Skip to main content

Advertisement

Log in

Cholesterol Lowering Biotechnological Strategies: From Monoclonal Antibodies to Antisense Therapies. A Pre-Clinical Perspective Review

  • Invited Review Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

In recent years, the increase in available genetic information and a better understanding of the genetic bases of dyslipidemias has led to the identification of potential new avenues for therapies. Additionally, the development of new technologies has presented the key for developing novel therapeutic strategies targeting not only proteins (e.g., the monoclonal antibodies and vaccines) but also the transcripts (from antisense oligonucleotides (ASOs) to small interfering RNAs) or the genomic sequence (gene therapies). These pharmacological advances have led to successful therapeutic improvements, particularly in the cardiovascular arena because we are now able to treat rare, genetically driven, and previously untreatable conditions (e.g, familial hypertriglyceridemia or hyperchylomicronemia). In this review, the pre-clinical pharmacological development of the major biotechnological cholesterol lowering advances were discussed, describing facts, gaps, potential future steps forward, and therapeutic opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. Collaboration CTT. (CTT) efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170 000 participants in 26 randomised trials. Lancet. 2010;376:1670–81.

    Article  Google Scholar 

  2. Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al. Ezetimibe added to statin therapy after acute coronary syndromes. 2015;372:2387–2397.

  3. Bhatt DL, Steg PG, Miller M, Brinton EA, Jacobson TA, Ketchum SB, et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. 2018;380:11–22.

  4. Packard C, Chapman MJ, Sibartie M, Laufs U, Masana L. Intensive low-density lipoprotein cholesterol lowering in cardiovascular disease prevention: opportunities and challenges. Heart. 2021;107:1369–75.

    Article  CAS  PubMed  Google Scholar 

  5. Ghetie V, Ward ES. Multiple roles for the major histocompatibility complex class I-related receptor FcRn. Annu Rev Immunol. 2000;18:739–66.

    Article  CAS  PubMed  Google Scholar 

  6. Tabrizi MA, Tseng CML, Roskos LK. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today. 2006;11:81–8.

    Article  CAS  PubMed  Google Scholar 

  7. Raghavan M, Bonagura VR, Morrison SL, Bjorkman PJ. Analysis of the pH dependence of the neonatal fc receptor/immunoglobulin G interaction using antibody and receptor variants. Biochemistry. 1995;34:14649–57.

    Article  CAS  PubMed  Google Scholar 

  8. Foltz IN, Karow M, Wasserman SM. Evolution and emergence of therapeutic monoclonal antibodies what cardiologists need to know. Circulation. 2013;127:2222–30.

    Article  PubMed  Google Scholar 

  9. Regeneron Alirocumab (SRA236553/REGN727). Investigator brochure. 2014.

  10. Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diaz R, Edelberg JM, Goodman SG, Hanotin C, Harrington RA, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379:2097–107.

    Article  CAS  PubMed  Google Scholar 

  11. Guedeney P, Giustino G, Sorrentino S, Claessen BE, Camaj A, Kalkman DN, et al. Efficacy and safety of alirocumab and evolocumab: a systematic review and meta-analysis of randomized controlled trials. Eur Heart J. 2019.

  12. Kühnast S, Van Der Hoorn JWA, Pieterman EJ, Van Den Hoek AM, Sasiela WJ, Gusarova V, Peyman A, Schäfer HL, Schwahn U, Jukema JW, et al. Alirocumab inhibits atherosclerosis, improves the plaque morphology, and enhances the effects of a statin. J Lipid Res. 2014;55:2103–12.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pouwer MG, Pieterman EJ, Worms N, Keijzer N, Jukema JW, Gromada J, Gusarova V, Princen HMG. Alirocumab, evinacumab, and atorvastatin triple therapy regresses plaque lesions and improves lesion composition in mice. J Lipid Res. 2020;61:365–75.

