Skip to main content

Advertisement

Log in

Regulation of dormancy during tumor dissemination: the role of the ECM

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The study of the metastatic cascade has revealed the complexity of the process and the multiple cellular states that disseminated cancer cells must go through. The tumor microenvironment and in particular the extracellular matrix (ECM) plays an important role in regulating the transition from invasion, dormancy to ultimately proliferation during the metastatic cascade. The time delay from primary tumor detection to metastatic growth is regulated by a molecular program that maintains disseminated tumor cells in a non-proliferative, quiescence state known as tumor cell dormancy. Identifying dormant cells and their niches in vivo and how they transition to the proliferative state is an active area of investigation, and novel approaches have been developed to track dormant cells during dissemination. In this review, we highlight the latest research on the invasive nature of disseminated tumor cells and their link to dormancy programs. We also discuss the role of the ECM in sustaining dormant niches at distant sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Massagué, J., & Obenauf, A. C. (2016). Metastatic colonization by circulating tumour cells. Nature, 529, 298–306.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Quail, D. F., & Joyce, J. A. (2013). Microenvironmental regulation of tumor progression and metastasis. Nature Medicine, 19, 1423–1437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bravo-Cordero, J. J., Hodgson, L., & Condeelis, J. (2012). Directed cell invasion and migration during metastasis. Current Opinion in Cell Biology, 24, 277–283.

    Article  CAS  PubMed  Google Scholar 

  4. Ganesh, K., & Massagué, J. (2021). Targeting metastatic cancer. Nature Medicine, 27, 34–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mondal, C., Di Martino, J. S., & Bravo-Cordero, J. J. (2021). Actin dynamics during tumor cell dissemination. International Review of Cell and Molecular Biology, 360, 65–98.

    Article  PubMed  Google Scholar 

  6. Hosseini, H., et al. (2016). Early dissemination seeds metastasis in breast cancer. Nature, 540, 552–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Werner-Klein, M., et al. (2018). Genetic alterations driving metastatic colony formation are acquired outside of the primary tumour in melanoma. Nature Communications, 9, 595.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ray, A., et al. (2022). Stromal architecture directs early dissemination in pancreatic ductal adenocarcinoma. JCI Insight, 7.

  9. Kai, F. B., Drain, A. P., & Weaver, V. M. (2019). The extracellular matrix modulates the metastatic journey. Developmental Cell, 49, 332–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang, J., & Kim, S. K. (2003). Global analysis of dauer gene expression in Caenorhabditis elegans. Development, 130, 1621–1634.

    Article  CAS  PubMed  Google Scholar 

  11. Koornneef, M., Bentsink, L., & Hilhorst, H. (2002). Seed dormancy and germination. Current Opinion in Plant Biology, 5, 33–36.

    Article  CAS  PubMed  Google Scholar 

  12. Willis, R. A. (1934). The spread of tumours in the human body. J. A. Churchill.

    Google Scholar 

  13. Hadfield, G. (1954). The dormant cancer cell. British Medical Journal, 2, 607–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Worrall, R. (1954). The dormant cancer cell ( Correspondence). British Medical Journal, 2, 813.

    Article  PubMed Central  Google Scholar 

  15. Bryant, T. (1902). An analysis of forty-six cases of cancer of the breast which have been operated upon and survived the operation from 5 to 32 years, with remarks upon the treatment of recurrent growths, including the disease of the second breast, operative and otherwise. British Medical Journal, 1, 1200–1203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ashley, D. J. (1965). On the incidence of carcinoma of the prostate. The Journal of Pathology and Bacteriology, 90, 217–224.

    Article  CAS  PubMed  Google Scholar 

  17. Mortensen, J. D., Woolner, L. B., & Bennett, W. A. (1955). Gross and microscopic findings in clinically normal thyroid glands. The Journal of Clinical Endocrinology and Metabolism, 15, 1270–1280.

    Article  CAS  PubMed  Google Scholar 

  18. Beckwith, J. B., & Perrin, E. V. (1963). In situ neuroblastomas: A contribution to the natural history of neural crest tumors. The American Journal of Pathology, 43, 1089–1104.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Holmgren, L., O’Reilly, M. S., & Folkman, J. (1995). Dormancy of micrometastases: Balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Medicine, 1, 149–153.

