Skip to main content

Advertisement

Log in

Membrane tension buffering by caveolae: a role in cancer?

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Caveolae are bulb-like invaginations made up of two essential structural proteins, caveolin-1 and cavins, which are abundantly present at the plasma membrane of vertebrate cells. Since their discovery more than 60 years ago, the function of caveolae has been mired in controversy. The last decade has seen the characterization of new caveolae components and regulators together with the discovery of additional cellular functions that have shed new light on these enigmatic structures. Early on, caveolae and/or caveolin-1 have been involved in the regulation of several parameters associated with cancer progression such as cell migration, metastasis, angiogenesis, or cell growth. These studies have revealed that caveolin-1 and more recently cavin-1 have a dual role with either a negative or a positive effect on most of these parameters. The recent discovery that caveolae can act as mechanosensors has sparked an array of new studies that have addressed the mechanobiology of caveolae in various cellular functions. This review summarizes the current knowledge on caveolae and their role in cancer development through their activity in membrane tension buffering. We propose that the role of caveolae in cancer has to be revisited through their response to the mechanical forces encountered by cancer cells during tumor mass development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Palade, G. E. (1953). The fine structure of blood capillaries. Journal of Applied Physics, 24, 1424.

    Google Scholar 

  2. Yamada, E. (1955). The fine structure of the gall bladder epithelium of the mouse. The Journal of Biophysical and Biochemical Cytology, 1(5), 445–458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rothberg, K. G., Heuser, J. E., Donzell, W. C., Ying, Y. S., Glenney, J. R., & Anderson, R. G. W. (1992). Caveolin, a protein component of caveolae membrane coats. Cell, 68(4), 673–682.

    Article  CAS  PubMed  Google Scholar 

  4. Kurzchalia, T. V., Dupree, P., Parton, R. G., Kellner, R., Virta, H., Lehnert, M., & Simons, K. (1992). VIP21, a 21-kD membrane protein is an integral component of trans-Golgi-network-derived transport vesicles. Journal of Cell Biology, 118(5), 1003–1014.

    Article  CAS  PubMed  Google Scholar 

  5. Schlegel, A., & Lisanti, M. P. (2000). A molecular dissection of caveolin-1 membrane attachment and oligomerization. Two separate regions of the caveolin-1 c-terminal domain mediate membrane binding and oligomer/oligomer interactions in vivo. Journal of Biological Chemistry, 275(28), 21605–21617.

    Article  CAS  PubMed  Google Scholar 

  6. Scherer, P. E., Okamoto, T., Chun, M., Nishimoto, I., Lodish, H. F., & Lisanti, M. P. (1996). Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proceedings of the National Academy of Sciences of the United States of America, 93(1), 131–135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Way, M., & Parton, R. G. (1995). M-caveolin, a muscle-specific caveolin-related protein. FEBS Letters, 376(1–2), 108–112.

    Article  CAS  PubMed  Google Scholar 

  8. Tang, Z., Scherer, P. E., Okamoto, T., Song, K., Chu, C., Kohtz, D. S., Nishimoto, I., Lodish, H. F., & Lisanti, M. P. (1996). Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. Journal of Biological Chemistry, 271(4), 2255–2261.

    Article  CAS  PubMed  Google Scholar 

  9. Aboulaich, N., Vainonen, J. P., Strålfors, P., & Vener, A. V. (2004). Vectorial proteomics reveal targeting, phosphorylation and specific fragmentation of polymerase I and transcript release factor (PTRF) at the surface of caveolae in human adipocytes. Biochemical Journal, 383(2), 237–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Briand, N., Dugail, I., & Le Lay, S. (2011). Cavin proteins: New players in the caveolae field. Biochimie, 93(1), 71–77.

    Article  CAS  PubMed  Google Scholar 

  11. Kovtun, O., Tillu, V. A., Ariotti, N., Parton, R. G., & Collins, B. M. (2015). Cavin family proteins and the assembly of caveolae. Journal of Cell Science, 128(7), 1269–1278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hill, M. M., Bastiani, M., Luetterforst, R., Kirkham, M., Kirkham, A., Nixon, S. J., Walser, P., Abankwa, D., Oorschot, V. M. J., Martin, S., Hancock, J. F., & Parton, R. G. (2008). PTRF-Cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell, 132(1), 113–124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hansen, C. G., Howard, G., & Nichols, B. J. (2011). Pacsin 2 is recruited to caveolae and functions in caveolar biogenesis. Journal of Cell Science, 124(16), 2777–2785.

    Article  CAS  PubMed  Google Scholar 

  14. Senju, Y., & Suetsugu, S. (2015). Possible regulation of caveolar endocytosis and flattening by phosphorylation of F-BAR domain protein PACSIN2/Syndapin II. BioArchitecture, 5(5–6), 70–77.

    Article  PubMed  Google Scholar 

  15. Daumke, O., Lundmark, R., Vallis, Y., Martens, S., Butler, P. J. G., & McMahon, H. T. (2007). Architectural and mechanistic insights into an EHD ATPase involved in membrane remodelling. Nature, 449(7164), 923–927.