    Article  CAS  PubMed  Google Scholar 

  14. Shen Y, Li H, Zhao L, Li G, Chen B, Guo Q, et al. Increased half-life and enhanced potency of fc-modified human PCSK9 monoclonal antibodies in primates. PLoS One. 2017;12.

  15. Kasichayanula S, Grover A, Emery MG, Gibbs MA, Somaratne R, Wasserman SM, Gibbs JP. Clinical pharmacokinetics and pharmacodynamics of evolocumab, a PCSK9 inhibitor. Clin Pharmacokinet. 2018;57:769–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chan JCY, Piper DE, Cao Q, Liu D, King C, Wang W, Tang J, Liu Q, Higbee J, Xia Z, et al. A proprotein convertase subtilisin/kexin type 9 neutralizing antibody reduces serum cholesterol in mice and nonhuman primates. Proc Natl Acad Sci. 2009;106:9820–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qi Z, Hu L, Zhang J, Yang W, Liu X, Jia D, et al. PCSK9 enhances platelet activation, thrombosis, and myocardial infarct expansion by binding to platelet CD36. Circulation. 2020.

  18. Wu Y, Xu MJ, Cao Z, Yang C, Wang J, Wang B, et al. Heterozygous ldlr-deficient hamster as a model to evaluate the efficacy of PCSK9 antibody in hyperlipidemia and atherosclerosis. Int J Mol Sci. 2019;20:5936.

  19. Amgen Evolocumab (AMG 145). Investigator brochure. 2014.

  20. Khoshnejad M, Patel A, Wojtak K, Kudchodkar SB, Humeau L, Lyssenko NN, Rader DJ, Muthumani K, Weiner DB. Development of novel DNA-encoded PCSK9 monoclonal antibodies as lipid-lowering therapeutics. Mol Ther. 2019;27:188–99.

    Article  CAS  PubMed  Google Scholar 

  21. FDA EVKEEZ (evinacumab-dgnb) injection, for intravenous use Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/761181Orig1s000TOC.cfm.

  22. Desai U, Lee EC, Chung K, Gao C, Gay J, Key B, Hansen G, Machajewski D, Platt KA, Sands AT, et al. Lipid-lowering effects of anti-angiopoietin-like 4 antibody recapitulate the lipid phenotype found in angiopoietin-like 4 knockout mice. Proc Natl Acad Sci U S A. 2007;104:11766–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Harada-Shiba M, Ali S, Gipe DA, Gasparino E, Son V, Zhang Y, Pordy R, Catapano AL. A randomized study investigating the safety, tolerability, and pharmacokinetics of evinacumab, an ANGPTL3 inhibitor, in healthy Japanese and Caucasian subjects. Atherosclerosis. 2020;314:33–40.

    Article  CAS  PubMed  Google Scholar 

  24. Raal FJ, Rosenson RS, Reeskamp LF, Hovingh GK, Kastelein JJP, Rubba P, Ali S, Banerjee P, Chan K-C, Gipe DA, et al. Evinacumab for homozygous familial hypercholesterolemia. N Engl J Med. 2020;383:711–20.

