Nucleic Acids. 2021;23:1304–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guedes EC, da Silva IB, Lima VM, et al. High fat diet reduces the expression of miRNA-29b in heart and increases susceptibility of myocardium to ischemia/reperfusion injury. J Cell Physiol. 2019;234(6):9399–407.

    Article  CAS  PubMed  Google Scholar 

  42. Wang X, Ha T, Zou J, et al. MicroRNA-125b protects against myocardial ischaemia/reperfusion injury via targeting p53-mediated apoptotic signalling and TRAF6. Cardiovasc Res. 2014;102(3):385–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang S, Cheng Z, Chen X, Xue H. microRNA-135a protects against myocardial ischemia-reperfusion injury in rats by targeting protein tyrosine phosphatase 1B. J Cell Biochem. 2019;120(6):10421–33.

    Article  CAS  PubMed  Google Scholar 

  44. Jiao H, Chen R, Jiang Z, Zhang L, Wang H. miR-22 protect PC12 from ischemia/reperfusion-induced injury by targeting p53 upregulated modulator of apoptosis (PUMA). Bioengineered. 2020;11(1):209–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bose AK, Mocanu MM, Carr RD, Brand CL, Yellon DM. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes. 2005;54(1):146–51.

    Article  CAS  PubMed  Google Scholar 

  46. Angelone T, Filice E, Pasqua T, et al. Nesfatin-1 as a novel cardiac peptide: identification, functional characterization, and protection against ischemia/reperfusion injury. Cell Mol Life Sci. 2013;70(3):495–509.

    Article  CAS  PubMed  Google Scholar 

  47. Petzelbauer P, Zacharowski PA, Miyazaki Y, et al. The fibrin-derived peptide Bbeta15-42 protects the myocardium against ischemia-reperfusion injury. Nat Med. 2005;11(3):298–304.

    Article  CAS  PubMed  Google Scholar 

  48. Ansari J, Kaur G, Gavins FNE. Therapeutic potential of annexin A1 in Ischemia reperfusion injury. Int J Mol Sci. 2018;19(4):1211. https://doi.org/10.3390/ijms19041211.

  49. Yin A, Feng M, Zhang L, et al. Identification of a novel native peptide derived from 60S ribosomal protein L23a that translationally regulates p53 to reduce myocardial ischemia-reperfusion. Pharmacol Res. 2022;175:105988.

    Article  CAS  PubMed  Google Scholar 

  50. Li Y, Meng Q, Wang L, Cui Y. TRIM27 protects against cardiac ischemia-reperfusion injury by suppression of apoptosis and inflammation via negatively regulating p53. Biochem Biophys Res Commun. 2021;557:127–34.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang C, Shi J, Qian L, et al. Nucleostemin exerts anti-apoptotic function via p53 signaling pathway in cardiomyocytes. In Vitro Cell Dev Biol Anim. 2015;51(10):1064–71.

    Article  CAS  PubMed  Google Scholar 

  52. Jiang Y, Yang Y, Zhang Y, et al. Cytoplasmic sequestration of p53 by lncRNA-CIRPILalleviates myocardial ischemia/reperfusion injury. Commun Biol. 2022;5(1):716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ka WH, Cho SK, Chun BN, Byun SY, Ahn JC. The ubiquitin ligase COP1 regulates cell cycle and apoptosis by affecting p53 function in human breast cancer cell lines. Breast Cancer. 2018;25(5):529–38.

    Article  PubMed  Google Scholar 

  54. Moscetti I, Bizzarri AR, Cannistraro S. Imaging and kinetics of the bimolecular complex formed by the tumor suppressor p53 with ubiquitin ligase COP1 as studied by atomic force microscopy and surface plasmon resonance. Int J Nanomed. 2018;13:251–9.

    Article  CAS  Google Scholar 

  55. Li X, Ni L, Wang W, Zong L, Yao B. LncRNA Fendrr inhibits hypoxia/reoxygenation-induced cardiomyocyte apoptosis by downregulating p53 expression. J Pharm Pharmacol. 2020;72(9):1211–20.

    Article  CAS  PubMed  Google Scholar 

  56. Zhan LF, Zhang Q, Zhao L, et al. LncRNA-6395 promotes myocardial ischemia-reperfusion injury in mice through increasing p53 pathway. Acta Pharmacol Sin. 2022;43(6):1383–94.

    Article  CAS  PubMed  Google Scholar 

  57. Steenbeke M, De Bruyne S, De Buyzere M, et al. The role of soluble receptor for advanced glycation end-products (sRAGE) in the general population and patients with diabetes mellitus with a focus on renal function and overall outcome. Crit Rev Clin Lab Sci. 2021;58(2):113–30.