    Article  CAS  PubMed  Google Scholar 

  16. Yeow, I., Howard, G., Chadwick, J., Mendoza-Topaz, C., Hansen, C. G., Nichols, B. J., & Shvets, E. (2017). EHD proteins cooperate to generate caveolar clusters and to maintain caveolae during repeated mechanical stress. Current Biology, 27(19), 2951–2962.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ariotti, N., Rae, J., Leneva, N., Ferguson, C., Loo, D., Okano, S., Hill, M. M., Walser, P., Collins, B. M., & Parton, R. G. (2015). Molecular characterization of caveolin-induced membrane curvature. Journal of Biological Chemistry, 290(41), 24875–24890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stoeber, M., Stoeck, I. K., HéCurrency Signnni, C., Bleck, C. K. E., Balistreri, G., & Helenius, A. (2012). Oligomers of the ATPase EHD2 confine caveolae to the plasma membrane through association with actin. EMBO Journal, 31(10), 2350–2364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ludwig, A., Howard, G., Mendoza-Topaz, C., Deerinck, T., Mackey, M., Sandin, S., Ellisman, M. H., & Nichols, B. J. (2013). Molecular composition and ultrastructure of the caveolar coat complex. PLoS Biology, 11(8), e1001640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Morén, B., Shah, C., Howes, M. T., Schieber, N. L., McMahon, H. T., Parton, R. G., Daumke, O., & Lundmark, R. (2012). EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization. Molecular Biology of the Cell, 23(7), 1316–1329.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ortegren, U., Karlsson, M., Blazic, N., Blomqvist, M., Nystrom, F. H., Gustavsson, J., Fredman, P., & Stralfors, P. (2004). Lipids and glycosphingolipids in caveolae and surrounding plasma membrane of primary rat adipocytes. European Journal of Biochemistry, 271(10), 2028–2036.

    Article  PubMed  CAS  Google Scholar 

  22. Murata, M., Peränen, J., Schreiner, R., Wieland, F., Kurzchalia, T. V., & Simons, K. (1995). VIP21/caveolin is a cholesterol-binding protein. Proceedings of the National Academy of Sciences of the United States of America, 92(22), 10339–10343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schlegel, A., Schwab, R. B., Scherer, P. E., & Lisanti, M. P. (1999). A role for the caveolin scaffolding domain in mediating the membrane attachment of caveolin-1. The caveolin scaffolding domain is both necessary and sufficient for membrane binding in vitro. Journal of Biological Chemistry, 274(32), 22660–22667.

    Article  CAS  PubMed  Google Scholar 

  24. Hubert, M., Larsson, E., & Lundmark, R. (2020). Keeping in touch with the membrane; protein- and lipid-mediated confinement of caveolae to the cell surface. Biochemical Society Transactions, 48(1), 155–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Epand, R. M., Sayer, B. G., & Epand, R. F. (2005). Caveolin scaffolding region and cholesterol-rich domains in membranes. Journal of Molecular Biology, 345(2), 339–350.

    Article  CAS  PubMed  Google Scholar 

  26. Hayer, A., Stoeber, M., Bissig, C., & Helenius, A. (2010). Biogenesis of caveolae: Stepwise assembly of large caveolin and cavin complexes. Traffic, 11(3), 361–382.

    Article  CAS  PubMed  Google Scholar 

  27. Stoeber, M., Schellenberger, P., Siebert, C. A., Leyrat, C., Grünewald, K., & Helenius, A. (2016). Model for the architecture of caveolae based on a flexible, net-like assembly of Cavin1 and Caveolin discs. Proceedings of the National Academy of Sciences of the United States of America, 113(50), E8069–E8078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Walser, P. J., Ariotti, N., Howes, M., Ferguson, C., Webb, R., Schwudke, D., Leneva, N., Cho, K. J., Cooper, L., Rae, J., Floetenmeyer, M., Oorschot, V. M. J., Skoglund, U., Simons, K., Hancock, J. F., & Parton, R. G. (2012). Constitutive formation of caveolae in a bacterium. Cell, 150(4), 752–763.

    Article  CAS  PubMed  Google Scholar 

  29. Peters, K. R., Carley, W. W., & Palade, G. E. (1985). Endothelial plasmalemmal vesicles have a characteristic striped bipolar surface structure. Journal of Cell Biology, 101(6), 2233–2238.

    Article  CAS  PubMed  Google Scholar 

  30. Richter, T., Floetenmeyer, M., Ferguson, C., Galea, J., Goh, J., Lindsay, M. R., Morgan, G. P., Marsh, B. J., & Parton, R. G. (2008). High-resolution 3D quantitative analysis of caveolar ultrastructure and caveola–cytoskeleton interactions. Traffic, 9(6), 893–909.

    Article  CAS  PubMed  Google Scholar 

  31. Kirchhausen, T., Owen, D., & Harrison, S. C. (2014). Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harbor Perspectives in Biology, 6(5), a016725.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lamaze, C., Tardif, N., Dewulf, M., Vassilopoulos, S., & Blouin, C. M. (2017). The caveolae dress code: Structure and signaling. Current Opinion in Cell Biology, 47, 117–125.

    Article  CAS  PubMed  Google Scholar 

  33. Parton, R. G., & Del Pozo, M. A. (2013). Caveolae as plasma membrane sensors, protectors and organizers. Nature Reviews Molecular Cell Biology, 14(2), 98–112.

    Article  CAS  PubMed  Google Scholar 

  34. Pilch, P. F., & Liu, L. (2011). Fat caves: Caveolae, lipid trafficking and lipid metabolism in adipocytes. Trends in Endocrinology & Metabolism, 22(8), 318–324.

    Article  CAS  Google Scholar 

  35. Nabi, I. R., & Le, P. U. (2003). Caveolae/raft-dependent endocytosis. Journal of Cell Biology, 161(4), 673–677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. García-Cardeña, G., Martasek, P., Masters, B. S. S., Skidd, P. M., Couet, J., Li, S., … Sessa, W. C. (1997). Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. Journal of Biological Chemistry, 272(41), 25437–25440.

  37. Sinha, B., Köster, D., Ruez, R., Gonnord, P., Bastiani, M., Abankwa, D., Stan, R. V., Butler-Browne, G., Vedie, B., Johannes, L., Morone, N., Parton, R. G., Raposo, G., Sens, P., Lamaze, C., & Nassoy, P. (2011). Cells respond to mechanical stress by rapid disassembly of caveolae. Cell, 144(3), 402–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nassoy, P., & Lamaze, C. (2012). Stressing caveolae new role in cell mechanics. Trends in Cell Biology, 22(7), 381–389.