    Article  CAS  PubMed  Google Scholar 

  25. Gusarova V, Alexa CA, Wang Y, Rafique A, Kim JH, Buckler D, Mintah IJ, Shihanian LM, Cohen JC, Hobbs HH, et al. ANGPTL3 blockade with a human monoclonal antibody reduces plasma lipids in dyslipidemic mice and monkeys. J Lipid Res. 2015;56:1308–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lee EC, Desai U, Gololobov G, Hong S, Feng X, Yu XC, Gay J, Wilganowski N, Gao C, Du LL, et al. Identification of a new functional domain in angiopoietin-like 3 (ANGPTL3) and angiopoietin-like 4 (ANGPTL4) involved in binding and inhibition of lipoprotein lipase (LPL). J Biol Chem. 2009;284:13735–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fattori E, Cappelletti M, Lo Surdo P, Calzetta A, Bendtsen C, Ni YG, Pandit S, Sitlani A, Mesiti G, Carfí A, et al. Immunization against proprotein convertase subtilisin-like/kexin type 9 lowers plasma LDL-cholesterol levels in mice. J Lipid Res. 2012;53:1654–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Galabova G, Brunner S, Winsauer G, Juno C, Wanko B, Mairhofer A, Luhrs P, Schneeberger A, von Bonin A, Mattner F, et al. Peptide-based anti-PCSK9 vaccines - an approach for long-term LDLc management. PLoS One. 2014;9:e114469.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Landlinger C, Pouwer MG, Juno C, van der Hoorn JWA, Pieterman EJ, Jukema JW, Staffler G, Princen HMG, Galabova G. The AT04A vaccine against proprotein convertase subtilisin/kexin type 9 reduces total cholesterol, vascular inflammation, and atherosclerosis in APOE*3Leiden.CETP mice. Eur Hear J. 2017;38:2499–507.

    Article  CAS  Google Scholar 

  30. Kawakami R, Nozato Y, Nakagami H, Ikeda Y, Shimamura M, Yoshida S, et al. Development of vaccine for dyslipidemia targeted to a proprotein convertase subtilisin/ kexin type 9 (PCSK9) epitope in mice. PLoS One. 2018;13:e0191895.

  31. Ji H, Wu G, Li Y, Wang K, Xue X, You S, et al. Self-albumin camouflage of carrier protein prevents nontarget antibody production for enhanced LDL-C immunotherapy. Adv Healthc Mater. 2020;9:e1901203.

  32. Crossey E, Amar MJ, Sampson M, Peabody J, Schiller JT, Chackerian B, Remaley AT. A cholesterol-lowering VLP vaccine that targets PCSK9. Vaccine. 2015;33:5747–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pan Y, Zhou Y, Wu H, Chen X, Hu X, Zhang H, Zhou Z, Qiu Z, Liao Y. A therapeutic peptide vaccine against PCSK9. Sci Rep. 2017;7:12534.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wu D, Zhou Y, Pan Y, Li C, Wang Y, Chen F, et al. Vaccine against PCSK9 improved renal fibrosis by regulating fatty acid β-oxidation. J Am Heart Assoc. 2020;9:e014358.

  35. Wu D, Pan Y, Yang S, Li C, Zhou Y, Wang Y, et al. PCSK9Qβ-003 vaccine attenuates atherosclerosis in Apolipoprotein E-deficient mice. Cardiovasc Drugs Ther. 2020;35:141–151.

  36. Momtazi-Borojeni AA, Jaafari MR, Badiee A, Banach M, Sahebkar A. Therapeutic effect of nanoliposomal PCSK9 vaccine in a mouse model of atherosclerosis. BMC Med. 2019;17:223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ding Q, Strong A, Patel KM, Ng SL, Gosis BS, Regan SN, Cowan CA, Rader DJ, Musunuru K. Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res. 2014;115:488–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Unger T, Peleg Y. Recombinant protein expression in the baculovirus-infected insect cell system. Methods Mol Biol. 2012;800:187–99.

  39. Silva Lima B, Videira MA. Toxicology and biodistribution: the clinical value of animal biodistribution studies. Mol Ther - Methods Clin Dev. 2018;8:183–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ferreira V, Petry H, Salmon F. Immune responses to AAV-vectors, the Glybera example from bench to bedside. Front Immunol. 2014;5:82.

  41. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 2011;471:602–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zalatan JG, Lee ME, Almeida R, Gilbert LA, Whitehead EH, La Russa M, Tsai JC, Weissman JS, Dueber JE, Qi LS, et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell. 2015;160:339–50.