    Article  CAS  PubMed  Google Scholar 

  58. Prasad K. Is there any evidence that AGE/sRAGE is a universal biomarker/risk marker for diseases? Mol Cell Biochem. 2019;451(1-2):139–44.

    Article  CAS  PubMed  Google Scholar 

  59. Erusalimsky JD. The use of the soluble receptor for advanced glycation-end products (sRAGE) as a potential biomarker of disease risk and adverse outcomes. Redox Biol. 2021;42:101958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yan SF, Ramasamy R, Schmidt AM. Soluble RAGE: therapy and biomarker in unraveling the RAGE axis in chronic disease and aging. Biochem Pharmacol. 2010;79(10):1379–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dang M, Zeng X, Chen B, et al. Interferon-gamma mediates the protective effects of soluble receptor for advanced glycation end-product in myocardial ischemia/reperfusion. Lab Invest. 2019;99(3):358–70.

    Article  CAS  PubMed  Google Scholar 

  62. Calle X, Garrido-Moreno V, Lopez-Gallardo E, et al. Mitochondrial E3 ubiquitin ligase 1 (MUL1) as a novel therapeutic target for diseases associated with mitochondrial dysfunction. IUBMB Life. 2022;74(9):850–65.

    Article  CAS  PubMed  Google Scholar 

  63. Prudent J, Zunino R, Sugiura A, et al. MAPL SUMOylation of Drp1 stabilizes an ER/mitochondrial platform required for cell death. Mol Cell. 2015;59(6):941–55.

    Article  CAS  PubMed  Google Scholar 

  64. Han ZJ, Feng YH, Gu BH, Li YM, Chen H. The post-translational modification, SUMOylation, and cancer (Review). Int J Oncol. 2018;52(4):1081–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Vertegaal ACO. Signalling mechanisms and cellular functions of SUMO. Nat Rev Mol Cell Biol. 2022;23(11):715–31.

    Article  CAS  PubMed  Google Scholar 

  66. Wang SJ, Chen H, Tang LJ, et al. Upregulation of mitochondrial E3 ubiquitin ligase 1 in rat heart contributes to ischemia/reperfusion injury. Can J Physiol Pharmacol. 2020;98(5):259–66.

    Article  CAS  PubMed  Google Scholar 

  67. Liu X, Xiao J, Zhu H, et al. miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab. 2015;21(4):584–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang L, Lv Y, Li G, Xiao J. MicroRNAs in heart and circulation during physical exercise. J Sport Health Sci. 2018;7(4):433–41.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zhou Q, Deng J, Yao J, et al. Exercise downregulates HIPK2 and HIPK2 inhibition protects against myocardial infarction. EBioMedicine. 2021;74:103713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bauer TM, Murphy E. Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ Res. 2020;126(2):280–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gan X, Zhang L, Liu B, et al. CypD-mPTP axis regulates mitochondrial functions contributing to osteogenic dysfunction of MC3T3-E1 cells in inflammation. J Physiol Biochem. 2018;74(3):395–402.

    Article  CAS  PubMed  Google Scholar 

  72. Hou D, Hu F, Mao Y, et al. Cationic antimicrobial peptide NRC-03 induces oral squamous cell carcinoma cell apoptosis via CypD-mPTP axis-mediated mitochondrial oxidative stress. Redox Biol. 2022;54:102355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Feng W, Wang J, Li B, et al. Graphene oxide leads to mitochondrial-dependent apoptosis by activating ROS-p53-mPTP pathway in intestinal cells. Int J Biochem Cell Biol. 2022;146:106206.

    Article  CAS  PubMed  Google Scholar 

  74. Yang H, Li R, Zhang L, et al. p53-cyclophilin D mediates renal tubular cell apoptosis in ischemia-reperfusion-induced acute kidney injury. Am J Physiol Renal Physiol. 2019;317(5):F1311–F7.

    Article  CAS  PubMed  Google Scholar 

  75. Zhao J, Liu X, Blayney A, et al. Intrinsically disordered N-terminal domain (NTD) of p53 interacts with mitochondrial PTP regulator cyclophilin D. J Mol Biol. 2022;434(9):167552.

    Article  CAS  PubMed  Google Scholar 

  76. Miura T, Nishihara M, Miki T. Drug development targeting the glycogen synthase kinase-3beta (GSK-3beta)-mediated signal transduction pathway: role of GSK-3beta in myocardial protection against ischemia/reperfusion injury. J Pharmacol Sci. 2009;109(2):162–7.

    Article  CAS  PubMed  Google Scholar 

  77. Peng K, Liu H, Yan B, et al. Inhibition of cathepsin S attenuates myocardial ischemia/reperfusion injury by suppressing inflammation and apoptosis. J Cell Physiol. 2021;236(2):1309–20.

