Skip to main content

Advertisement

Log in

The role of caveolin-1 in human breast cancer

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Caveolin-1 is the essential constituent protein of specialised plasma membrane invaginations called caveolae. The unique topology of caveolin-1 facilitates the role of caveolae as molecular hubs, integrating the activity of a multitude of signalling molecules. Despite improvements in our understanding of caveolin-1 interactions and the function of caveolae, the relationship between dysfunctional caveolin-1 and tumourigenesis remains contentious. Perhaps most intriguing has been the demonstration of both oncogenic and tumour suppressor function within particular tumour types, including breast cancer. In this review, the biological and clinical relevance of caveolin-1 in human breast cancer are considered. Evidence is systematically presented for the potential tumour suppressor and oncogenic functions of caveolin-1. Specific reference is made to interactions between caveolin-1 and signalling pathways in the clinical and biological subtypes of breast cancer. Areas of controversy are discussed and technical considerations are highlighted. Translational implications and potential for specific therapeutic manipulation of caveolin-1 are evaluated in the context of evidence from in vitro and in vivo studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anderson RG (1998) The caveolae membrane system. Annu Rev Biochem 67:199–225. doi:10.1146/annurev.biochem.67.1.199

    PubMed  CAS  Google Scholar 

  2. Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG (1992) Caveolin, a protein component of caveolae membrane coats. Cell 68(4):673–682. doi:0092-8674(92)90143-Z[pii]

    PubMed  CAS  Google Scholar 

  3. Razani B, Woodman SE, Lisanti MP (2002) Caveolae: from cell biology to animal physiology. Pharmacol Rev 54(3):431–467

    PubMed  CAS  Google Scholar 

  4. Elsheikh SE, Green AR, Rakha EA, Samaka RM, Ammar AA, Powe D, Reis-Filho JS, Ellis IO (2008) Caveolin 1 and caveolin 2 are associated with breast cancer basal-like and triple-negative immunophenotype. Br J Cancer 99(2):327–334. doi:6604463[pii]10.1038/sj.bjc.6604463

    PubMed  CAS  Google Scholar 

  5. Jones C, Ford E, Gillett C, Ryder K, Merrett S, Reis-Filho JS, Fulford LG, Hanby A, Lakhani SR (2004) Molecular cytogenetic identification of subgroups of grade III invasive ductal breast carcinomas with different clinical outcomes. Clin Cancer Res 10(18 Pt 1):5988–5997. doi:10.1158/1078-0432.CCR-03-073110/18/5988[pii]

    PubMed  CAS  Google Scholar 

  6. Savage K, Lambros MB, Robertson D, Jones RL, Jones C, Mackay A, James M, Hornick JL, Pereira EM, Milanezi F, Fletcher CD, Schmitt FC, Ashworth A, Reis-Filho JS (2007) Caveolin 1 is overexpressed and amplified in a subset of basal-like and metaplastic breast carcinomas: a morphologic, ultrastructural, immunohistochemical, and in situ hybridization analysis. Clin Cancer Res 13(1):90–101. doi:13/1/90[pii]10.1158/1078-0432.CCR-06-1371

    PubMed  CAS  Google Scholar 

  7. Pinilla SM, Honrado E, Hardisson D, Benitez J, Palacios J (2006) Caveolin-1 expression is associated with a basal-like phenotype in sporadic and hereditary breast cancer. Breast Cancer Res Treat 99(1):85–90. doi:10.1007/s10549-006-9184-1

    PubMed  CAS  Google Scholar 

  8. Engelman JA, Zhang XL, Lisanti MP (1998) Genes encoding human caveolin-1 and -2 are co-localized to the D7S522 locus (7q31.1), a known fragile site (FRA7G) that is frequently deleted in human cancers. FEBS Lett 436(3):403–410. doi:S0014-5793(98)01134-X[pii]