    Article  CAS  PubMed  Google Scholar 

  20. Townson, J. L., & Chambers, A. F. (2006). Dormancy of solitary metastatic cells. Cell Cycle, 5, 1744–1750.

    Article  CAS  PubMed  Google Scholar 

  21. Yeh, A. C., & Ramaswamy, S. (2015). Mechanisms of cancer cell dormancy --Another hallmark of cancer? Cancer Research, 75, 5014–5022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Phan, T. G., & Croucher, P. I. (2020). The dormant cancer cell life cycle. Nature Reviews. Cancer, 20, 398–411.

    Article  CAS  PubMed  Google Scholar 

  23. Naumov, G. N., Folkman, J., & Straume, O. (2009). Tumor dormancy due to failure of angiogenesis: Role of the microenvironment. Clinical & Experimental Metastasis, 26, 51–60.

    Article  Google Scholar 

  24. Naumov, G. N., Akslen, L. A., & Folkman, J. (2006). Role of angiogenesis in human tumor dormancy: Animal models of the angiogenic switch. Cell Cycle, 5, 1779–1787.

    Article  CAS  PubMed  Google Scholar 

  25. Almog, N., et al. (2006). Prolonged dormancy of human liposarcoma is associated with impaired tumor angiogenesis. FASEB Journal, 20, 947–949.

    Article  CAS  PubMed  Google Scholar 

  26. Senft, D., & Ronai, Z. A. (2016). Immunogenic, cellular, and angiogenic drivers of tumor dormancy--A melanoma view. Pigment Cell & Melanoma Research, 29, 27–42.

    Article  Google Scholar 

  27. Shchors, K., et al. (2006). The Myc-dependent angiogenic switch in tumors is mediated by interleukin 1beta. Genes & Development, 20, 2527–2538.

    Article  CAS  Google Scholar 

  28. Stockmann, C., Schadendorf, D., Klose, R., & Helfrich, I. (2014). The impact of the immune system on tumor: Angiogenesis and vascular remodeling. Frontiers in Oncology, 4, 69.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Koebel, C. M., et al. (2007). Adaptive immunity maintains occult cancer in an equilibrium state. Nature, 450, 903–907.

    Article  CAS  PubMed  Google Scholar 

  30. Schaller, J., & Agudo, J. (2020). Metastatic colonization: Escaping immune surveillance. Cancers (Basel), 12.

  31. Ghajar, C. M. (2015). Metastasis prevention by targeting the dormant niche. Nature Reviews Cancer, 15(4), 238–247. https://doi.org/10.1038/nrc3910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mohme, M., Riethdorf, S., & Pantel, K. (2017). Circulating and disseminated tumour cells - Mechanisms of immune surveillance and escape. Nature Reviews Clinical Oncology, 14, 155–167.

    Article  CAS  PubMed  Google Scholar 

  33. Salmon, H., et al. (2016). Expansion and activation of CD103+dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity, 44, 924–938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mahnke, Y. D., Schwendemann, J., Beckhove, P., & Schirrmacher, V. (2005). Maintenance of long-term tumour-specific T-cell memory by residual dormant tumour cells. Immunology, 115, 325–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Müller-Hermelink, N., et al. (2008). TNFR1 signaling and IFN-gamma signaling determine whether T cells induce tumor dormancy or promote multistage carcinogenesis. Cancer Cell, 13, 507–518.

    Article  PubMed  Google Scholar 

  36. Wang, H.-F., et al. (2019). Targeting immune-mediated dormancy: A promising treatment of cancer. Frontiers in Oncology, 9, 498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Linde, N., Fluegen, G., & Aguirre-Ghiso, J. A. (2016). The relationship between dormant cancer cells and their microenvironment. Advances in Cancer Research, 132.

  38. Risson, E., Nobre, A. R., Maguer-Satta, V., & Aguirre-Ghiso, J. A. (2020). The current paradigm and challenges ahead for the dormancy of disseminated tumor cells. Nature Cancer, 1, 672–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Raviraj, V., et al. (2012). Dormant but migratory tumour cells in desmoplastic stroma of invasive ductal carcinomas. Clinical & Experimental Metastasis, 29, 273–292.