    Article  CAS  PubMed  Google Scholar 

  78. Frangogiannis NG. The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol. 2014;11(5):255–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Palmai-Pallag T, Bachrati CZ. Inflammation-induced DNA damage and damage-induced inflammation: a vicious cycle. Microbes Infect. 2014;16(10):822–32.

    Article  CAS  PubMed  Google Scholar 

  80. Zhou SF, Yuan J, Liao MY, et al. IL-17A promotes ventricular remodeling after myocardial infarction. J Mol Med (Berl). 2014;92(10):1105–16.

    Article  CAS  PubMed  Google Scholar 

  81. Oshima Y, Fujio Y, Nakanishi T, et al. STAT3 mediates cardioprotection against ischemia/reperfusion injury through metallothionein induction in the heart. Cardiovasc Res. 2005;65(2):428–35.

    Article  CAS  PubMed  Google Scholar 

  82. Boengler K, Hilfiker-Kleiner D, Heusch G, Schulz R. Inhibition of permeability transition pore opening by mitochondrial STAT3 and its role in myocardial ischemia/reperfusion. Basic Res Cardiol. 2010;105(6):771–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Heusch G, Musiolik J, Gedik N, Skyschally A. Mitochondrial STAT3 activation and cardioprotection by ischemic postconditioning in pigs with regional myocardial ischemia/reperfusion. Circ Res. 2011;109(11):1302–8.

    Article  CAS  PubMed  Google Scholar 

  84. Takahashi J, Yamamoto M, Yasukawa H, et al. Interleukin-22 directly activates myocardial STAT3 (signal transducer and activator of transcription-3) signaling pathway and prevents myocardial ischemia reperfusion injury. J Am Heart Assoc. 2020;9(8):e014814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Satoh K. Sirtuin-7 as a novel therapeutic target in vascular smooth muscle cell proliferation and remodeling. Circ J. 2021;85(12):2241–2.

    Article  PubMed  Google Scholar 

  86. Yamamura S, Izumiya Y, Araki S, et al. Cardiomyocyte Sirt (Sirtuin) 7 ameliorates stress-induced cardiac hypertrophy by interacting with and deacetylating GATA4. Hypertension. 2020;75(1):98–108.

    Article  CAS  PubMed  Google Scholar 

  87. Sun M, Zhai M, Zhang N, et al. MicroRNA-148b-3p is involved in regulating hypoxia/reoxygenation-induced injury of cardiomyocytes in vitro through modulating SIRT7/p53 signaling. Chem Biol Interact. 2018;296:211–9.

    Article  CAS  PubMed  Google Scholar 

  88. Paul A, Tang TH, Ng SK. Interferon Regulatory Factor 9 Structure and Regulation. Front Immunol. 2018;9:1831.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest. 2013;123(1):92–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Jiang DS, Luo YX, Zhang R, et al. Interferon regulatory factor 9 protects against cardiac hypertrophy by targeting myocardin. Hypertension. 2014;63(1):119–27.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang Y, Liu X, She ZG, et al. Interferon regulatory factor 9 is an essential mediator of heart dysfunction and cell death following myocardial ischemia/reperfusion injury. Basic Res Cardiol. 2014;109(5):434.

    Article  PubMed  Google Scholar 

  92. Agupitan AD, Neeson P, Williams S, Howitt J, Haupt S, Haupt Y. P53: a guardian of immunity becomes its saboteur through mutation. Int J Mol Sci. 2020;21(10):3452. https://doi.org/10.3390/ijms21103452.

  93. Levine AJ. p53: 800 million years of evolution and 40 years of discovery. Nat Rev Cancer. 2020;20(8):471–80.

    Article  CAS  PubMed  Google Scholar 

  94. Yu S, Ji G, Zhang L. The role of p53 in liver fibrosis. Front Pharmacol. 2022;13:1057829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhang W, Gai C, Ding D, Wang F, Li W. Targeted p53 on small-molecules-induced ferroptosis in cancers. Front Oncol. 2018;8:507.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Garbern JC, Lee RT. Mitochondria and metabolic transitions in cardiomyocytes: lessons from development for stem cell-derived cardiomyocytes. Stem Cell Res Ther. 2021;12(1):177.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Marin W, Marin D, Ao X, Liu Y. Mitochondria as a therapeutic target for cardiac ischemia-reperfusion injury (Review). Int J Mol Med. 2021;47(2):485–99.

    Article  CAS  PubMed  Google Scholar 

  98. Frank S, Gaume B, Bergmann-Leitner ES, et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell. 2001;1(4):515–25.

    Article  CAS  PubMed  Google Scholar 

  99. Tan WQ, Wang JX, Lin ZQ, et al. Novel cardiac apoptotic pathway: the dephosphorylation of apoptosis repressor with caspase recruitment domain by calcineurin. Circulation. 2008;118(22):2268–76.