    Article  CAS  PubMed  Google Scholar 

  44. Chadwick AC, Evitt NH, Lv W, Musunuru K. Reduced blood lipid levels with in vivo CRISPR-Cas9 base editing of ANGPTL3. Circulation. 2018;137:975–7.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zheng J, Huynh HD, Umikawa M, Silvany R, Zhang CC. Angiopoietin-like protein 3 supports the activity of hematopoietic stem cells in the bone marrow niche. Blood. 2011;117:470–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chadwick AC, Wang X, Musunuru K. In Vivo Base editing of PCSK9 (proprotein convertase subtilisin/kexin type 9) as a therapeutic alternative to genome editing. Arterioscler Thromb Vasc Biol. 2017;37:1741–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Musunuru K, Chadwick AC, Mizoguchi T, Garcia SP, DeNizio JE, Reiss CW, Wang K, Iyer S, Dutta C, Clendaniel V, et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in primates. Nature. 2021;593:429–34.

    Article  CAS  PubMed  Google Scholar 

  48. D’Aloia MM, Zizzari IG, Sacchetti B, Pierelli L, Alimandi M. CAR-T cells: the long and winding road to solid tumors review-article. Cell Death Dis. 2018;9.

  49. Henry SP, Narayanan P, Shen L, Bhanot S, Younis HS, Burel SA. Assessment of the effects of 2′-methoxyethyl antisense oligonucleotides on platelet count in cynomolgus nonhuman primates. Nucleic Acid Ther. 2017;27:197–208.

    Article  CAS  PubMed  Google Scholar 

  50. Flierl U, Nero TL, Lim B, Arthur JF, Yao Y, Jung SM, Gitz E, Pollitt AY, Zaldivia MTK, Jandrot-Perrus M, et al. Phosphorothioate backbone modifications of nucleotide-based drugs are potent platelet activators. J Exp Med. 2015;212:129–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lundberg Slingsby MH, Couldwell G, Vijey P, Terkovich BE, Noetzli L, Okazaki R, Thon JN, Henry SP, Narayanan P, Italiano JE. Investigating potential mechanism(s) by which ASO-based drugs cause thrombocytopenia. Blood. 2018;132:3747.

    Article  Google Scholar 

  52. Fitzgerald K, White S, Borodovsky A, Bettencourt BR, Strahs A, Clausen V, Wijngaard P, Horton JD, Taubel J, Brooks A, et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med. 2017;376:41–51.

    Article  CAS  PubMed  Google Scholar 

  53. Nair JK, Willoughby JLS, Chan A, Charisse K, Alam MR, Wang Q, Hoekstra M, Kandasamy P, Kel’in AV, Milstein S, et al. Multivalent N -Acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc. 2014;136:16958–61.

    Article  CAS  PubMed  Google Scholar 

  54. Warden BA, Duell PB. Inclisiran: a novel agent for lowering Apolipoprotein B–containing lipoproteins. J Cardiovasc Pharmacol. 2021;78:e157–74.

    Article  CAS  PubMed  Google Scholar 

  55. Katzmann JL, Packard CJ, Chapman MJ, Katzmann I, Laufs U. Targeting RNA with antisense oligonucleotides and small interfering RNA in dyslipidemias. J Am Coll Cardiol. 2020;76:563–79.

    Article  CAS  PubMed  Google Scholar 

  56. Springer AD, Dowdy SF. GalNAc-siRNA conjugates: leading the way for delivery of RNAi therapeutics. Nucleic Acid Ther. 2018;28:109–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Khvorova A. Oligonucleotide therapeutics — a new class of cholesterol-lowering drugs. N Engl J Med. 2017;376:4–7.

    Article  CAS  PubMed  Google Scholar 

  58. Fitzgerald K, Frank-Kamenetsky M, Shulga-Morskaya S, Liebow A, Bettencourt BR, Sutherland JE, Hutabarat RM, Clausen VA, Karsten V, Cehelsky J, et al. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet. 2014;383:60–8.

