Skip to main content
Log in

The Role of RNA-Targeted Therapeutics to Reduce ASCVD Risk: What Have We Learned Recently?

  • Coronary Heart Disease (S. Virani and S. Naderi, Section Editors)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To discuss advances on the RNA-targeted therapies to treat dyslipidemia with the aim of reducing atherosclerotic cardiovascular disease (ASCVD).

Recent Findings

Genetic studies have paved the way for therapies that reduce translation of proteins that play causal roles in dyslipidemia and atherosclerosis like proprotein convertase subtilisin/kexin type 9 (PCSK9), apolipoprotein B-100 (apoB), apolipoprotein(a) [apo(a)], apolipoprotein C3 (apoC3), and angiopoietin-like 3 (ANGPTL3). Either antisense oligonucleotide (ASO) therapies and small interfering RNA (siRNA) molecules inhibit protein synthesis and consequently improve dyslipidemia. Most of these molecules contain N-acetylgalactosamine (GalNAc) moieties that have high specificity for hepatocytes and therefore reduce concentration in other tissues. Inclisiran, an siRNA for PCSK9, has shown robust LDL-C reductions, with good tolerability, in severe forms of hypercholesterolemia as well as in high cardiovascular disease patients with injections every 3 to 6 months. Pelacarsen is an ASO against apolipoprotein(a) that reduces Lp(a) up to 80% with good tolerability. Either inclisiran or pelacarsen is being tested to show it can prevent ASCVD. AMG 890, an siRNA compound aimed at reducing apo(a) synthesis, is also under investigation. Volanesorsen is an ASO against apoC3 that reduces triglyceride levels up to 70% and is being tested in severe hypertriglyceridemic patients. Vupanorsen is an ASO against ANGPTL3 that reduced triglyceride levels 36–53% among moderate hypertriglyceridemic individuals. Interestingly, it also reduces ApoC3 and non-HDL cholesterol and apoB; however, it lowers HDL cholesterol.

Summary

RNA-targeted therapies are being extensively tested for dyslipidemia treatment with promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Roth GA, Forouzanfar MH, Moran AE, Barber R, Nguyen G, Feigin VL, et al. Demographic and epidemiologic drivers of global cardiovascular mortality. N Engl J Med. 2015;372(14):1333–41. https://doi.org/10.1056/NEJMoa1406656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38(32):2459–72. https://doi.org/10.1093/eurheartj/ehx144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Grundy SM, Stone NJ, Bailey AL, Beam C, Birtcher KK, Blumenthal RS, et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. J Am Coll Cardiol. 2018;73:e285–350. https://doi.org/10.1016/j.jacc.2018.11.003.

    Article  PubMed  Google Scholar 

  4. Mach F, Baigent C, Catapano AL, Koskinas KC, Casula M, Badimon L, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J. 2020;41(1):111–88. https://doi.org/10.1093/eurheartj/ehz455.

    Article  PubMed  Google Scholar 

  5. Cholesterol Treatment Trialists C, Baigent C, Blackwell L, Emberson J, Holland LE, Reith C, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376(9753):1670–81. https://doi.org/10.1016/S0140-6736(10)61350-5.

    Article  CAS  Google Scholar 

  6. Collins R, Reith C, Emberson J, Armitage J, Baigent C, Blackwell L, et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet. 2016;388(10059):2532–61. https://doi.org/10.1016/S0140-6736(16)31357-5.

    Article  CAS  PubMed  Google Scholar 

  7. Danchin N, Almahmeed W, Al-Rasadi K, Azuri J, Berrah A, Cuneo CA, et al. Achievement of low-density lipoprotein cholesterol goals in 18 countries outside Western Europe: The International ChoLesterol management Practice Study (ICLPS). Eur J Prev Cardiol. 2018;25(10):1087–94. https://doi.org/10.1177/2047487318777079.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ray KK. Changing the paradigm for post-MI cholesterol lowering from intensive statin monotherapy towards intensive lipid-lowering regimens and individualized care. Eur Heart J. 2021;42(3):253–6. https://doi.org/10.1093/eurheartj/ehaa1008.

    Article  PubMed  Google Scholar 

  9. Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372(25):2387–97. https://doi.org/10.1056/NEJMoa1410489.