    Article  CAS  PubMed  Google Scholar 

  100. Wang JX, Jiao JQ, Li Q, et al. miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat Med. 2011;17(1):71–8.

    Article  PubMed  Google Scholar 

  101. Kesavardhana S, Malireddi RKS, Kanneganti TD. Caspases in cell death, inflammation, and pyroptosis. Annu Rev Immunol. 2020;38:567–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang YQ, Herman B. ARC protects rat cardiomyocytes against oxidative stress through inhibition of caspase-2 mediated mitochondrial pathway. J Cell Biochem. 2006;99(2):575–88.

    Article  CAS  PubMed  Google Scholar 

  103. Jo DG, Jun JI, Chang JW, et al. Calcium binding of ARC mediates regulation of caspase 8 and cell death. Mol Cell Biol. 2004;24(22):9763–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Foo RS, Chan LK, Kitsis RN, Bennett MR. Ubiquitination and degradation of the anti-apoptotic protein ARC by MDM2. J Biol Chem. 2007;282(8):5529–35.

    Article  CAS  PubMed  Google Scholar 

  105. Yan J, Wan P, Choksi S, Liu ZG. Necroptosis and tumor progression. Trends Cancer. 2022;8(1):21–7.

    Article  CAS  PubMed  Google Scholar 

  106. Bertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol. 2021;18(5):1106–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Xu T, Ding W, Ao X, et al. ARC regulates programmed necrosis and myocardial ischemia/reperfusion injury through the inhibition of mPTP opening. Redox Biol. 2019;20:414–26.

    Article  CAS  PubMed  Google Scholar 

  108. Xu D, Zou C, Yuan J. Genetic Regulation of RIPK1 and Necroptosis. Annu Rev Genet. 2021;55:235–63.

    Article  PubMed  Google Scholar 

  109. Deng XX, Li SS, Sun FY. Necrostatin-1 prevents necroptosis in brains after ischemic stroke via inhibition of RIPK1-mediated RIPK3/MLKL signaling. Aging Dis. 2019;10(4):807–17.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Yuan J, Amin P, Ofengeim D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci. 2019;20(1):19–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang K, Liu F, Liu CY, et al. The long noncoding RNA NRF regulates programmed necrosis and myocardial injury during ischemia and reperfusion by targeting miR-873. Cell Death Differ. 2016;23(8):1394–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. White E. Autophagy and p53. Cold Spring Harb Perspect Med. 2016;6(4):a026120.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Dong Y, Chen H, Gao J, et al. Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J Mol Cell Cardiol. 2019;136:27–41.

    Article  CAS  PubMed  Google Scholar 

  114. Majesky MW. Vascular Development. Arterioscler Thromb Vasc Biol. 2018;38(3):e17–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Liu L, Zhao Q, Kong M, et al. Myocardin-related transcription factor A regulates integrin beta 2 transcription to promote macrophage infiltration and cardiac hypertrophy in mice. Cardiovasc Res. 2022;118(3):844–58.

    Article  CAS  PubMed  Google Scholar 

  116. Liu CY, Zhang YH, Li RB, et al. LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription. Nat Commun. 2018;9(1):29.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Li A, Gao M, Liu B, et al. Mitochondrial autophagy: molecular mechanisms and implications for cardiovascular disease. Cell Death Dis. 2022;13(5):444.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Onishi M, Yamano K, Sato M, Matsuda N, Okamoto K. Molecular mechanisms and physiological functions of mitophagy. EMBO J. 2021;40(3):e104705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Zhang J, Ney PA. Role of BNIP3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ. 2009;16(7):939–46.

    Article  CAS  PubMed  Google Scholar 

  120. Zhang Y, Liu D, Hu H, et al. HIF-1alpha/BNIP3 signaling pathway-induced-autophagy plays protective role during myocardial ischemia-reperfusion injury. Biomed Pharmacother. 2019;120:109464.

    Article  CAS  PubMed  Google Scholar 

  121. Hoshino A, Matoba S, Iwai-Kanai E, et al. p53-TIGAR axis attenuates mitophagy to exacerbate cardiac damage after ischemia. J Mol Cell Cardiol. 2012;52(1):175–84.

    Article  CAS  PubMed  Google Scholar 

  122. Tang J, Chen L, Qin ZH, Sheng R. Structure, regulation, and biological functions of TIGAR and its role in diseases. Acta Pharmacol Sin. 2021;42(10):1547–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wu X, Li Y, Zhang S, Zhou X. Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics. 2021;11(7):3052–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 2017;171(2):273–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Latunde-Dada GO. Ferroptosis: role of lipid peroxidation, iron and ferritinophagy. Biochim Biophys Acta Gen Subj. 2017;1861(8):1893–900.