    Article  Google Scholar 

  40. Bayarmagnai, B., et al. (2019). Invadopodia-mediated ECM degradation is enhanced in the G1 phase of the cell cycle. Journal of Cell Science, 132.

  41. Ruppender, N., et al. (2015). Cellular adhesion promotes prostate cancer cells escape from dormancy. PLoS One, 10, e0130565.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Borgen, E., et al. (2018). NR2F1 stratifies dormant disseminated tumor cells in breast cancer patients. Breast Cancer Research, 20, 120.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Harper, K. L., et al. (2016). Mechanism of early dissemination and metastasis in Her2+mammary cancer. Nature, 540(7634), 588–592. https://doi.org/10.1038/nature20609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fluegen, G., et al. (2017). Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nature Cell Biology, 19(2), 120–132. https://doi.org/10.1038/ncb3465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Borriello, L., et al. (2022). Primary tumor associated macrophages activate programs of invasion and dormancy in disseminating tumor cells. Nature Communications, 13, 626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Harney, A. S., et al. (2015). Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA. Cancer Discovery, 5, 932–943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pignatelli, J., et al. (2014). Invasive breast carcinoma cells from patients exhibit MenaINV- and macrophage-dependent transendothelial migration. Science Signaling, 7, ra112.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Rohan, T. E., et al. (2014). Tumor microenvironment of metastasis and risk of distant metastasis of breast cancer. Journal of the National Cancer Institute, 106.

  49. Mondal, C., et al. (2022). A proliferative to invasive switch is mediated by srGAP1 downregulation through the activation of TGF-β2 signaling. Cell Reports, 40, 111358.

    Article  CAS  PubMed  Google Scholar 

  50. Kienast, Y., et al. (2010). Real-time imaging reveals the single steps of brain metastasis formation. Nature Medicine, 16, 116–122.

    Article  CAS  PubMed  Google Scholar 

  51. Price, T. T., et al. (2016). Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone. Science Translational Medicine. https://doi.org/10.1126/scitranslmed.aad4059

  52. Gundem, G., et al. (2015). The evolutionary history of lethal metastatic prostate cancer. Nature, 520, 353–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hong, M. K. H., et al. (2015). Tracking the origins and drivers of subclonal metastatic expansion in prostate cancer. Nature Communications, 6, 6605.

    Article  CAS  PubMed  Google Scholar 

  54. Krøigård, A. B., et al. (2017). Genomic analyses of breast cancer progression reveal distinct routes of metastasis emergence. Scientific Reports, 7, 43813.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Schwarz, R. F., et al. (2015). Spatial and temporal heterogeneity in high-grade serous ovarian cancer: A phylogenetic analysis. PLoS Medicine, 12, e1001789.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hoover, H. C. J., & Ketcham, A. S. (1975). Metastasis of metastases. American Journal of Surgery, 130, 405–411.

    Article  PubMed  Google Scholar 

  57. Hart, I. R., & Fidler, I. J. (1980). Role of organ selectivity in the determination of metastatic patterns of B16 melanoma. Cancer Research, 40, 2281–2287.

    CAS  PubMed  Google Scholar 

  58. Strauss, D. C., & Thomas, J. M. (2010). Transmission of donor melanoma by organ transplantation. The Lancet Oncology, 11, 790–796.

    Article  PubMed  Google Scholar 

  59. Stephens, J. K., et al. (2000). Fatal transfer of malignant melanoma from multiorgan donor to four allograft recipients. Transplantation, 70, 232–236.

    CAS  PubMed  Google Scholar 

  60. Borriello, L., Condeelis, J., Entenberg, D., & Oktay, M. H. (2021). Breast cancer cell re-dissemination from lung metastases-A mechanism for enhancing metastatic burden. Journal of Clinical Medicine, 10.

  61. Condeelis, J. S., & Entenberg, D. (2020). Hematogenous dissemination of breast cancer cells from lymph nodes is mediated by tumor microenvironment of metastasis doorways. Frontiers in Oncology, 10, 1–9.