    Article  CAS  PubMed  Google Scholar 

  10. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376(18):1713–22. https://doi.org/10.1056/NEJMoa1615664.

    Article  CAS  PubMed  Google Scholar 

  11. Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diaz R, et al. Alirocumab and Cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379(22):2097–107. https://doi.org/10.1056/NEJMoa1801174.

    Article  CAS  PubMed  Google Scholar 

  12. Nordestgaard BG, Benn M, Schnohr P, Tybjaerg-Hansen A. Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. Jama. 2007;298(3):299–308. https://doi.org/10.1001/jama.298.3.299.

    Article  CAS  PubMed  Google Scholar 

  13. Bansal S, Buring JE, Rifai N, Mora S, Sacks FM, Ridker PM. Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. Jama. 2007;298(3):309–16. https://doi.org/10.1001/jama.298.3.309.

    Article  CAS  PubMed  Google Scholar 

  14. Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet. 2014;384(9943):626–35. https://doi.org/10.1016/S0140-6736(14)61177-6.

    Article  CAS  PubMed  Google Scholar 

  15. Cao YX, Zhang HW, Jin JL, Liu HH, Zhang Y, Xu RX, et al. Prognostic utility of triglyceride-rich lipoprotein-related markers in patients with coronary artery disease. J Lipid Res. 2020;61(9):1254–62. https://doi.org/10.1194/jlr.RA120000746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schwartz GG, Abt M, Bao W, DeMicco D, Kallend D, Miller M, et al. Fasting triglycerides predict recurrent ischemic events in patients with acute coronary syndrome treated with statins. J Am Coll Cardiol. 2015;65(21):2267–75. https://doi.org/10.1016/j.jacc.2015.03.544.

    Article  CAS  PubMed  Google Scholar 

  17. Macchi C, Sirtori CR, Corsini A, Santos RD, Watts GF, Ruscica M. A new dawn for managing dyslipidemias: the era of rna-based therapies. Pharmacol Res. 2019;150:104413. https://doi.org/10.1016/j.phrs.2019.104413.

    Article  CAS  PubMed  Google Scholar 

  18. Kamstrup PR, Tybjaerg-Hansen A, Steffensen R, Nordestgaard BG. Genetically elevated lipoprotein(a) and increased risk of myocardial infarction. Jama. 2009;301(22):2331–9. https://doi.org/10.1001/jama.2009.801.

    Article  CAS  PubMed  Google Scholar 

  19. Clarke R, Peden JF, Hopewell JC, Kyriakou T, Goel A, Heath SC, et al. Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med. 2009;361(26):2518–28. https://doi.org/10.1056/NEJMoa0902604.

    Article  CAS  PubMed  Google Scholar 

  20. Burgess S, Ference BA, Staley JR, Freitag DF, Mason AM, Nielsen SF, et al. Association of LPA variants with risk of coronary disease and the implications for lipoprotein(a)-lowering therapies: a Mendelian randomization analysis. JAMA Cardiol. 2018;3(7):619–27. https://doi.org/10.1001/jamacardio.2018.1470.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Katzmann JL, Packard CJ, Chapman MJ, Katzmann I, Laufs U. Targeting RNA with antisense oligonucleotides and small interfering RNA: JACC state-of-the-art review. J Am Coll Cardiol. 2020;76(5):563–79. https://doi.org/10.1016/j.jacc.2020.05.070.

    Article  CAS  PubMed  Google Scholar 

  22. Ito MK, Santos RD. PCSK9 inhibition with monoclonal antibodies: modern management of hypercholesterolemia. J Clin Pharmacol. 2017;57(1):7–32. https://doi.org/10.1002/jcph.766.

    Article  CAS  PubMed  Google Scholar 

  23. Bilen O, Ballantyne CM. Bempedoic acid (ETC-1002): an investigational inhibitor of ATP citrate lyase. Curr Atheroscler Rep. 2016;18(10):61. https://doi.org/10.1007/s11883-016-0611-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. •• Rosenson RS, Burgess LJ, Ebenbichler CF, Baum SJ, ESG S, Ali S, et al. Evinacumab in patients with refractory hypercholesterolemia. N Engl J Med. 2020;383(24):2307–19. https://doi.org/10.1056/NEJMoa2031049Evinacumab, a monoclonal antibody against ANGPTL3, reduced LDL-C by 50% in hypercholesterolemic patients that were refractory to statins and PCSK9 inhibitors. This study tested either intravenous and subcutaneous injections of evinacumab.