    Article  CAS  PubMed  Google Scholar 

  127. Ursini F, Maiorino M. Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radic Biol Med. 2020;152:175–85.

    Article  CAS  PubMed  Google Scholar 

  128. Feng H, Schorpp K, Jin J, et al. Transferrin receptor is a specific ferroptosis marker. Cell Rep. 2020;30(10):3411–23 e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Tang LJ, Zhou YJ, Xiong XM, et al. Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after ischemia/reperfusion. Free Radic Biol Med. 2021;162:339–52.

    Article  CAS  PubMed  Google Scholar 

  130. Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021;12(8):599–620.

    Article  CAS  PubMed  Google Scholar 

  131. Liu T, Jiang L, Tavana O, Gu W. The deubiquitylase OTUB1 mediates ferroptosis via stabilization of SLC7A11. Cancer Res. 2019;79(8):1913–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Fang X, Cai Z, Wang H, et al. Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis. Circ Res. 2020;127(4):486–501.

    Article  CAS  PubMed  Google Scholar 

  133. Ma S, Sun L, Wu W, et al. USP22 protects against myocardial ischemia-reperfusion injury via the SIRT1-p53/SLC7A11-dependent inhibition of ferroptosis-induced cardiomyocyte death. Front Physiol. 2020;11:551318.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Xiang M, Lu Y, Xin L, et al. Role of oxidative stress in reperfusion following myocardial ischemia and its treatments. Oxid Med Cell Longev. 2021;2021:6614009.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Chen Q, Thompson J, Hu Y, Lesnefsky EJ. The mitochondrial electron transport chain contributes to calpain 1 activation during ischemia-reperfusion. Biochem Biophys Res Commun. 2022;613:127–32.

    Article  CAS  PubMed  Google Scholar 

  136. Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: central role of complex III. J Biol Chem. 2003;278(38):36027–31.

    Article  CAS  PubMed  Google Scholar 

  137. Poynton RA, Hampton MB. Peroxiredoxins as biomarkers of oxidative stress. Biochim Biophys Acta. 2014;1840(2):906–12.

    Article  CAS  PubMed  Google Scholar 

  138. Wang Z, Sun R, Wang G, et al. SIRT3-mediated deacetylation of PRDX3 alleviates mitochondrial oxidative damage and apoptosis induced by intestinal ischemia/reperfusion injury. Redox Biol. 2020;28:101343.

    Article  CAS  PubMed  Google Scholar 

  139. Chen Q, Thompson J, Hu Y, Lesnefsky EJ. Cardiomyocyte specific deletion of p53 decreases cell injury during ischemia-reperfusion: role of mitochondria. Free Radic Biol Med. 2020;158:162–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Cao T, Fan S, Zheng D, et al. Increased calpain-1 in mitochondria induces dilated heart failure in mice: role of mitochondrial superoxide anion. Basic Res Cardiol. 2019;114(3):17.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Chen Q, Thompson J, Hu Y, Dean J, Lesnefsky EJ. Inhibition of the ubiquitous calpains protects complex I activity and enables improved mitophagy in the heart following ischemia-reperfusion. Am J Physiol Cell Physiol. 2019;317(5):C910–C21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Yu C, Xiao JH. The Keap1-Nrf2 system: a mediator between oxidative stress and aging. Oxid Med Cell Longev. 2021;2021:6635460.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Chen GH, Song CC, Pantopoulos K, et al. Mitochondrial oxidative stress mediated Fe-induced ferroptosis via the NRF2-ARE pathway. Free Radic Biol Med. 2022;180:95–107.

    Article  CAS  PubMed  Google Scholar 

  144. Li H, Zou T, Meng S, Peng YZ, Yang JF. p21 protects cardiomyocytes against ischemia-reperfusion injury by inhibiting oxidative stress. Mol Med Rep. 2018;17(3):4665–71.

    CAS  PubMed  Google Scholar 

  145. Zeng L, Zhang F, Zhang Z, et al. P53 inhibitor pifithrin-alpha inhibits ropivacaine-induced neuronal apoptosis via the mitochondrial apoptosis pathway. J Biochem Mol Toxicol. 2021;35(8):e22822.

    Article  CAS  PubMed  Google Scholar 

  146. Murphy PJ, Galigniana MD, Morishima Y, et al. Pifithrin-alpha inhibits p53 signaling after interaction of the tumor suppressor protein with hsp90 and its nuclear translocation. J Biol Chem. 2004;279(29):30195–201.