    Google Scholar 

  62. Pereira, E. R., et al. (2018). Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice. Science, 359, 1403–1407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Brown, M., et al. (2018). Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice. Science, 359, 1408–1411.

    Article  CAS  PubMed  Google Scholar 

  64. Bragado, P., et al. (2013). TGF-β2 dictates disseminated tumour cell fate in target organs through TGF-β-RIII and p38α/β signalling. Nature Cell Biology, 15(11), 1351–1361. https://doi.org/10.1038/ncb2861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Nobre, A. R., et al. (2021). Bone marrow NG2(+)/Nestin(+) mesenchymal stem cells drive DTC dormancy via TGFβ2. Nature Cancer, 2, 327–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang, W., et al. (2021). The bone microenvironment invigorates metastatic seeds for further dissemination. Cell, 184, 2471–2486.e20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Baccelli, I., et al. (2013). Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nature Biotechnology, 31, 539–544.

    Article  CAS  PubMed  Google Scholar 

  68. Nemec, S., & Kilian, K. A. (2021). Materials control of the epigenetics underlying cell plasticity. Nature Reviews Materials, 6, 69–83.

    Article  CAS  Google Scholar 

  69. Dai, J., et al. (2022). Astrocytic laminin-211 drives disseminated breast tumor cell dormancy in brain. Nature Cancer, 3, 25–42.

    Article  CAS  PubMed  Google Scholar 

  70. Nallanthighal, S., Heiserman, J. P., & Cheon, D.-J. (2019). The role of the extracellular matrix in cancer stemness. Frontiers in Cell and Development Biology, 7, 86.

    Article  Google Scholar 

  71. Barney, L. E., et al. (2020). Tumor cell-organized fibronectin maintenance of a dormant breast cancer population. Science Advances, 6, eaaz4157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Karamanos, N. K., et al. (2021). A guide to the composition and functions of the extracellular matrix. The FEBS Journal, 288, 6850–6912.

    Article  CAS  PubMed  Google Scholar 

  73. Sun, Z., Guo, S. S., & Fässler, R. (2016). Integrin-mediated mechanotransduction. The Journal of Cell Biology, 215, 445–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wolfenson, H., Yang, B., & Sheetz, M. P. (2019). Steps in mechanotransduction pathways that control cell morphology. Annual Review of Physiology, 81, 585–605.

    Article  CAS  PubMed  Google Scholar 

  75. Kechagia, J. Z., Ivaska, J., & Roca-Cusachs, P. (2019). Integrins as biomechanical sensors of the microenvironment. Nature Reviews. Molecular Cell Biology, 20, 457–473.

    Article  CAS  PubMed  Google Scholar 

  76. Burridge, K., Monaghan-Benson, E., & Graham, D. M. (2019). Mechanotransduction: From the cell surface to the nucleus via RhoA. Philosophical Transactions of the Royal Society B, 374, 20180229.

    Article  CAS  Google Scholar 

  77. Ohashi, K., Fujiwara, S., & Mizuno, K. (2017). Roles of the cytoskeleton, cell adhesion and rho signalling in mechanosensing and mechanotransduction. Journal of Biochemistry, 161, 245–254.

    CAS  PubMed  Google Scholar 

  78. Coste, B., et al. (2010). Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science, 330, 55–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Wang, Y., & Xiao, B. (2018). The mechanosensitive Piezo1 channel: Structural features and molecular bases underlying its ion permeation and mechanotransduction. The Journal of Physiology, 596, 969–978.

    Article  CAS  PubMed  Google Scholar 

  80. Geng, J., et al. (2020). A plug-and-latch mechanism for gating the mechanosensitive Piezo Channel. Neuron, 106, 438–451.e6.

    Article  CAS  PubMed  Google Scholar 

  81. Qin, L., et al. (2021). Roles of mechanosensitive channel Piezo1/2 proteins in skeleton and other tissues. Bone Research, 9, 44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Pathak, M. M., et al. (2014). Stretch-activated ion channel Piezo1 directs lineage choice in human neural stem cells. Proceedings of the National Academy of Sciences of the United States of America, 111, 16148–16153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sun, X., et al. (2021). Bone piezoelectricity-mimicking nanocomposite membranes enhance osteogenic differentiation of bone marrow mesenchymal stem cells by amplifying cell adhesion and actin cytoskeleton. Journal of Biomedical Nanotechnology, 17, 1058–1067.