    Article  PubMed  Google Scholar 

  39. Parton, R. G., Pozo, M. A., Vassilopoulos, S., Nabi, I. R., Le Lay, S., Lundmark, R., … Lamaze, C. (2020). Caveolae: The FAQs. Traffic, 21(1), 181–185.

  40. Cheng, J. P. X., & Nichols, B. J. (2016). Caveolae: One function or many? Trends in Cell Biology, 26(3), 177–189.

    Article  CAS  PubMed  Google Scholar 

  41. Qian, X.-L., Pan, Y.-H., Huang, Q.-Y., Shi, Y.-B., Huang, Q.-Y., Hu, Z.-Z., & Xiong, L.-X. (2019). Caveolin-1: A multifaceted driver of breast cancer progression and its application in clinical treatment. OncoTargets and Therapy, 12, 1539–1552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, S., Wang, N., Zheng, Y., Zhang, J., Zhang, F., & Wang, Z. (2017). Caveolin-1: An oxidative stress-related target for cancer prevention. Oxidative Medicine and Cellular Longevity.

  43. Boscher, C., & Nabi, I. R. (2012). CAVEOLIN-1: Role in cell signaling. Advances in Experimental Medicine and Biology, 729, 29–50.

    Article  CAS  PubMed  Google Scholar 

  44. Lamaze, C., & Torrino, S. (2015). Caveolae and cancer: A new mechanical perspective. Biomedical Journal, 38(5), 367.

    Article  PubMed  Google Scholar 

  45. Wang, Z., Wang, N., Liu, P., Peng, F., Tang, H., Chen, Q., Xu, R., Dai, Y., Lin, Y., Xie, X., Peng, C., & Situ, H. (2015). Caveolin-1, a stress-related oncotarget, in drug resistance. Oncotarget, 6(35), 37135–37150.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Bouras, T., Lisanti, M. P., & Pestell, R. G. (2004). Caveolin in breast cancer. Cancer Biology & Therapy, 3(10), 931–941.

    Article  CAS  Google Scholar 

  47. Witkiewicz, A. K., Dasgupta, A., Sotgia, F., Mercier, I., Pestell, R. G., Sabel, M., Kleer, C. G., Brody, J. R., & Lisanti, M. P. (2009). An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. American Journal of Pathology, 174(6), 2023–2034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Trimmer, C., Sotgia, F., Whitaker-Menezes, D., Balliet, R. M., Eaton, G., Martinez-Outschoorn, U. E., Pavlides, S., Howell, A., Iozzo, R. V., Pestell, R. G., Scherer, P. E., Capozza, F., & Lisanti, M. P. (2011). Caveolin-1 and mitochondrial SOD2 (MnSOD) function as tumor suppressors in the stromal microenvironment: A new genetically tractable model for human cancer associated fibroblasts. Cancer Biology and Therapy, 11(4), 383–394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Goetz, J. G., Minguet, S., Navarro-Lérida, I., Lazcano, J. J., Samaniego, R., Calvo, E., … Del Pozo, M. A. (2011). Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell, 146(1), 148–163.

  50. Patani, N., Martin, L.-A., Reis-Filho, J. S., & Dowsett, M. (2012). The role of caveolin-1 in human breast cancer. Breast Cancer Research and Treatment, 131(1), 1–15.

    Article  CAS  PubMed  Google Scholar 

  51. Wikman, H., Kettunen, E., Seppänen, J. K., Karjalainen, A., Hollmén, J., Anttila, S., & Knuutila, S. (2002). Identification of differentially expressed genes in pulmonary adenocarcinoma by using cDNA array. Oncogene, 21(37), 5804–5813.

    Article  CAS  PubMed  Google Scholar 

  52. Bender, F. C., Reymond, M. A., Bron, C., & Quest, A. F. G. (2000). Caveolin-1 levels are down-regulated in human colon tumors, and ectopic expression of caveolin-1 in colon carcinoma cell lines reduces cell tumorigenicity. Cancer Research, 60(20), 5870–5878.

    CAS  PubMed  Google Scholar 

  53. Wiechen, K., Diatchenko, L., Agoulnik, A., Scharff, K. M., Schober, H., Arlt, K., Zhumabayeva, B., Siebert, P. D., Dietel, M., Schäfer, R., & Sers, C. (2001). Caveolin-1 is down-regulated in human ovarian carcinoma and acts as a candidate tumor suppressor gene. American Journal of Pathology, 159(5), 1635–1643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wiechen, K., Sers, C., Agoulnik, A., Arlt, K., Dietel, M., Schlag, P. M., & Schneider, U. (2001). Down-regulation of caveolin-1, a candidate tumor suppressor gene, in sarcomas. American Journal of Pathology, 158(3), 833–839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Joshi, B., Strugnell, S. S., Goetz, J. G., Kojic, L. D., Cox, M. E., Griffith, O. L., Chan, S. K., Jones, S. J., Leung, S. P., Masoudi, H., Leung, S., Wiseman, S. M., & Nabi, I. R. (2008). Phosphorylated caveolin-1 regulates Rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion. Cancer Research, 68(20), 8210–8220.

    Article  CAS  PubMed  Google Scholar 

  56. Zajchowski, D. A., Bartholdi, M. F., Gong, Y., Webster, L., Liu, H. L., Munishkin, A., Beauheim, C., Harvey, S., Ethier, S. P., & Johnson, P. H. (2001). Identification of gene expression profiles that predict the aggressive behavior of breast cancer cells. Cancer Research, 61(13), 5168–5178.

    CAS  PubMed  Google Scholar 

  57. Elsheikh, S. E., Green, A. R., Rakha, E. A., Samaka, R. M., Ammar, A. A., Powe, D., Reis-Filho, J. S., & Ellis, I. O. (2008). Caveolin 1 and caveolin 2 are associated with breast cancer basal-like and triple-negative immunophenotype. British Journal of Cancer, 99(2), 327–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Waalkes, S., Eggers, H., Blasig, H., Atschekzei, F., Kramer, M. W., Hennenlotter, J., Tränkenschuh, W., Stenzl, A., Serth, J., Schrader, A. J., Kuczyk, M. A., & Merseburger, A. S. (2011). Caveolin 1 mRNA is overexpressed in malignant renal tissue and might serve as a novel diagnostic marker for renal cancer. Biomarkers in Medicine, 5(2), 219–225.