    Article  CAS  PubMed  Google Scholar 

  147. Culmsee C, Zhu X, Yu QS, et al. A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid beta-peptide. J Neurochem. 2001;77(1):220–8.

    Article  CAS  PubMed  Google Scholar 

  148. Liu P, Xu B, Cavalieri TA, Hock CE. Pifithrin-alpha attenuates p53-mediated apoptosis and improves cardiac function in response to myocardial ischemia/reperfusion in aged rats. Shock. 2006;26(6):608–14.

    Article  CAS  PubMed  Google Scholar 

  149. Venkatapuram S, Wang C, Krolikowski JG, et al. Inhibition of apoptotic protein p53 lowers the threshold of isoflurane-induced cardioprotection during early reperfusion in rabbits. Anesth Analg. 2006;103(6):1400–5.

    Article  CAS  PubMed  Google Scholar 

  150. Liu P, Xu B, Cavalieri TA, Hock CE. Inhibition of p53 by pifithrin-alpha reduces myocyte apoptosis and leukocyte transmigration in aged rat hearts following 24 hours of reperfusion. Shock. 2008;30(5):545–51.

    Article  CAS  PubMed  Google Scholar 

  151. Sohn D, Graupner V, Neise D, et al. Pifithrin-alpha protects against DNA damage-induced apoptosis downstream of mitochondria independent of p53. Cell Death Differ. 2009;16(6):869–78.

    Article  CAS  PubMed  Google Scholar 

  152. Zhu J, Singh M, Selivanova G, Peuget S. Pifithrin-alpha alters p53 post-translational modifications pattern and differentially inhibits p53 target genes. Sci Rep. 2020;10(1):1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Razvi S, Jabbar A, Pingitore A, et al. Thyroid hormones and cardiovascular function and diseases. J Am Coll Cardiol. 2018;71(16):1781–96.

    Article  CAS  PubMed  Google Scholar 

  154. Forini F, Kusmic C, Nicolini G, et al. Triiodothyronine prevents cardiac ischemia/reperfusion mitochondrial impairment and cell loss by regulating miR30a/p53 axis. Endocrinology. 2014;155(11):4581–90.

    Article  PubMed  Google Scholar 

  155. Hsieh SR, Cheng WC, Su YM, Chiu CH, Liou YM. Molecular targets for anti-oxidative protection of green tea polyphenols against myocardial ischemic injury. Biomedicine (Taipei). 2014;4(4):23.

    Article  PubMed  Google Scholar 

  156. Pervin M, Unno K, Takagaki A, Isemura M, Nakamura Y. Function of green tea catechins in the brain: epigallocatechin gallate and its metabolites. Int J Mol Sci. 2019;20(15):3630. https://doi.org/10.3390/ijms20153630.

  157. Zhang C, Liao P, Liang R, Zheng X, Jian J. Epigallocatechin gallate prevents mitochondrial impairment and cell apoptosis by regulating miR-30a/p53 axis. Phytomedicine. 2019;61:152845.

    Article  CAS  PubMed  Google Scholar 

  158. Chibaya L, Karim B, Zhang H, Jones SN. Mdm2 phosphorylation by Akt regulates the p53 response to oxidative stress to promote cell proliferation and tumorigenesis. Proc Natl Acad Sci. 2021;118(4):e2003193118. https://doi.org/10.1073/pnas.2003193118.

  159. Sahinovic MM, Struys M, Absalom AR. Clinical Pharmacokinetics and Pharmacodynamics of Propofol. Clin Pharmacokinet. 2018;57(12):1539–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yan HJ, Qi GQ, Ma Y. Effect of propofol on myocardial ischemia-reperfusion injury through MAPK/ERK pathway. Eur Rev Med Pharmacol Sci. 2019;23(24):11051–61.

    PubMed  Google Scholar 

  161. Zhao L, Zhuang J, Wang Y, et al. Propofol ameliorates H9c2 cells apoptosis induced by oxygen glucose deprivation and reperfusion injury via inhibiting high levels of mitochondrial fusion and fission. Front Pharmacol. 2019;10:61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Li S, Lei Z, Yang X, et al. Propofol protects myocardium from ischemia/reperfusion injury by inhibiting ferroptosis through the AKT/p53 signaling pathway. Front Pharmacol. 2022;13:841410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wen Z, Mai Z, Zhu X, et al. Mesenchymal stem cell-derived exosomes ameliorate cardiomyocyte apoptosis in hypoxic conditions through microRNA144 by targeting the PTEN/AKT pathway. Stem Cell Res Ther. 2020;11(1):36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Wei L, Zhou Q, Tian H, et al. Integrin beta3 promotes cardiomyocyte proliferation and attenuates hypoxia-induced apoptosis via regulating the PTEN/Akt/mTOR and ERK1/2 pathways. Int J Biol Sci. 2020;16(4):644–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Cheng S, Zhang X, Feng Q, et al. Astragaloside IV exerts angiogenesis and cardioprotection after myocardial infarction via regulating PTEN/PI3K/Akt signaling pathway. Life Sci. 2019;227:82–93.