    Article  CAS  PubMed  Google Scholar 

  84. Wang, F., et al. (2017). Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. The Journal of Physiology, 595, 79–91.

    Article  CAS  PubMed  Google Scholar 

  85. Lai, A., et al. (2022). Mechanosensing by Piezo1 and its implications for physiology and various pathologies. Biological Reviews of the Cambridge Philosophical Society, 97, 604–614.

    Article  CAS  PubMed  Google Scholar 

  86. Wu, J., Lewis, A. H., & Grandl, J. (2017). Touch, tension, and transduction - The function and regulation of Piezo ion channels. Trends in Biochemical Sciences, 42, 57–71.

    Article  PubMed  Google Scholar 

  87. Kenmochi, M., et al. (2022). Involvement of mechano-sensitive Piezo1 channel in the differentiation of brown adipocytes. The Journal of Physiological Sciences, 72, 13.

    Article  CAS  PubMed  Google Scholar 

  88. Wang, N., Tytell, J. D., & Ingber, D. E. (2009). Mechanotransduction at a distance: Mechanically coupling the extracellular matrix with the nucleus. Nature Reviews. Molecular Cell Biology, 10, 75–82.

    Article  CAS  PubMed  Google Scholar 

  89. Bouzid, T., et al. (2019). The LINC complex, mechanotransduction, and mesenchymal stem cell function and fate. Journal of Biological Engineering, 13, 68.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kalukula, Y., Stephens, A. D., Lammerding, J., & Gabriele, S. (2022). Mechanics and functional consequences of nuclear deformations. Nature Reviews. Molecular Cell Biology, 23, 583–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hamouda, M. S., Labouesse, C., & Chalut, K. J. (2020). Nuclear mechanotransduction in stem cells. Current Opinion in Cell Biology, 64, 97–104.

    Article  CAS  PubMed  Google Scholar 

  92. Alam, S. G., et al. (2016). The mammalian LINC complex regulates genome transcriptional responses to substrate rigidity. Scientific Reports, 6, 38063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chang, W., Worman, H. J., & Gundersen, G. G. (2015). Accessorizing and anchoring the LINC complex for multifunctionality. The Journal of Cell Biology, 208, 11–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sharili, A. S., & Connelly, J. T. (2014). Nucleocytoplasmic shuttling: A common theme in mechanotransduction. Biochemical Society Transactions, 42, 645–649.

    Article  CAS  PubMed  Google Scholar 

  95. Kofler, M., & Kapus, A. (2021). Nucleocytoplasmic shuttling of the mechanosensitive transcription factors MRTF and YAP /TAZ. Methods in Molecular Biology, 2299, 197–216.

    Article  CAS  PubMed  Google Scholar 

  96. Jang, J.-W., Kim, M.-K., & Bae, S.-C. (2020). Reciprocal regulation of YAP/TAZ by the Hippo pathway and the Small GTPase pathway. Small GTPases, 11, 280–288.

    Article  PubMed  Google Scholar 

  97. Miranda, M. Z., Lichner, Z., Szászi, K., & Kapus, A. (2021). MRTF: Basic biology and role in kidney disease. International Journal of Molecular Sciences, 22.

  98. Shreberk-Shaked, M., & Oren, M. (2019). New insights into YAP/TAZ nucleo-cytoplasmic shuttling: New cancer therapeutic opportunities? Molecular Oncology, 13, 1335–1341.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Speight, P., Kofler, M., Szászi, K., & Kapus, A. (2016). Context-dependent switch in chemo/mechanotransduction via multilevel crosstalk among cytoskeleton-regulated MRTF and TAZ and TGFβ-regulated Smad3. Nature Communications, 7, 11642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Er, E. E., et al. (2018). Pericyte-like spreading by disseminated cancer cells activates YAP and MRTF for metastatic colonization. Nature Cell Biology, 20, 966–978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Tello-Lafoz, M., et al. (2021). Cytotoxic lymphocytes target characteristic biophysical vulnerabilities in cancer. Immunity, 54, 1037–1054.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zabransky, D. J., Jaffee, E. M., & Weeraratna, A. T. (2022). Shared genetic and epigenetic changes link aging and cancer. Trends in Cell Biology, 32, 338–350.