    Article  CAS  PubMed  Google Scholar 

  59. Barresi, V., Cerasoli, S., Paioli, G., Vitarelli, E., Giuffrè, G., Guiducci, G., & Tuccari, G. (2006). Caveolin-1 in meningiomas: Expression and clinico-pathological correlations. Acta Neuropathologica, 112(5), 617–626.

    Article  CAS  PubMed  Google Scholar 

  60. Pancotti, F., Roncuzzi, L., Maggiolini, M., & Gasperi-Campani, A. (2012). Caveolin-1 silencing arrests the proliferation of metastatic lung cancer cells through the inhibition of STAT3 signaling. Cellular Signalling, 24(7), 1390–1397.

    Article  CAS  PubMed  Google Scholar 

  61. Gupta, R., Toufaily, C., & Annabi, B. (2014). Caveolin and cavin family members: Dual roles in cancer. Biochimie, 107, 188–202.

    Article  CAS  PubMed  Google Scholar 

  62. Bai, L., Deng, X., Li, Q., Wang, M., An, W., Deli, A., … Cong, Y. S. (2012). Down-regulation of the cavin family proteins in breast cancer. Journal of Cellular Biochemistry, 113(1), 322–328.

  63. Moon, H., Lee, C. S., Inder, K. L., Sharma, S., Choi, E., Black, D. M., … Hill, M. M. (2014). PTRF/cavin-1 neutralizes non-caveolar caveolin-1 microdomains in prostate cancer. Oncogene, 33(27), 3561–3570.

  64. Bastiani, M., Liu, L., Hill, M. M., Jedrychowski, M. P., Nixon, S. J., Lo, H. P., Abankwa, D., Luetterforst, R., Fernandez-Rojo, M., Breen, M. R., Gygi, S. P., Vinten, J., Walser, P. J., North, K. N., Hancock, J. F., Pilch, P. F., & Parton, R. G. (2009). MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes. Journal of Cell Biology, 185(7), 1259–1273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ketteler, J., & Klein, D. (2018). Caveolin-1, cancer and therapy resistance. International Journal of Cancer, 143(9), 2092–2104.

    Article  CAS  PubMed  Google Scholar 

  66. Burgermeister, E., Liscovitch, M., Röcken, C., Schmid, R. M., & Ebert, M. P. A. (2008). Caveats of caveolin-1 in cancer progression. Cancer Letters, 268(2), 187–201.

    Article  CAS  PubMed  Google Scholar 

  67. Shatz, M., & Liscovitch, M. (2004). Caveolin-1 and cancer multidrug resistance: Coordinate regulation of pro-survival proteins? Leukemia Research, 28(9), 907–908.

    Article  CAS  PubMed  Google Scholar 

  68. Le Roux, A.-L., Quiroga, X., Walani, N., Arroyo, M., & Roca-Cusachs, P. (2019). The plasma membrane as a mechanochemical transducer. Philosophical Transactions of the Royal Society B: Biological Sciences, 374(1779), 20180221.

    Article  CAS  Google Scholar 

  69. Prescott, L., & Brightman, M. W. (1976). The sarcolemma of Aplysia smooth muscle in freeze-fracture preparations. Tissue & Cell, 8(2), 241–258.

    Article  CAS  Google Scholar 

  70. Dulhunty, A. F., & Franzini-Armstrong, C. (1975). The relative contributions of the folds and caveolae to the surface membrane of frog skeletal muscle fibres at different sarcomere lengths. The Journal of Physiology, 250(3), 513–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gabella, G., & Blundell, D. (1978). Effect of stretch and contraction on caveolae of smooth muscle cells. Cell and Tissue Research, 190(2), 255–271.

    Article  CAS  PubMed  Google Scholar 

  72. Hannezo, E., & Heisenberg, C.-P. (2019). Mechanochemical feedback loops in development and disease. Cell, 178(1), 12–25.

    Article  CAS  PubMed  Google Scholar 

  73. Plotnikov, S. V., Pasapera, A. M., Sabass, B., & Waterman, C. M. (2012). Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell, 151(7), 1513–1527.

    Article  CAS  PubMed  Google Scholar 

  74. Engler, A. J., Sen, S., Sweeney, H. L., & Discher, D. E. (2006). Matrix elasticity directs stem cell lineage specification. Cell, 126(4), 677–689.

    Article  CAS  PubMed  Google Scholar 

  75. Rossier, O. M., Gauthier, N., Biais, N., Vonnegut, W., Fardin, M. A., Avigan, P., Heller, E. R., Mathur, A., Ghassemi, S., Koeckert, M. S., Hone, J. C., & Sheetz, M. P. (2010). Force generated by actomyosin contraction builds bridges between adhesive contacts. EMBO Journal, 29(6), 1055–1068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ghibaudo, M., Trichet, L., Le Digabel, J., Richert, A., Hersen, P., & Ladoux, B. (2009). Substrate topography induces a crossover from 2D to 3D behavior in fibroblast migration. Biophysical Journal, 97(1), 357–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gupta, M., Sarangi, B. R., Deschamps, J., Nematbakhsh, Y., Callan-Jones, A., Margadant, F., Mège, R. M., Lim, C. T., Voituriez, R., & Ladoux, B. (2015). Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing. Nature Communications, 6(1), 7525.

    Article  CAS  PubMed  Google Scholar 

  78. Pickup, M. W., Mouw, J. K., & Weaver, V. M. (2014). The extracellular matrix modulates the hallmarks of cancer. EMBO Reports, 15(12), 1243–1253.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Boyd, N. F., Martin, L. J., Rommens, J. M., Paterson, A. D., Minkin, S., Yaffe, M. J., … Hopper, J. L. (2009). Mammographic density: A heritable risk factor for breast cancer. In Methods in Molecular Biology 472, 343–360).