    Article  CAS  PubMed  Google Scholar 

  25. Ray KK, Landmesser U, Leiter LA, Kallend D, Dufour R, Karakas M, et al. Inclisiran in patients at high cardiovascular risk with elevated LDL cholesterol. N Engl J Med. 2017;376(15):1430–40. https://doi.org/10.1056/NEJMoa1615758.

    Article  CAS  PubMed  Google Scholar 

  26. •• Witztum JL, Gaudet D, Freedman SD, Alexander VJ, Digenio A, Williams KR, et al. Volanesorsen and triglyceride levels in familial chylomicronemia syndrome. N Engl J Med. 2019;381(6):531–42. https://doi.org/10.1056/NEJMoa1715944In the APPROACH study, volanesorsen, a second-generation ASO against ApoC3, reduced triglycerides by 70% in comparison with placebo in patients with familial chylomicronemia syndrom (FCS). The use of volanesorsen was associated with reduction in episodes of acute pancreatitis when compared with the incidence occuring before the study. This non-GalNAc conjugated formulation was associated with injection site reactions and reduction in platelet counts.

    Article  CAS  PubMed  Google Scholar 

  27. •• Tsimikas S, Karwatowska-Prokopczuk E, Gouni-Berthold I, Tardif JC, Baum SJ. Steinhagen-Thiessen E et al. Lipoprotein(a) reduction in persons with cardiovascular disease. N Engl J Med. 2020;382(3):244–55. https://doi.org/10.1056/NEJMoa1905239On this double-blinded randomized-controlled trial, the ASO against apolipoprotein(a) pelacarsen was tested in different subcutaneous doses of 20, 40, or 60 mg every 4 weeks; 20 mg every 2 weeks; or 20 mg every week in patients with previous CVD and elevated Lp(a) for 6 to 12 months. There was dose-dependent reduction in Lp(a) with mean percent decreases of 35% at a dose of 20 mg every 4 weeks, 56% at 40 mg every 4 weeks, 58% at 20 mg every 2 weeks, 72% at 60 mg every 4 weeks, and 80% at 20 mg every week, as compared with 6% with placebo. The reduction in oxydized phospholipids, pro-inflammatory compounds carried by Lp(a) particles, was also proportional to the dosage. No differences were seen regarding adverse events in comparison with placebo; however, as expected, the most frequent adverse events were injection site reactions 27% in those receving pelacarsen vs. 6% in the placebo group.

    Article  CAS  PubMed  Google Scholar 

  28. •• Gaudet D, Karwatowska-Prokopczuk E, Baum SJ, Hurh E, Kingsbury J, Bartlett VJ, et al. Vupanorsen, an N-acetyl galactosamine-conjugated antisense drug to ANGPTL3 mRNA, lowers triglycerides and atherogenic lipoproteins in patients with diabetes, hepatic steatosis, and hypertriglyceridaemia. Eur Heart J. 2020;41(40):3936–45. https://doi.org/10.1093/eurheartj/ehaa689On this double-blind randommized clinical trial, the ASO against ANGPTL3 vupanorsen was tested in patients with diabetes, moderate hypetriglyceridemia, and hepatic steatosis. Overall, there was a 44% reduction in triglycerides, the main study endpoint. Of importance, vupanorsen also reduced ApoC3 by 58%, and this opens the possibility of prevention of cardiovascular events since ApoC3 exerts a series of pro-atherogenic mechanisms. As shown in genetic studies with loss-of-function variants of ANGPTL3, vupanorsen also reduced HDL-C by 24%; if this has clinical significance needs to be determined. There was no effect on glucose control and redcution in steatosis. Fruther studies are guaranteed with ANGPTL3 inhibitors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nordestgaard BG, Nicholls SJ, Langsted A, Ray KK, Tybjaerg-Hansen A. Advances in lipid-lowering therapy through gene-silencing technologies. Nat Rev Cardiol. 2018;15(5):261–72. https://doi.org/10.1038/nrcardio.2018.3.