    Article  CAS  PubMed  Google Scholar 

  103. Naik, S., & Fuchs, E. (2022). Inflammatory memory and tissue adaptation in sickness and in health. Nature, 607, 249–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Skvortsova, K., Stirzaker, C., & Taberlay, P. (2019). The DNA methylation landscape in cancer. Essays in Biochemistry, 63, 797–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Dawson, M. A., & Kouzarides, T. (2012). Cancer epigenetics: From mechanism to therapy. Cell, 150, 12–27.

    Article  CAS  PubMed  Google Scholar 

  106. Stowers, R., & Chaudhuri, O. (2021). Epigenetic regulation of mechanotransduction. Nature Biomedical Engineering, 5, 8–10.

    Article  CAS  PubMed  Google Scholar 

  107. Stowers, R. S., et al. (2019). Matrix stiffness induces a tumorigenic phenotype in mammary epithelium through changes in chromatin accessibility. Nature Biomedical Engineering, 3, 1009–1019.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Jang, M., et al. (2021). Matrix stiffness epigenetically regulates the oncogenic activation of the Yes-associated protein in gastric cancer. Nature Biomedical Engineering, 5, 114–123.

    Article  CAS  PubMed  Google Scholar 

  109. Gupta, V. K., & Chaudhuri, O. (2022). Mechanical regulation of cell-cycle progression and division. Trends in Cell Biology, 32, 773–785.

    Article  CAS  PubMed  Google Scholar 

  110. Sosa, M. S., et al. (2015). NR2F1 controls tumour cell dormancy via SOX9- and RARβ-driven quiescence programmes. Nature Communications, 6, 6170.

    Article  CAS  PubMed  Google Scholar 

  111. Singh, D. K., et al. (2021). Epigenetic reprogramming of DCCs into dormancy suppresses metastasis <em>via</em> restored TGFβ–SMAD4 signaling. https://arxiv.org/abs/2021.08.01.454684. https://doi.org/10.1101/2021.08.01.454684

  112. Liu, Y., et al. (2018). 3D Fibrin stiffness mediates dormancy of tumor-repopulating cells via a Cdc42-driven Tet2 epigenetic program. Cancer Research, 78(14), 3926–3937. https://doi.org/10.1158/0008-5472.CAN-17-3719

    Article  CAS  PubMed  Google Scholar 

  113. Schofield, R. (1978). The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells, 4, 7–25.

    CAS  PubMed  Google Scholar 

  114. Socovich, A. M., & Naba, A. (2019). The cancer matrisome: From comprehensive characterization to biomarker discovery. Seminars in Cell and Developmental Biology, 89. https://doi.org/10.1016/j.semcdb.2018.06.005

  115. Naba, A., et al. (2012). The matrisome: In silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Molecular & Cellular Proteomics, 11, M111.014647-M111.014647.

    Article  Google Scholar 

  116. Hynes, R. O., & Naba, A. (2012). Overview of the matrisome--An inventory of extracellular matrix constituents and functions. Cold Spring Harbor Perspectives in Biology, 4, a004903.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Aguirre-Ghiso, J. A., Liu, D., Mignatti, A., Kovalski, K., & Ossowski, L. (2001). Urokinase receptor and fibronectin regulate the ERKMAPK to p38MAPK activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Molecular Biology of the Cell, 12(4), 863–879. https://doi.org/10.1091/mbc.12.4.863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Aguirre Ghiso, J. A., Kovalski, K., & Ossowski, L. (1999). Tumor dormancy induced by downregulation of urokinase receptor in human carcinoma involves integrin and MAPK signaling. The Journal of Cell Biology, 147, 89–103.

    Article  CAS  PubMed  Google Scholar 

  119. Di Martino, J. S., et al. (2022). A tumor-derived type III collagen-rich ECM niche regulates tumor cell dormancy. Nature Cancer, 3, 90–107.