  80. Conklin, M. W., & Keely, P. J. (2012). Why the stroma matters in breast cancer. Cell Adhesion & Migration, 6(3), 249–260.

    Article  Google Scholar 

  81. Yu, H., Mouw, J. K., & Weaver, V. M. (2011). Forcing form and function: Biomechanical regulation of tumor evolution. Trends in Cell Biology, 21(1), 47–56.

    Article  PubMed  Google Scholar 

  82. Wang, M., Zhao, J., Zhang, L., Wei, F., Lian, Y., Wu, Y., Gong, Z., Zhang, S., Zhou, J., Cao, K., Li, X., Xiong, W., Li, G., Zeng, Z., & Guo, C. (2017). Role of tumor microenvironment in tumorigenesis. Journal of Cancer, 8(5), 761–773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nagelkerke, A., Bussink, J., Rowan, A. E., & Span, P. N. (2015). The mechanical microenvironment in cancer: How physics affects tumours. Seminars in Cancer Biology, 35, 62–70.

    Article  PubMed  Google Scholar 

  84. Northcott, J. M., Dean, I. S., Mouw, J. K., & Weaver, V. M. (2018). Feeling stress: The mechanics of cancer progression and aggression. Frontiers in Cell and Developmental Biology, 6(FEB), 17.

  85. Fernández-Sánchez, M. E., Barbier, S., Whitehead, J., Béalle, G., Michel, A., Latorre-Ossa, H., Rey, C., Fouassier, L., Claperon, A., Brullé, L., Girard, E., Servant, N., Rio-Frio, T., Marie, H., Lesieur, S., Housset, C., Gennisson, J. L., Tanter, M., Ménager, C., Fre, S., Robine, S., & Farge, E. (2015). Mechanical induction of the tumorigenic β-catenin pathway by tumour growth pressure. Nature, 523(7558), 92–95.

    Article  PubMed  CAS  Google Scholar 

  86. Akiri, G., Sabo, E., Dafni, H., Vadasz, Z., Kartvelishvily, Y., Gan, N., Kessler, O., Cohen, T., Resnick, M., Neeman, M., & Neufeld, G. (2003). Lysyl oxidase-related protein-1 promotes tumor fibrosis and tumor progression in vivo. Cancer Research, 63(7), 1657–1666.

    CAS  PubMed  Google Scholar 

  87. Colpaert, C., Vermeulen, P., Van Marck, E., & Dirix, L. (2001). The presence of a fibrotic focus is an independent predictor of early metastasis in lymph node-negative breast cancer patients. The American Journal of Surgical Pathology, 25(12), 1557–1558.

    Article  CAS  PubMed  Google Scholar 

  88. Paszek, M. J., Zahir, N., Johnson, K. R., Lakins, J. N., Rozenberg, G. I., Gefen, A., Reinhart-King, C. A., Margulies, S. S., Dembo, M., Boettiger, D., Hammer, D. A., & Weaver, V. M. (2005). Tensional homeostasis and the malignant phenotype. Cancer Cell, 8(3), 241–254.

    Article  CAS  PubMed  Google Scholar 

  89. Levental, K. R., Yu, H., Kass, L., Lakins, J. N., Egeblad, M., Erler, J. T., Fong, S. F. T., Csiszar, K., Giaccia, A., Weninger, W., Yamauchi, M., Gasser, D. L., & Weaver, V. M. (2009). Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell, 139(5), 891–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lopez, J. I., Kang, I., You, W. K., McDonald, D. M., & Weaver, V. M. (2011). In situ force mapping of mammary gland transformation. Integrative Biology, 3(9), 910–921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Bonuccelli, G., Casimiro, M. C., Sotgia, F., Wang, C., Liu, M., Katiyar, S., Zhou, J., Dew, E., Capozza, F., Daumer, K. M., Minetti, C., Milliman, J. N., Alpy, F., Rio, M. C., Tomasetto, C., Mercier, I., Flomenberg, N., Frank, P. G., Pestell, R. G., & Lisanti, M. P. (2009). Caveolin-1 (P132L), a common breast cancer mutation, confers mammary cell invasiveness and defines a novel stem cell/metastasis-associated gene signature. American Journal of Pathology, 174(5), 1650–1662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Hayashi, K., Matsuda, S., Machida, K., Yamamoto, T., Fukuda, Y., Nimura, Y., Hayakawa, T., & Hamaguchi, M. (2001). Invasion activating caveolin-1 mutation in human scirrhous breast cancers. Cancer Research, 61(6), 2361–2364.

    CAS  PubMed  Google Scholar 

  93. Patani, N., Lambros, M. B., Natrajan, R., Dedes, K. J., Geyer, F. C., Ward, E., Martin, L. A., Dowsett, M., & Reis-Filho, J. S. (2012). Non-existence of caveolin-1 gene mutations in human breast cancer. Breast Cancer Research and Treatment, 131(1), 307–310.

    Article  CAS  PubMed  Google Scholar 

  94. Simons, K., & Toomre, D. (2000). Lipid rafts and signal transduction. Nature Reviews Molecular Cell Biology, 1(1), 31–39.

    Article  CAS  PubMed  Google Scholar 

  95. Patel, H. H., Murray, F., & Insel, P. A. (2008). Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annual Review of Pharmacology and Toxicology, 48(1), 359–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Parton, R. G., & Simons, K. (2007). The multiple faces of caveolae. Nature Reviews Molecular Cell Biology, 8(3), 185–194.

    Article  CAS  PubMed  Google Scholar 

  97. Osmani, N., Pontabry, J., Comelles, J., Fekonja, N., Goetz, J. G., Riveline, D., et al. (2018). An Arf6- and caveolae-dependent pathway links hemidesmosome remodeling and mechanoresponse. Molecular Biology of the Cell, 29(4), 435–451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Couet, J., Sargiacomo, M., & Lisanti, M. P. (1997). Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. Journal of Biological Chemistry, 272(48), 30429–30438.