    Article  CAS  PubMed  Google Scholar 

  30. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med. 2006;354(12):1264–72. https://doi.org/10.1056/NEJMoa054013.

    Article  CAS  PubMed  Google Scholar 

  31. •• Ray KK, Wright RS, Kallend D, Koenig W, Leiter LA, Raal FJ, et al. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N Engl J Med. 2020;382(16):1507–19. https://doi.org/10.1056/NEJMoa1912387This randomized controlled study shows LDL-C reductions of about 50% induced by 300 mg inclisiran injections every 6 months in patients at high risk of cardiovascular disease that persisted with elevated LDL-C despite use of statins and or ezetimibe. Inclsiran showed good tolerability, with injection site reactions being the most frequent adverse events.

    Article  CAS  PubMed  Google Scholar 

  32. •• Raal FJ, Kallend D, Ray KK, Turner T, Koenig W, Wright RS, et al. Inclisiran for the treatment of heterozygous familial hypercholesterolemia. N Engl J Med. 2020;382(16):1520–30. https://doi.org/10.1056/NEJMoa1913805This randomized double-blind placebo-controlled study showed that inclisiran 300 mg inejected at days 1, 90, 270, and 450 reduced LDL-C by − 47.9% (95% CI, − 53.5 to − 42.3; P < 0.001), time averaged reductions at days 90 and 540, in comparison with placebo in heterozygous familial hypercholesterolemia patients that were in use of standard lipid-lowering therapy and baseline LDL-C of approximately 153 mg/dL. LDL-C was reduced independently of FH genotype. There were no differences in adverse events in comparison with placebo. Anti-drug antibodies were detected in low titers in 2.6% of study subjects, were transient, and were not associated with reduction in inclisiran efficacy.

    Article  CAS  PubMed  Google Scholar 

  33. Lamina C, Kronenberg F, Lp GC. Estimation of the required lipoprotein(a)-lowering therapeutic effect size for reduction in coronary heart disease outcomes: a Mendelian randomization analysis. JAMA Cardiol. 2019;4:575–9. https://doi.org/10.1001/jamacardio.2019.1041.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tg HW. Group of the Exome Sequencing Project NHL, Blood I, Crosby J, Peloso GM, Auer PL et al. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N Engl J Med. 2014;371(1):22–31. https://doi.org/10.1056/NEJMoa1307095.

    Article  CAS  Google Scholar 

  35. Jorgensen AB, Frikke-Schmidt R, Nordestgaard BG, Tybjaerg-Hansen A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N Engl J Med. 2014;371(1):32–41. https://doi.org/10.1056/NEJMoa1308027.

    Article  CAS  PubMed  Google Scholar 

  36. Stitziel NO, Khera AV, Wang X, Bierhals AJ, Vourakis AC, Sperry AE, et al. ANGPTL3 deficiency and protection against coronary artery disease. J Am Coll Cardiol. 2017;69(16):2054–63. https://doi.org/10.1016/j.jacc.2017.02.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dewey FE, Gusarova V, Dunbar RL, O'Dushlaine C, Schurmann C, Gottesman O, et al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N Engl J Med. 2017;377(3):211–21. https://doi.org/10.1056/NEJMoa1612790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Graham MJ, Lee RG, Brandt TA, Tai LJ, Fu W, Peralta R, et al. Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. N Engl J Med. 2017;377(3):222–32. https://doi.org/10.1056/NEJMoa1701329.

    Article  CAS  PubMed  Google Scholar 

  39. Santos RD, Duell PB, East C, Guyton JR, Moriarty PM, Chin W, et al. Long-term efficacy and safety of mipomersen in patients with familial hypercholesterolaemia: 2-year interim results of an open-label extension. Eur Heart J. 2015;36(9):566–75. https://doi.org/10.1093/eurheartj/eht549.

    Article  PubMed  Google Scholar 

  40. • Blom DJ, Raal FJ, Santos RD, Marais AD. Lomitapide and mipomersen-inhibiting microsomal triglyceride transfer protein (MTP) and apoB100 synthesis. Curr Atheroscler Rep. 2019;21(12):48. https://doi.org/10.1007/s11883-019-0809-3Review on the ASO for apolipoprotein B mipomersen, a non GalNAc conjugated molecule, focusing on its effcacy, LDL-C lowering by 25%, and adverse events, mostly injection site reactions and flu-like symptoms, liver fat accumulation was intrisic to reduction in apoB production.