    Article  PubMed  Google Scholar 

  120. Montagner, M., et al. (2020). Crosstalk with lung epithelial cells regulates Sfrp2-mediated latency in breast cancer dissemination. Nature Cell Biology, 22, 289–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Nobre, A. R., et al. (2022). ZFP281 drives a mesenchymal-like dormancy program in early disseminated breast cancer cells that prevents metastatic outgrowth in the lung. Nature Cancer, 3(10), 1165–1180. https://doi.org/10.1038/s43018-022-00424-8

    Article  CAS  PubMed  Google Scholar 

  122. Aouad, P., et al. (2022). Epithelial-mesenchymal plasticity determines estrogen receptor positive breast cancer dormancy and epithelial reconversion drives recurrence. Nature Communications, 13, 4975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Coppock, D. L., Kopman, C., Scandalis, S., & Gilleran, S. (1993). Preferential gene expression in quiescent human lung fibroblasts. Cell Growth and Differentiation, 4, 483–493.

    CAS  PubMed  Google Scholar 

  124. Barkan, D., et al. (2010). Metastatic growth from dormant cells induced by a Col-I-enriched fibrotic environment. Cancer Research, 70, 5706–5716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ohta, Y., et al. (2022). Cell-matrix interface regulates dormancy in human colon cancer stem cells. Nature, 608, 784–794.

    Article  CAS  PubMed  Google Scholar 

  126. Albrengues, J., et al. (2018). Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science, 361(6409), eaao4227.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Ghajar, C. M., et al. (2013). The perivascular niche regulates breast tumour dormancy. Nature Cell Biology, 15, 807–817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Fane, M. E., et al. (2022). Stromal changes in the aged lung induce an emergence from melanoma dormancy. Nature, 606, 396–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Elkholi, I. E., Lalonde, A., Park, M., & Côté, J.-F. (2022). Breast cancer metastatic dormancy and relapse: An enigma of microenvironment(s). Cancer Research, 82, 4497–4510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Sosa, M. S., Bragado, P., & Aguirre-Ghiso, J. A. (2014). Mechanisms of disseminated cancer cell dormancy: An awakening field. Nature Reviews Cancer, 14, 611–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Russo, S., Scotto di Carlo, F., & Gianfrancesco, F. (2022). The osteoclast traces the route to bone tumors and metastases. Frontiers in Cell and Development Biology, 10, 886305.

    Article  Google Scholar 

  132. Heyn, C., et al. (2006). In vivo MRI of cancer cell fate at the single-cell level in a mouse model of breast cancer metastasis to the brain. Magnetic Resonance in Medicine, 56, 1001–1010.

    Article  PubMed  Google Scholar 

  133. Heyn, C., et al. (2006). In vivo magnetic resonance imaging of single cells in mouse brain with optical validation. Magnetic Resonance in Medicine, 55, 23–29.

    Article  PubMed  Google Scholar 

  134. Shapiro, E. M., Sharer, K., Skrtic, S., & Koretsky, A. P. (2006). In vivo detection of single cells by MRI. Magnetic Resonance in Medicine, 55, 242–249.

    Article  PubMed  Google Scholar 

  135. Di Martino, J. S., Mondal, C., & Bravo-Cordero, J. J. (2019). Textures of the tumour microenvironment. Essays in Biochemistry, 63, 619–629.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Fukumura, D., Duda, D. G., Munn, L. L., & Jain, R. K. (2010). Tumor microvasculature and microenvironment: Novel insights through intravital imaging in pre-clinical models. Microcirculation, 17, 206–225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Fisher, D. T., et al. (2016). Intraoperative intravital microscopy permits the study of human tumour vessels. Nature Communications, 7, 10684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Moore, N., & Lyle, S. (2011). Quiescent, slow-cycling stem cell populations in cancer: A review of the evidence and discussion of significance. Journal of Oncology, 2011.

  139. Cotsarelis, G., Sun, T. T., & Lavker, R. M. (1990). Label-retaining cells reside in the bulge area of pilosebaceous unit: Implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell, 61, 1329–1337.