    Article  CAS  PubMed  Google Scholar 

  99. Song, K. S., Li, S., Okamoto, T., Quilliam, L. A., Sargiacomo, M., & Lisanti, M. P. (1996). Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains: Detergent-free purification of caveolae membranes. Journal of Biological Chemistry, 271(16), 9690–9697.

    Article  CAS  PubMed  Google Scholar 

  100. Bernatchez, P., Sharma, A., Bauer, P. M., Marin, E., & Sessa, W. C. (2011). A noninhibitory mutant of the caveolin-1 scaffolding domain enhances eNOS-derived NO synthesis and vasodilation in mice. Journal of Clinical Investigation, 121(9), 3747–3755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Collins, B. M., Davis, M. J., Hancock, J. F., & Parton, R. G. (2012). Structure-based reassessment of the caveolin signaling model: Do caveolae regulate signaling through caveolin-protein interactions? Developmental Cell, 23(1), 11–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kirkham, M., Nixon, S. J., Howes, M. T., Abi-Rached, L., Wakeham, D. E., Hanzal-Bayer, M., Ferguson, C., Hill, M. M., Fernandez-Rojo, M., Brown, D. A., Hancock, J. F., Brodsky, F. M., & Parton, R. G. (2008). Evolutionary analysis and molecular dissection of caveola biogenesis. Journal of Cell Science, 121(12), 2075–2086.

    Article  CAS  PubMed  Google Scholar 

  103. Chow, B. W., Nuñez, V., Kaplan, L., Granger, A. J., Bistrong, K., Zucker, H. L., Kumar, P., Sabatini, B. L., & Gu, C. (2020). Caveolae in CNS arterioles mediate neurovascular coupling. Nature, 579(7797), 106–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lajoie, P., Partridge, E. A., Guay, G., Goetz, J. G., Pawling, J., Lagana, A., Joshi, B., Dennis, J. W., & Nabi, I. R. (2007). Plasma membrane domain organization regulates EGFR signaling in tumor cells. Journal of Cell Biology, 179(2), 341–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zheng, Y. Z., Boscher, C., Inder, K. L., Fairbank, M., Loo, D., Hill, M. M., Nabi, I. R., & Foster, L. J. (2011). Differential impact of caveolae and caveolin-1 scaffolds on the membrane raft proteome. Molecular & Cellular Proteomics, 10(10), M110.007146.

    Article  CAS  Google Scholar 

  106. Khater, I. M., Liu, Q., Chou, K. C., Hamarneh, G., & Nabi, I. R. (2019). Super-resolution modularity analysis shows polyhedral caveolin-1 oligomers combine to form scaffolds and caveolae. Scientific Reports, 9(1), 1–10.

    Article  CAS  Google Scholar 

  107. Khater, I. M., Meng, F., Wong, T. H., Nabi, I. R., & Hamarneh, G. (2018). Super resolution network analysis defines the molecular architecture of caveolae and caveolin-1 scaffolds. Scientific Reports, 8(1), 9009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Gambin, Y., Ariotti, N., McMahon, K.-A., Bastiani, M., Sierecki, E., Kovtun, O., Polinkovsky, M. E., Magenau, A., Jung, W. R., Okano, S., Zhou, Y., Leneva, N., Mureev, S., Johnston, W., Gaus, K., Hancock, J. F., Collins, B. M., Alexandrov, K., & Parton, R. G. (2014). Single-molecule analysis reveals self assembly and nanoscale segregation of two distinct cavin subcomplexes on caveolae. eLife, 3(3).

  109. Tachikawa, M., Morone, N., Senju, Y., Sugiura, T., Hanawa-Suetsugu, K., Mochizuki, A., & Suetsugu, S. (2017). Measurement of caveolin-1 densities in the cell membrane for quantification of caveolar deformation after exposure to hypotonic membrane tension. Scientific Reports, 7(1), 1–14.

    Article  CAS  Google Scholar 

  110. Joshi, B., Bastiani, M., Strugnell, S. S., Boscher, C., Parton, R. G., & Nabi, I. R. (2012). Phosphocaveolin-1 is a mechanotransducer that induces caveola biogenesis via Egr1 transcriptional regulation. Journal of Cell Biology, 199(3), 425–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Zimnicka, A. M., Husain, Y. S., Shajahan, A. N., Sverdlov, M., Chaga, O., Chen, Z., Toth, P. T., Klomp, J., Karginov, A. V., Tiruppathi, C., Malik, A. B., & Minshall, R. D. (2016). Src-dependent phosphorylation of caveolin-1 Tyr-14 promotes swelling and release of caveolae. Molecular Biology of the Cell, 27(13), 2090–2106.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Guarino, M. (2009). Src signaling in cancer invasion. Journal of Cellular Physiology, 223(1), 14–26.

    Google Scholar 

  113. Seals, D. F., Azucena, E. F., Pass, I., Tesfay, L., Gordon, R., Woodrow, M., … Courtneidge, S. A. (2005). The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells. Cancer Cell, 7(2), 155–165.

  114. Mader, C. C., Oser, M., Magalhaes, M. A. O., Bravo-Cordero, J. J., Condeelis, J., Koleske, A. J., & Gil-Henn, H. (2011). An EGFR-Src-Arg-cortactin pathway mediates functional maturation of invadopodia and breast cancer cell invasion. Cancer Research, 71(5), 1730–1741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Dewulf, M., Köster, D. V., Sinha, B., Viaris de Lesegno, C., Chambon, V., Bigot, A., … Blouin, C. M. (2019). Dystrophy-associated caveolin-3 mutations reveal that caveolae couple IL6/STAT3 signaling with mechanosensing in human muscle cells. Nature Communications, 10(1), 1–13.