    Article  CAS  PubMed  Google Scholar 

  41. Khvorova A. Oligonucleotide therapeutics - a new class of cholesterol-lowering drugs. N Engl J Med. 2017;376(1):4–7. https://doi.org/10.1056/NEJMp1614154.

    Article  CAS  PubMed  Google Scholar 

  42. Ragusa R, Basta G, Neglia D, De Caterina R, Del Turco S, Caselli C. PCSK9 and atherosclerosis: looking beyond LDL regulation. Eur J Clin Investig. 2020:e13459. https://doi.org/10.1111/eci.13459.

  43. Stoekenbroek RM, Lambert G, Cariou B, Hovingh GK. Inhibiting PCSK9 - biology beyond LDL control. Nat Rev Endocrinol. 2018;15(1):52–62. https://doi.org/10.1038/s41574-018-0110-5.

    Article  CAS  PubMed  Google Scholar 

  44. Abifadel M, Varret M, Rabes JP, Allard D, Ouguerram K, Devillers M, et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003;34(2):154–6. https://doi.org/10.1038/ng1161.

    Article  CAS  PubMed  Google Scholar 

  45. Seidah NG, Prat A, Pirillo A, Catapano AL, Norata GD. Novel strategies to target proprotein convertase subtilisin kexin 9: beyond monoclonal antibodies. Cardiovasc Res. 2019;115(3):510–8. https://doi.org/10.1093/cvr/cvz003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Brandts J, Ray KK. Small interfering RNA to proprotein convertase subtilisin/kexin type 9: transforming LDL-cholesterol-lowering strategies. Curr Opin Lipidol. 2020;31(4):182–6. https://doi.org/10.1097/MOL.0000000000000691.

    Article  CAS  PubMed  Google Scholar 

  47. Schmidt AF, Pearce LS, Wilkins JT, Overington JP, Hingorani AD, Casas JP. PCSK9 monoclonal antibodies for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2017;4:CD011748. https://doi.org/10.1002/14651858.CD011748.pub2.

    Article  PubMed  Google Scholar 

  48. Fitzgerald K, White S, Borodovsky A, Bettencourt BR, Strahs A, Clausen V, et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N Engl J Med. 2017;376(1):41–51. https://doi.org/10.1056/NEJMoa1609243.

    Article  CAS  PubMed  Google Scholar 

  49. Khan SA, Naz A, Qamar Masood M, Shah R. Meta-analysis of inclisiran for the treatment of hypercholesterolemia. Am J Cardiol. 2020;134:69–73. https://doi.org/10.1016/j.amjcard.2020.08.018.

    Article  CAS  PubMed  Google Scholar 

  50. Giugliano RP, Mach F, Zavitz K, Kurtz C, Im K, Kanevsky E, et al. Cognitive function in a randomized trial of evolocumab. N Engl J Med. 2017;377(7):633–43. https://doi.org/10.1056/NEJMoa1701131.

    Article  CAS  PubMed  Google Scholar 

  51. Banerjee Y, Santos RD, Al-Rasadi K, Rizzo M. Targeting PCSK9 for therapeutic gains: have we addressed all the concerns? Atherosclerosis. 2016;248:62–75. https://doi.org/10.1016/j.atherosclerosis.2016.02.018.

    Article  CAS  PubMed  Google Scholar 

  52. Landmesser U, Haghikia A, Leiter LA, Wright RS, Kallend D, Wijngaard P, et al. Effect of inclisiran, the small-interfering RNA against proprotein convertase subtilisin/kexin type 9, on platelets, immune cells, and immunological biomarkers: a pre-specified analysis from ORION-1. Cardiovasc Res. 2021;117(1):284–91. https://doi.org/10.1093/cvr/cvaa077.

    Article  CAS  PubMed  Google Scholar 

  53. Kosmas CE, Munoz Estrella A, Skavdis A, Pena Genao E, Martinez I, Guzman E. Inclisiran for the treatment of cardiovascular disease: a short review on the emerging data and therapeutic potential. Ther Clin Risk Manag. 2020;16:1031–7. https://doi.org/10.2147/TCRM.S230592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kamstrup PR. Lipoprotein(a) and cardiovascular disease. Clin Chem. 2021;67(1):154–66. https://doi.org/10.1093/clinchem/hvaa247.