    Article  CAS  PubMed  Google Scholar 

  166. Barzegar A, Moosavi-Movahedi AA. Intracellular ROS protection efficiency and free radical-scavenging activity of curcumin. PLoS One. 2011;6(10):e26012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Gonzalez-Salazar A, Molina-Jijon E, Correa F, et al. Curcumin protects from cardiac reperfusion damage by attenuation of oxidant stress and mitochondrial dysfunction. Cardiovasc Toxicol. 2011;11(4):357–64.

    Article  CAS  PubMed  Google Scholar 

  168. Kotha RR, Luthria DL. Curcumin: biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules. 2019;24(16).

  169. Liu J, Zhu P, Song P, et al. Pretreatment of Adipose Derived Stem Cells with Curcumin Facilitates Myocardial Recovery via Antiapoptosis and Angiogenesis. Stem Cells Int. 2015;2015:638153.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Frump AL, Albrecht M, Yakubov B, Breuils-Bonnet S, Nadeau V, Tremblay E, Potus F, Omura J, Cook T, Fisher A, Rodriguez B, Brown RD, Stenmark KR, Rubinstein CD, Krentz K, Tabima DM, Li R, Sun X, Chesler NC, Provencher S, Bonnet S, Lahm T. 17β-Estradiol and estrogen receptor α protect right ventricular function in pulmonary hypertension via BMPR2 and apelin. J Clin Invest. 2021;131(6):e129433. https://doi.org/10.1172/jci129433.

  171. da Silva JS, Montagnoli TL, Rocha BS, Tacco MLCA, Marinho SCP, Zapata-Sudo G. Estrogen receptors: therapeutic perspectives for the treatment of Cardiac Dysfunction after Myocardial Infarction. Int J Mol Sci. 2021;22(2):525. https://doi.org/10.3390/ijms22020525.

  172. Patten RD, Pourati I, Aronovitz MJ, et al. 17beta-estradiol reduces cardiomyocyte apoptosis in vivo and in vitro via activation of phospho-inositide-3 kinase/Akt signaling. Circ Res. 2004;95(7):692–9.

    Article  CAS  PubMed  Google Scholar 

  173. Kim JK, Pedram A, Razandi M, Levin ER. Estrogen prevents cardiomyocyte apoptosis through inhibition of reactive oxygen species and differential regulation of p38 kinase isoforms. J Biol Chem. 2006;281(10):6760–7.

    Article  CAS  PubMed  Google Scholar 

  174. Liu H, Pedram A, Kim JK. Oestrogen prevents cardiomyocyte apoptosis by suppressing p38alpha-mediated activation of p53 and by down-regulating p53 inhibition on p38beta. Cardiovasc Res. 2011;89(1):119–28.

    Article  CAS  PubMed  Google Scholar 

  175. Shlipak MG, Angeja BG, Go AS, et al. Hormone therapy and in-hospital survival after myocardial infarction in postmenopausal women. Circulation. 2001;104(19):2300–4.

    Article  CAS  PubMed  Google Scholar 

  176. Lin Q, Zuo W, Liu Y, Wu K, Liu Q. NAD(+) and cardiovascular diseases. Clin Chim Acta. 2021;515:104–10.

    Article  CAS  PubMed  Google Scholar 

  177. Tannous C, Booz GW, Altara R, et al. Nicotinamide adenine dinucleotide: biosynthesis, consumption and therapeutic role in cardiac diseases. Acta Physiol (Oxf). 2021;231(3):e13551.

    Article  CAS  PubMed  Google Scholar 

  178. Liu L, Wang P, Liu X, et al. Exogenous NAD(+) supplementation protects H9c2 cardiac myoblasts against hypoxia/reoxygenation injury via Sirt1-p53 pathway. Fundam Clin Pharmacol. 2014;28(2):180–9.

    Article  CAS  PubMed  Google Scholar 

  179. Ramli FF, Ali A, Ibrahim N. Molecular-signaling pathways of ginsenosides Rb in myocardial ischemia-reperfusion injury: a mini review. Int J Med Sci. 2022;19(1):65–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Xue Y, Fu W, Liu Y, et al. Ginsenoside Rb2 alleviates myocardial ischemia/reperfusion injury in rats through SIRT1 activation. J Food Sci. 2020;85(11):4039–49.