  116. Torrino, S., Shen, W., Blouin, C. M., Mani, S. K., de Lesegno, C. V., Bost, P., … Lamaze, C. (2018). EHD2 is a mechanotransducer connecting caveolae dynamics with gene transcription. Journal of Cell Biology, 217(12), 4092–4105.

  117. McMahon, K. A., Wu, Y., Gambin, Y., Sierecki, E., Tillu, V. A., Hall, T., et al. (2019). Identification of intracellular cavin target proteins reveals cavin-PP1alpha interactions regulate apoptosis. Nature Communications, 10(1), 1–17.

    Article  CAS  Google Scholar 

  118. Pekar, O., Benjamin, S., Weidberg, H., Smaldone, S., Ramirez, F., & Horowitz, M. (2012). EHD2 shuttles to the nucleus and represses transcription. Biochemical Journal, 444(3), 383–394.

    Article  CAS  PubMed  Google Scholar 

  119. Nassar, Z. D., & Parat, M. O. (2015). Cavin family: New players in the biology of caveolae. International Review of Cell and Molecular Biology, 320, 235–305.

    Article  CAS  PubMed  Google Scholar 

  120. Wei-Wei Shen, Laetitia Fuhrmann, Sophie Vacher, Anne Vincent-Salomon, Stéphanie Torrino, Christophe Lamaze. (2020). EHD2 is a predictive biomarker of chemotherapy efficacy in triple negative breast carcinoma. In press. Scientific Report.

  121. Kim, Y., Kim, M.-H., Jeon, S., Kim, J., Kim, C., Bae, J. S., & Jung, C. K. (2017). Prognostic implication of histological features associated with EHD2 expression in papillary thyroid carcinoma. PLoS One, 12(3), e0174737.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Liu, J., Ni, W., Qu, L., Cui, X., Lin, Z., Liu, Q., Zhou, H., & Ni, R. (2016). Decreased expression of EHD2 promotes tumor metastasis and indicates poor prognosis in hepatocellular carcinoma. Digestive Diseases and Sciences, 61(9), 2554–2567.

    Article  CAS  PubMed  Google Scholar 

  123. Li, M., Yang, X., Zhang, J., Shi, H., Hang, Q., Huang, X., Liu, G., Zhu, J., He, S., & Wang, H. (2013). Effects of EHD2 interference on migration of esophageal squamous cell carcinoma. Medical Oncology, 30(1), 396.

    Article  PubMed  CAS  Google Scholar 

  124. Vicente-Manzanares, M., & Horwitz, A. R. (2011). Cell migration: An overview. In Methods in Molecular Biology (Vol. 769, pp. 1–24).

  125. Podar, K., Shringarpure, R., Tai, Y.-T., Simoncini, M., Sattler, M., Ishitsuka, K., Richardson, P. G., Hideshima, T., Chauhan, D., & Anderson, K. C. (2004). Caveolin-1 is required for vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezomib. Cancer Research, 64(20), 7500–7506.

    Article  CAS  PubMed  Google Scholar 

  126. Ge, S., & Pachter, J. S. (2004). Caveolin-1 knockdown by small interfering RNA suppresses responses to the chemokine monocyte chemoattractant protein-1 by human astrocytes. Journal of Biological Chemistry, 279(8), 6688–6695.

    Article  CAS  PubMed  Google Scholar 

  127. Zhang, W., Razani, B., Altschuler, Y., Bouzahzah, B., Mostov, K. E., Pestell, R. G., & Lisanti, M. P. (2000). Caveolin-1 inhibits epidermal growth factor-stimulated lamellipod extension and cell migration in metastatic mammary adenocarcinoma cells (MTLn3). Journal of Biological Chemistry, 275(27), 20717–20725.

    Article  CAS  PubMed  Google Scholar 

  128. Parat, M. O., Anand-Apte, B., & Fox, P. L. (2003). Differential caveolin-1 polarization in endothelial cells during migration in two and three dimensions. Molecular Biology of the Cell, 14(8), 3156–3168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Boscher, C., & Nabi, I. R. (2013). Galectin-3- and phospho-caveolin-1-dependent outside-in integrin signaling mediates the EGF motogenic response in mammary cancer cells. Molecular Biology of the Cell, 24(13), 2134–2145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Meng, F., Saxena, S., Liu, Y., Joshi, B., Wong, T. H., Shankar, J., Foster, L. J., Bernatchez, P., & Nabi, I. R. (2017). The phospho-caveolin-1 scaffolding domain dampens force fluctuations in focal adhesions and promotes cancer cell migration. Molecular Biology of the Cell, 28(16), 2190–2201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Houk, A. R., Jilkine, A., Mejean, C. O., Boltyanskiy, R., Dufresne, E. R., Angenent, S. B., Altschuler, S. J., Wu, L. F., & Weiner, O. D. (2012). Membrane tension maintains cell polarity by confining signals to the leading edge during neutrophil migration. Cell, 148(1–2), 175–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Keren, K. (2011). Cell motility: The integrating role of the plasma membrane. European Biophysics Journal, 40(9), 1013–1027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sens, P., & Plastino, J. (2015). Membrane tension and cytoskeleton organization in cell motility. Journal of Physics: Condensed Matter, 27(27), 273103.

    PubMed  Google Scholar 

  134. Hetmanski, J. H. R., de Belly, H., Busnelli, I., Waring, T., Nair, R. V., Sokleva, V., … Caswell, P. T. (2019). Membrane tension orchestrates rear retraction in matrix-directed cell migration. Developmental Cell, 51(4), 460-475.e10.

  135. Zhou, L.-J., Chen, X.-Y., Liu, S.-P., Zhang, L.-L., Xu, Y.-N., Mu, P.-W., … Tan, Z. (2017). Downregulation of cavin-1 expression via increasing caveolin-1 degradation prompts the proliferation and migration of vascular smooth muscle cells in balloon injury-induced neointimal hyperplasia. Journal of the American Heart Association, 6(8), e005754.