    Article  PubMed  Google Scholar 

  55. Hegele RA, Tsimikas S. Lipid-lowering agents. Circ Res. 2019;124(3):386–404. https://doi.org/10.1161/CIRCRESAHA.118.313171.

    Article  CAS  PubMed  Google Scholar 

  56. Emerging Risk Factors C, Erqou S, Kaptoge S, Perry PL, Di Angelantonio E, Thompson A, et al. Lipoprotein(a) concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. Jama. 2009;302(4):412–23. https://doi.org/10.1001/jama.2009.1063.

    Article  Google Scholar 

  57. O'Donoghue ML, Fazio S, Giugliano RP, Stroes ESG, Kanevsky E, Gouni-Berthold I, et al. Lipoprotein(a), PCSK9 inhibition, and cardiovascular risk. Circulation. 2019;139(12):1483–92. https://doi.org/10.1161/circulationaha.118.037184.

    Article  CAS  PubMed  Google Scholar 

  58. Bittner VA, Szarek M, Aylward PE, Bhatt DL, Diaz R, Edelberg JM, et al. Effect of alirocumab on lipoprotein(a) and cardiovascular risk after acute coronary syndrome. J Am Coll Cardiol. 2020;75(2):133–44. https://doi.org/10.1016/j.jacc.2019.10.057.

    Article  CAS  PubMed  Google Scholar 

  59. Kamstrup PR, Tybjaerg-Hansen A, Nordestgaard BG. Elevated lipoprotein(a) and risk of aortic valve stenosis in the general population. J Am Coll Cardiol. 2014;63(5):470–7. https://doi.org/10.1016/j.jacc.2013.09.038.

    Article  CAS  PubMed  Google Scholar 

  60. Tsimikas S, Viney NJ, Hughes SG, Singleton W, Graham MJ, Baker BF, et al. Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study. Lancet. 2015;386(10002):1472–83. https://doi.org/10.1016/S0140-6736(15)61252-1.

    Article  CAS  PubMed  Google Scholar 

  61. Viney NJ, van Capelleveen JC, Geary RS, Xia S, Tami JA, Yu RZ, et al. Antisense oligonucleotides targeting apolipoprotein(a) in people with raised lipoprotein(a): two randomised, double-blind, placebo-controlled, dose-ranging trials. Lancet. 2016;388(10057):2239–53. https://doi.org/10.1016/S0140-6736(16)31009-1.

    Article  CAS  PubMed  Google Scholar 

  62. Tsimikas S, Gordts P, Nora C, Yeang C, Witztum JL. Statin therapy increases lipoprotein(a) levels. Eur Heart J. 2020;41(24):2275–84. https://doi.org/10.1093/eurheartj/ehz310.

    Article  CAS  PubMed  Google Scholar 

  63. van Dijk KW, Rensen PC, Voshol PJ, Havekes LM. The role and mode of action of apolipoproteins CIII and AV: synergistic actors in triglyceride metabolism? Curr Opin Lipidol. 2004;15(3):239–46. https://doi.org/10.1097/00041433-200406000-00002.

    Article  PubMed  Google Scholar 

  64. Hussain A, Ballantyne CM, Saeed A, Virani SS. Triglycerides and ASCVD risk reduction: recent insights and future directions. Curr Atheroscler Rep. 2020;22(7):25. https://doi.org/10.1007/s11883-020-00846-8.

    Article  CAS  PubMed  Google Scholar 

  65. Windler E, Havel RJ. Inhibitory effects of C apolipoproteins from rats and humans on the uptake of triglyceride-rich lipoproteins and their remnants by the perfused rat liver. J Lipid Res. 1985;26(5):556–65.

    Article  CAS  PubMed  Google Scholar 

  66. Mendivil CO, Zheng C, Furtado J, Lel J, Sacks FM. Metabolism of very-low-density lipoprotein and low-density lipoprotein containing apolipoprotein C-III and not other small apolipoproteins. Arterioscler Thromb Vasc Biol. 2010;30(2):239–45. https://doi.org/10.1161/ATVBAHA.109.197830.