    Article  CAS  PubMed  Google Scholar 

  59. Ray KK, Stoekenbroek RM, Kallend D, Nishikido T, Leiter LA, Landmesser U, Wright RS, Wijngaard PLJ, Kastelein JJP. Effect of 1 or 2 doses of inclisiran on low-density lipoprotein cholesterol levels: one-year follow-up of the ORION-1 randomized clinical trial. JAMA Cardiol. 2019;4:1067–75.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Levin AA. Targeting therapeutic oligonucleotides. N Engl J Med. 2017;376:86–8.

    Article  PubMed  Google Scholar 

  61. Wright RS, Collins MG, Stoekenbroek RM, Robson R, Wijngaard PLJ, Landmesser U, Leiter LA, Kastelein JJP, Ray KK, Kallend D. Effects of renal impairment on the pharmacokinetics, efficacy, and safety of Inclisiran: an analysis of the ORION-7 and ORION-1 studies. Mayo Clin Proc. 2020;95:77–89.

    Article  PubMed  Google Scholar 

  62. Frank-Kamenetsky M, Grefhorst A, Anderson NN, Racie TS, Bramlage B, Akinc A, Butler D, Charisse K, Dorkin R, Fan Y, et al. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc Natl Acad Sci U S A. 2008;105:11915–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Banerjee Y, Pantea Stoian A, Cicero AFG, Fogacci F, Nikolic D, Sachinidis A, et al. Inclisiran: a small interfering RNA strategy targeting PCSK9 to treat hypercholesterolemia. Expert Opin Drug Saf. 2021.

  64. Ray KK, Wright RS, Kallend D, Koenig W, Leiter LA, Raal FJ, Bisch JA, Richardson T, Jaros M, Wijngaard PLJ, et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N Engl J Med. 2020;382:1507–19.

    Article  CAS  PubMed  Google Scholar 

  65. Ray KK, Corral P, Morales E, Nicholls SJ. Pharmacological lipid-modification therapies for prevention of ischaemic heart disease: current and future options. Lancet. 2019;394:697–708.

    Article  CAS  PubMed  Google Scholar 

  66. Landmesser U, Haghikia A, Leiter LA, Wright RS, Kallend D, Wijngaard P, et al. Effect of inclisiran, the small-interfering RNA against proprotein convertase subtilisin/kexin type 9, on platelets, immune cells, and immunological biomarkers: a pre-specified analysis from ORION-1. Cardiovasc Res. 2020.

  67. Ray KK, Landmesser U, Leiter LA, Kallend D, Dufour R, Karakas M, Hall T, Troquay RP, Turner T, Visseren FL, et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N Engl J Med. 2017;376:1430–40.

    Article  CAS  PubMed  Google Scholar 

  68. Chi X, Gatti P, Papoian T. Safety of antisense oligonucleotide and siRNA-based therapeutics. Drug Discov Today. 2017;22:823–33.

    Article  CAS  PubMed  Google Scholar 

  69. Dolgin E. Lp(a)-lowering drugs bolster cardiovascular pipeline. Nat Rev Drug Discov. 2020;19:154–5.

    Article  CAS  PubMed  Google Scholar 

  70. Melquist S, Wakefield D, Hamilton H, et al. Abstract 17167: Targeting apolipoprotein(a) with a novel RNAi delivery platform as a prophylactic treatment to reduce risk of cardiovascular events in individuals with elevated lipoprotein (a). Circulation. 2016;134:A17167

  71. Merki E, Graham M, Taleb A, Leibundgut G, Yang X, Miller ER, Fu W, Mullick AE, Lee R, Willeit P, et al. Antisense oligonucleotide lowers plasma levels of apolipoprotein (a) and lipoprotein (a) in transgenic mice. J Am Coll Cardiol. 2011;57:1611–21.

    Article  CAS  PubMed  Google Scholar 

  72. Tsimikas S, Karwatowska-Prokopczuk E, Gouni-Berthold I, Tardif J-C, Baum SJ, Steinhagen-Thiessen E, Shapiro MD, Stroes ES, Moriarty PM, Nordestgaard BG, et al. Lipoprotein(a) reduction in persons with cardiovascular disease. N Engl J Med. 2020;382:244–55.