    Article  CAS  PubMed  Google Scholar 

  140. Potten, C. S., Kellett, M., Roberts, S. A., Rew, D. A., & Wilson, G. D. (1992). Measurement of in vivo proliferation in human colorectal mucosa using bromodeoxyuridine. Gut, 33, 71–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Schillert, A., Trumpp, A., & Sprick, M. R. (2013). Label retaining cells in cancer--The dormant root of evil? Cancer Letters, 341, 73–79.

    Article  CAS  PubMed  Google Scholar 

  142. Aguirre-Ghiso, J. A., Ossowski, L., & Rosenbaum, S. K. (2004). Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathway activation during primary and metastatic growth. Cancer Research, 64, 7336–7345.

    Article  CAS  PubMed  Google Scholar 

  143. Regot, S., Hughey, J. J., Bajar, B. T., Carrasco, S., & Covert, M. W. (2014). High-sensitivity measurements of multiple kinase activities in live single cells. Cell, 157, 1724–1734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Yano, S., Tazawa, H., Kagawa, S., Fujiwara, T., & Hoffman, R. M. (2020). FUCCI Real-time cell-cycle imaging as a guide for designing improved cancer therapy: A review of innovative strategies to target quiescent chemo-resistant cancer cells. Cancers (Basel), 12.

  145. Sakaue-Sawano, A., & Miyawaki, A. (2014). Visualizing spatiotemporal dynamics of multicellular cell-cycle progressions with fucci technology. Cold Spring Harbor Protocols, 2014.

  146. Sakaue-Sawano, A., et al. (2008). Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell, 132, 487–498.

    Article  CAS  PubMed  Google Scholar 

  147. Oki, T., et al. (2014). A novel cell-cycle-indicator, mVenus-p27K-, identifies quiescent cells and visualizes G0-G1 transition. Scientific Reports, 4, 4012.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Spencer, S. L., et al. (2013). XThe proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell, 155, 369–383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Freter, R., et al. (2021). Establishment of a fluorescent reporter of RNA-polymerase II activity to identify dormant cells. Nature Communications, 12, 3318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Owen, K. L., et al. (2020). Prostate cancer cell-intrinsic interferon signaling regulates dormancy and metastatic outgrowth in bone. EMBO Reports, 21, e50162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Khoo, W. H., et al. (2019). A niche-dependent myeloid transcriptome signature defines dormant myeloma cells. Blood, 134, 30–43.

    Article  CAS  PubMed  Google Scholar 

  152. Ren, Q., et al. (2022). Gene expression predicts dormant metastatic breast cancer cell phenotype. Breast Cancer Research, 24, 10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Aguirre-Ghiso, J. A. (2021). Translating the science of cancer dormancy to the clinic. Cancer Research, 81, 4673–4675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Pranzini, E., Raugei, G., & Taddei, M. L. (2022). Metabolic features of tumor dormancy: Possible therapeutic strategies. Cancers (Basel), 14.

  155. Garcia-Recio, S., et al. (2022). Multiomics in primary and metastatic breast tumors from the AURORA US network finds microenvironment and epigenetic drivers of metastasis. Nature Cancer. https://doi.org/10.1038/s43018-022-00491-x

  156. Tan, Z., et al. (2022). Mapping breast cancer microenvironment through single-cell omics. Frontiers in Immunology, 13, 868813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Ma, R.-Y., Black, A., & Qian, B.-Z. (2022). Macrophage diversity in cancer revisited in the era of single-cell omics. Trends in Immunology, 43, 546–563.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Jill Gregory for her illustrations in Figs. 1, 2, and 3 and Swagata Basu for critical reading and editing of the manuscript.

Funding

This work was supported by NCI R01 (CA244780), NCI R03 (CA270679), the Irma T. Hirschl Trust, the Emerging Leader Award from the Mark Foundation (to J. J .B. C), and the Tisch Cancer Institute NIH Cancer Center grant (P30 CA196521).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose Javier Bravo-Cordero.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, A., Bravo-Cordero, J.J. Regulation of dormancy during tumor dissemination: the role of the ECM. Cancer Metastasis Rev 42, 99–112 (2023). https://doi.org/10.1007/s10555-023-10094-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-023-10094-2

Keywords

Navigation