    Article  CAS  PubMed  Google Scholar 

  67. Dallinga-Thie GM, Kroon J, Boren J, Chapman MJ. Triglyceride-rich lipoproteins and remnants: targets for therapy? Curr Cardiol Rep. 2016;18(7):67. https://doi.org/10.1007/s11886-016-0745-6.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Wyler von Ballmoos MC, Haring B, Sacks FM. The risk of cardiovascular events with increased apolipoprotein CIII: a systematic review and meta-analysis. J Clin Lipidol. 2015;9(4):498–510. https://doi.org/10.1016/j.jacl.2015.05.002.

    Article  PubMed  Google Scholar 

  69. Gaudet D, Alexander VJ, Baker BF, Brisson D, Tremblay K, Singleton W, et al. Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia. N Engl J Med. 2015;373(5):438–47. https://doi.org/10.1056/NEJMoa1400283.

    Article  CAS  PubMed  Google Scholar 

  70. Gouni-Berthold I, Alexander V, Digenio A, DuFour R, Steinhagen-Thiessen E, Martin S, et al. Apolipoprotein C-III inhibition with volanesorsen in patients with hypertriglyceridemia (COMPASS): a randomized, double-blind, placebo-controlled trial. Atheroscler Suppl. 2017;28:E1–2. https://doi.org/10.1016/j.atherosclerosissup.2017.08.003.

    Article  Google Scholar 

  71. Esan O, Wierzbicki AS. Volanesorsen in the treatment of familial chylomicronemia syndrome or hypertriglyceridaemia: design, development and place in therapy. Drug Des Devel Ther. 2020;14:2623–36. https://doi.org/10.2147/DDDT.S224771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Paik J, Duggan S. Volanesorsen: first global approval. Drugs. 2019;79(12):1349–54. https://doi.org/10.1007/s40265-019-01168-z.

    Article  CAS  PubMed  Google Scholar 

  73. Kersten S. Angiopoietin-like 3 in lipoprotein metabolism. Nat Rev Endocrinol. 2017;13(12):731–9. https://doi.org/10.1038/nrendo.2017.119.

    Article  CAS  PubMed  Google Scholar 

  74. •• Raal FJ, Rosenson RS, Reeskamp LF, Hovingh GK, JJP K, Rubba P, et al. Evinacumab for homozygous familial hypercholesterolemia. N Engl J Med. 2020;383(8):711–20. https://doi.org/10.1056/NEJMoa2004215Intravenous injections of 15 mg/kg of evinacumab, a monoclonal antibody against ANGPTL3, reduced LDL-C by 49% (95% CI, − 65.0 to − 33.1; P < 0.001) in comparison with placebo in homozygous familial hypercholesterolemia patients (N = 65 randomized 2:1 to evinacumab). Reductions in LDL-C occurred independently of the genotype and type of LDL receptor defect. This seminal study suggests that inhibition of ANGPTL3 will be a revolutionary treatment for this disease.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

RDS is the recipient of a scholarship from Conselho Nacional de Pesquisa e Desenvolvimento Tecnológico, Brazil, (CNPq) #303734/2018-3.

Author information

Authors and Affiliations

Authors

Contributions

MHM, VZR, and RDS have reviewed the literature and drafted the manuscript.

Corresponding author

Correspondence to Raul D. Santos.

Ethics declarations

Conflict of Interest

MHM has received honoraria related to speaker activities from Amgen and EMS.

VZR has received honoraria related to speaker activities from Ache, Amgen, Novo Nordisk, and Sanofi.

RDS has received honoraria related to consulting, research, and/or speaker activities from Abbott, Ache, Amgen, AstraZeneca, Esperion, EMS, Getz Pharma, Kowa, Libbs, Novo Nordisk, Novartis, Merck, MSD, Pfizer, PTC Therapeutics, and Sanofi.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Coronary Heart Disease

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miname, M.H., Rocha, V.Z. & Santos, R.D. The Role of RNA-Targeted Therapeutics to Reduce ASCVD Risk: What Have We Learned Recently?. Curr Atheroscler Rep 23, 40 (2021). https://doi.org/10.1007/s11883-021-00936-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11883-021-00936-1

Keywords

Navigation