  136. Aung, C. S., Hill, M. M., Bastiani, M., Parton, R. G., & Parat, M. O. (2011). PTRF-cavin-1 expression decreases the migration of PC3 prostate cancer cells: Role of matrix metalloprotease 9. European Journal of Cell Biology, 90(2–3), 136–142.

    Article  CAS  PubMed  Google Scholar 

  137. Faggi, F., Chiarelli, N., Colombi, M., Mitola, S., Ronca, R., Madaro, L., Bouche, M., Poliani, P. L., Vezzoli, M., Longhena, F., Monti, E., Salani, B., Maggi, D., Keller, C., & Fanzani, A. (2015). Cavin-1 and Caveolin-1 are both required to support cell proliferation, migration and anchorage-independent cell growth in rhabdomyosarcoma. Laboratory Investigation, 95(6), 585–602.

    Article  CAS  PubMed  Google Scholar 

  138. Hill, M. M., Daud, N. H., Aung, C. S., Loo, D., Martin, S., Murphy, S., Black, D. M., Barry, R., Simpson, F., Liu, L., Pilch, P. F., Hancock, J. F., Parat, M. O., & Parton, R. G. (2012). Co-regulation of cell polarization and migration by caveolar proteins PTRF/Cavin-1 and caveolin-1. PLoS One, 7(8), e43041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. O’Connor, R., Clynes, M., Dowling, P., O’Donovan, N., & O’Driscoll, L. (2007). Drug resistance in cancer—Searching for mechanisms, markers and therapeutic agents. Expert Opinion on Drug Metabolism & Toxicology, 3(6), 805–817.

    Article  Google Scholar 

  140. Cai, C., & Chen, J. (2004). Overexpression of caveolin-1 induces alteration of multidrug resistance in Hs578T breast adenocarcinoma cells. International Journal of Cancer, 111(4), 522–529.

    Article  CAS  PubMed  Google Scholar 

  141. Bélanger, M. M., Gaudreau, M., Roussel, E., & Couet, J. (2004). Role of caveolin-1 in etoposide resistance development in A549 lung cancer cells. Cancer Biology & Therapy, 3(10), 954–959.

    Article  Google Scholar 

  142. Pang, A., Au, W. Y., & Kwong, Y. L. (2004). Caveolin-1 gene is coordinately regulated with the multidrug resistance 1 gene in normal and leukemic bone marrow. Leukemia Research, 28(9), 973–977.

    Article  CAS  PubMed  Google Scholar 

  143. Cordes, N., Frick, S., Brunner, T. B., Pilarsky, C., Grützmann, R., Sipos, B., Klöppel, G., McKenna, W. G., & Bernhard, E. J. (2007). Human pancreatic tumor cells are sensitized to ionizing radiation by knockdown of caveolin-1. Oncogene, 26(48), 6851–6862.

    Article  CAS  PubMed  Google Scholar 

  144. Wang, Z., Wang, N., Li, W., Liu, P., Chen, Q., Situ, H., Zhong, S., Guo, L., Lin, Y., Shen, J., & Chen, J. (2014). Caveolin-1 mediates chemoresistance in breast cancer stem cells via β-catenin/ABCG2 signaling pathway. Carcinogenesis, 35(10), 2346–2356.

    Article  CAS  PubMed  Google Scholar 

  145. Fan, H., Demirci, U., & Chen, P. (2019). Emerging organoid models: Leaping forward in cancer research. Journal of Hematology & Oncology, 12(1), 142.

    Article  CAS  Google Scholar 

  146. Drost, J., & Clevers, H. (2018). Organoids in cancer research. Nature Reviews Cancer, 18(7), 407–418.

    Article  CAS  PubMed  Google Scholar 

  147. Xu, Q., Junttila, S., Scherer, A., Giri, K. R., Kivelä, O., Skovorodkin, I., Röning, J., Quaggin, S. E., Marti, H. P., Shan, J., Samoylenko, A., & Vainio, S. J. (2017). Renal carcinoma/kidney progenitor cell chimera organoid as a novel tumorigenesis gene discovery model. DMM Disease Models and Mechanisms, 10(12), 1503–1515.

    Article  CAS  PubMed  Google Scholar 

  148. Lin, C. J., Yun, E. J., Lo, U. G., Tai, Y. L., Deng, S., Hernandez, E., … Hsieh, J. T. (2019). The paracrine induction of prostate cancer progression by caveolin-1. Cell Death and Disease, 10(11), 1–15.

  149. Gargalionis, A. N., Basdra, E. K., & Papavassiliou, A. G. (2018). Tumor mechanosensing and its therapeutic potential. Journal of Cellular Biochemistry, 119(6), 4304–4308.

    Article  CAS  PubMed  Google Scholar 

  150. Majeski, H. E., & Yang, J. (2016). The 2016 John J. Abel award lecture: Targeting the mechanical microenvironment in cancer. Molecular Pharmacology, 90(6), 744–754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank all the members of our laboratory for stimulating discussions.

Funding

This work was supported by institutional grants from the Curie Institute, INSERM, and CNRS, and by specific grants from Agence Nationale de la Recherche (MOTICAV ANR-17-CE-0013 and sCAV-BandPC ANR-19-CE15) and Institut National du Cancer (INCa PLBIO18-01 INVADOCAV). Vibha Singh is supported by a post-doctoral fellowship from Fondation pour la Recherche Médicale (FRM # SPF201909009115). The Lamaze laboratory is a member of Labex Cell(n)Scale ANR-11-LBX-0038, part of the IDEX PSL ANR-10-IDEX-0001-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Lamaze.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Lamaze, C. Membrane tension buffering by caveolae: a role in cancer?. Cancer Metastasis Rev 39, 505–517 (2020). https://doi.org/10.1007/s10555-020-09899-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-020-09899-2

Keywords

Navigation