    Article  CAS  PubMed  Google Scholar 

  73. Yu RZ, Grundy JS, Geary RS. Clinical pharmacokinetics of second generation antisense oligonucleotides. Expert Opin Drug Metab Toxicol. 2013;9:169–82.

    Article  CAS  PubMed  Google Scholar 

  74. Loscalzo J, Weinfeld M, Fless GM, Scanu AM. Lipoprotein(a), fibrin binding, and plasminogen activation. Arteriosclerosis. 1990;10:240–5.

    Article  CAS  PubMed  Google Scholar 

  75. Rouy D, Grailhe P, Nigon F, Chapman J, Angles-Cano E. Lipoprotein(a) impairs generation of plasmin by fibrin-bound tissue-type plasminogen activator: in vitro studies in a plasma milieu. In proceedings of the arteriosclerosis and thrombosis. Arterioscler Thromb. 1991;11:629–38.

    Article  CAS  PubMed  Google Scholar 

  76. Palabrica TM, Liu AC, Aronovitz MJ, Furie B, Lawn RM, Furie BC. Antifibrinolytic activity of apolipoprotein(a) in vivo: human apolipoprotein(a) transgenic mice are resistant to tissue plasminogen activator-mediated thrombolysis. Nat Med. 1995;1:256–9.

    Article  CAS  PubMed  Google Scholar 

  77. Biemond BJ, Friederich PW, Koschinsky ML, Levi M, Sangrar W, Xia J, Büller HR, Ten Cate JW. Apolipoprotein(a) attenuates endogenous fibrinolysis in the rabbit jugular vein thrombosis model in vivo. Circulation. 1997;96:1612–5.

    Article  CAS  PubMed  Google Scholar 

  78. Boffa MB, Marar TT, Yeang C, Viney NJ, Xia S, Witztum JL, Koschinsky ML, Tsimikas S. Potent reduction of plasma lipoprotein (a) with an antisense oligonucleotide in human subjects does not affect ex vivo fibrinolysis. J Lipid Res. 2019;60:2082–9.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Helgadottir A, Gretarsdottir S, Thorleifsson G, Holm H, Patel RS, Gudnason T, Jones GT, Van Rij AM, Eapen DJ, Baas AF, et al. Apolipoprotein(a) genetic sequence variants associated with systemic atherosclerosis and coronary atherosclerotic burden but not with venous thromboembolism. J Am Coll Cardiol. 2012;60:722–9.

    Article  CAS  PubMed  Google Scholar 

  80. Kamstrup PR, Tybjærg-Hansen A, Nordestgaard BG. Genetic evidence that lipoprotein(a) associates with atherosclerotic stenosis rather than venous thrombosis. Arterioscler Thromb Vasc Biol. 2012;32:1732–41.

    Article  CAS  PubMed  Google Scholar 

  81. Boffa MB, Koschinsky ML. Oxidized phospholipids as a unifying theory for lipoprotein(a) and cardiovascular disease. Nat Rev Cardiol. 2019;16:305–18.

    Article  PubMed  Google Scholar 

  82. Adam RC, Mintah IJ, Alexa-Braun CA, Shihanian LM, Lee JS, Banerjee P, Hamon SC, Kim HI, Cohen JC, Hobbs HH, et al. Angiopoietin-like protein 3 governs LDL-cholesterol levels through endothelial lipase-dependent VLDL clearance. J Lipid Res. 2020;61:1271–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu L, Soundarapandian MM, Castoreno AB, Millar JS, Rader DJ. LDL-cholesterol reduction by ANGPTL3 inhibition in mice is dependent on endothelial lipase. Circ Res. 2020;127:1112–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Graham MJ, Lee RG, Brandt TA, Tai L-J, Fu W, Peralta R, Yu R, Hurh E, Paz E, McEvoy BW, et al. Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. N Engl J Med. 2017;377:222–32.