    Article  CAS  PubMed  Google Scholar 

  181. LaMoia TE, Shulman GI. Cellular and Molecular Mechanisms of Metformin Action. Endocr Rev. 2021;42(1):77–96.

    Article  PubMed  Google Scholar 

  182. Li W, Jin S, Hao J, et al. Metformin attenuates ischemia/reperfusion-induced apoptosis of cardiac cells by downregulation of p53/microRNA-34a via activation of SIRT1. Can J Physiol Pharmacol. 2021;99(9):875–84.

    Article  CAS  PubMed  Google Scholar 

  183. Shanesazzade Z, Peymani M, Ghaedi K, Nasr Esfahani MH. miR-34a/BCL-2 signaling axis contributes to apoptosis in MPP(+) -induced SH-SY5Y cells. Mol Genet Genomic Med. 2018;6(6):975–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Yu Y, Zhang X, Li Z, Kong L, Huang Y. LncRNA HOTAIR suppresses TNF-alpha induced apoptosis of nucleus pulposus cells by regulating miR-34a/Bcl-2 axis. Biomed Pharmacother. 2018;107:729–37.

    Article  CAS  PubMed  Google Scholar 

  185. Guo S, Yao Q, Ke Z, et al. Resveratrol attenuates high glucose-induced oxidative stress and cardiomyocyte apoptosis through AMPK. Mol Cell Endocrinol. 2015;412:85–94.

    Article  CAS  PubMed  Google Scholar 

  186. Tong Z, Xie Y, He M, et al. VDAC1 deacetylation is involved in the protective effects of resveratrol against mitochondria-mediated apoptosis in cardiomyocytes subjected to anoxia/reoxygenation injury. Biomed Pharmacother. 2017;95:77–83.

    Article  CAS  PubMed  Google Scholar 

  187. De Lazzari F, Prag HA, Gruszczyk AV, Whitworth AJ, Bisaglia M. DJ-1: a promising therapeutic candidate for ischemia-reperfusion injury. Redox Biol. 2021;41:101884.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Huang M, Chen S. DJ-1 in neurodegenerative diseases: pathogenesis and clinical application. Prog Neurobiol. 2021;204:102114.

    Article  CAS  PubMed  Google Scholar 

  189. Xu RY, Xu XW, Deng YZ, et al. Resveratrol attenuates myocardial hypoxia/reoxygenation-induced cell apoptosis through DJ-1-mediated SIRT1-p53 pathway. Biochem Biophys Res Commun. 2019;514(2):401–6.

    Article  CAS  PubMed  Google Scholar 

  190. Takahashi-Niki K, Ganaha Y, Niki T, et al. DJ-1 activates SIRT1 through its direct binding to SIRT1. Biochem Biophys Res Commun. 2016;474(1):131–6.

    Article  CAS  PubMed  Google Scholar 

  191. Zhang Y, Li XR, Zhao L, et al. DJ-1 preserving mitochondrial complex I activity plays a critical role in resveratrol-mediated cardioprotection against hypoxia/reoxygenation-induced oxidative stress. Biomed Pharmacother. 2018;98:545–52.

    Article  CAS  PubMed  Google Scholar 

  192. Zhang X, Zhang Y, Sun A, Ge J. The effects of nicotinamide adenine dinucleotide in cardiovascular diseases: molecular mechanisms, roles and therapeutic potential. Genes Dis. 2022;9(4):959–72.

    Article  CAS  PubMed  Google Scholar 

  193. Hosseini L, Vafaee MS, Mahmoudi J, Badalzadeh R. Nicotinamide adenine dinucleotide emerges as a therapeutic target in aging and ischemic conditions. Biogerontology. 2019;20(4):381–95.

    Article  CAS  PubMed  Google Scholar 

  194. Navas LE, Carnero A. Nicotinamide Adenine Dinucleotide (NAD) Metabolism as a relevant target in cancer. Cells. 2022;11(17):2627. https://doi.org/10.3390/cells11172627.

  195. Arenas-Jal M, Sune-Negre JM, Garcia-Montoya E. Therapeutic potential of nicotinamide adenine dinucleotide (NAD). Eur J Pharmacol. 2020;879:173158.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by grants from the National Natural Science Foundation of China (82202408,81970722 and 82172160).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, XXZ and ZYX; data collection, curation, and original draft preparation, XXZ and ZQ; review and editing, all authors; visualization, XXZ and ZQ; supervision, SQL and ZYX; project administration and funding acquisition, ZYX. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Zhong-yuan Xia.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Xz., Qiu, Z., Lei, Sq. et al. The Role of P53 in Myocardial Ischemia-Reperfusion Injury. Cardiovasc Drugs Ther (2023). https://doi.org/10.1007/s10557-023-07480-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10557-023-07480-x

Keywords

Navigation