    Article  CAS  PubMed  Google Scholar 

  85. Graham MJ, Lee RG, Bell TA, Fu W, Mullick AE, Alexander VJ, Singleton W, Viney N, Geary R, Su J, et al. Antisense oligonucleotide inhibition of apolipoprotein c-iii reduces plasma triglycerides in rodents, nonhuman primates, and humans. Circ Res. 2013;112:1479–90.

    Article  CAS  PubMed  Google Scholar 

  86. Alexander VJ, Xia S, Hurh E, Hughes SG, O’Dea L, Geary RS, Witztum JL, Tsimikas S. N-acetyl galactosamine-conjugated antisense drug to APOC3 mRNA, triglycerides and atherogenic lipoprotein levels. Eur Heart J. 2019;40:2785–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Post N, Yu R, Greenlee S, Gaus H, Hurh E, Matson J, Wang Y. Metabolism and disposition of volanesorsen, a 29-O-(2 methoxyethyl) antisense oligonucleotide, across species. Drug Metab Dispos. 2019;47:1164–73.

    Article  CAS  PubMed  Google Scholar 

  88. Alexander VJ, Digenio A, Xia S, Hurh E, Hughes S, Geary RS, et al. Inhibition pf apolipoprotein CIII with GalNac conjugated antisense drug potently lowers fasting serum apolipoprotein CIII and triglycerides levels in healthy volunteers with elevated triglycerides. JACC. 2018;71:A1724.

Download references

Acknowledgements

The authors’ research is supported by: EXTRALIPO “New lipid-oriented pharmacological and chemical approaches to discriminate and unravel extracellular vesicles biological functions” Bando SEED – PSR 2019 (SB); Russian Ministry of Science and Higher Education (Agreement No. 075-15-2020-901) (ASA); H2020 REPROGRAM PHC-03-2015/667837-2 (ALC); Fondazione Cariplo 2015-0524 and 2015-0564 (ALC); ERANET ER-2017-2364981 (ALC); Ministry of Health-IRCCS MultiMedica GR-2011-02346974 (ALC); PRIN 2017H5F943 (ALC); “Cibo, Microbiota, Salute” by “Vini di Batasiolo S.p.A” AL_RIC19ABARA_01 (AB), “Post-Doctoral Fellowship 2020” by “Fondazione Umberto Veronesi” 2020-3318 (AB); a research grant 2021 from “the Peanut Institute”.

Funding

This work has been supported by the Italian Ministry of Health - Ricerca Corrente - IRCCS MultiMedica.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, literature search, writing original draft: S. Bellosta, A. Baragetti; Review and editing: C. Rossi, A.S. Alieva, A. Corsini; Supervision: A.L. Catapano. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to A. Corsini.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Publication of the article is approved by all authors and tacitly by the responsible authorities of the University of Milan and Multimedica, where the work was carried out.

Competing Interests

A.L. Catapano has received honoraria, lecture fees, or research grants from Sigma-Tau, Menarini, Kowa, Recordati, Eli Lilly, Astrazeneca, Mediolanum, Pfizer, Merck, Sanofi, Aegerion, Amgen, Genzyme, Bayer, Sanofi, and Regeneron Daiichi-Sankyo.

A. Corsini has received honoraria from Amgen, Astra Zeneca, Daiichi Sankyo, Sanofi, Novartis, DOC, TEVA and Servier, and grants from Daiichi Sankyo and PIAM.

S. Bellosta, C. Rossi, A.S. Alieva, and A. Baragetti have no relevant financial or non-financial interests to disclose.

Research Involving Human Participants and/or Animals

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bellosta, S., Rossi, C., Alieva, A.S. et al. Cholesterol Lowering Biotechnological Strategies: From Monoclonal Antibodies to Antisense Therapies. A Pre-Clinical Perspective Review. Cardiovasc Drugs Ther 37, 585–598 (2023). https://doi.org/10.1007/s10557-021-07293-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-021-07293-w

Keywords

Navigation