    PubMed  CAS  Google Scholar 

  9. Zenklusen JC, Bieche I, Lidereau R, Conti CJ (1994) (C-A)n microsatellite repeat D7S522 is the most commonly deleted region in human primary breast cancer. Proc Natl Acad Sci USA 91(25):12155–12158

    PubMed  CAS  Google Scholar 

  10. Bieche I, Champeme MH, Matifas F, Hacene K, Callahan R, Lidereau R (1992) Loss of heterozygosity on chromosome 7q and aggressive primary breast cancer. Lancet 339(8786):139–143. doi:0140-6736(92)90208-K[pii]

    PubMed  CAS  Google Scholar 

  11. Shatz M, Liscovitch M (2008) Caveolin-1: a tumor-promoting role in human cancer. Int J Radiat Biol 84(3):177–189. doi:790900135[pii]10.1080/09553000701745293

    PubMed  CAS  Google Scholar 

  12. Lisanti MP, Scherer PE, Tang Z, Sargiacomo M (1994) Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis. Trends Cell Biol 4(7):231–235. doi:0962892494901147[pii]

    PubMed  CAS  Google Scholar 

  13. Li S, Seitz R, Lisanti MP (1996) Phosphorylation of caveolin by src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J Biol Chem 271(7):3863–3868

    PubMed  CAS  Google Scholar 

  14. Song KS, Li S, Okamoto T, Quilliam LA, Sargiacomo M, Lisanti MP (1996) Co-purification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains. J Biol Chem 271(16):9690–9697

    PubMed  CAS  Google Scholar 

  15. Couet J, Sargiacomo M, Lisanti MP (1997) Interaction of a receptor tyrosine kinase, EGF-R, with caveolins. Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities. J Biol Chem 272(48):30429–30438

    PubMed  CAS  Google Scholar 

  16. Engelman JA, Lee RJ, Karnezis A, Bearss DJ, Webster M, Siegel P, Muller WJ, Windle JJ, Pestell RG, Lisanti MP (1998) Reciprocal regulation of neu tyrosine kinase activity and caveolin-1 protein expression in vitro and in vivo. Implications for human breast cancer. J Biol Chem 273(32):20448–20455

    PubMed  CAS  Google Scholar 

  17. Razandi M, Oh P, Pedram A, Schnitzer J, Levin ER (2002) ERs associate with and regulate the production of caveolin: implications for signaling and cellular actions. Mol Endocrinol 16(1):100–115

    PubMed  CAS  Google Scholar 

  18. Li S, Okamoto T, Chun M, Sargiacomo M, Casanova JE, Hansen SH, Nishimoto I, Lisanti MP (1995) Evidence for a regulated interaction between heterotrimeric G proteins and caveolin. J Biol Chem 270(26):15693–15701

    PubMed  CAS  Google Scholar 

  19. Garcia-Cardena G, Martasek P, Masters BS, Skidd PM, Couet J, Li S, Lisanti MP, Sessa WC (1997) Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J Biol Chem 272(41):25437–25440

    PubMed  CAS  Google Scholar 

  20. Ju H, Zou R, Venema VJ, Venema RC (1997) Direct interaction of endothelial nitric-oxide synthase and caveolin-1 inhibits synthase activity. J Biol Chem 272(30):18522–18525

    PubMed  CAS  Google Scholar 

  21. Couet J, Li S, Okamoto T, Ikezu T, Lisanti MP (1997) Identification of peptide and protein ligands for the caveolin-scaffolding domain. Implications for the interaction of caveolin with caveolae-associated proteins. J Biol Chem 272(10):6525–6533

    PubMed  CAS  Google Scholar 

  22. Mundy DI, Machleidt T, Ying YS, Anderson RG, Bloom GS (2002) Dual control of caveolar membrane traffic by microtubules and the actin cytoskeleton. J Cell Sci 115(Pt 22):4327–4339

    PubMed  CAS  Google Scholar 

  23. Pelkmans L, Burli T, Zerial M, Helenius A (2004) Caveolin-stabilized membrane domains as multifunctional transport and sorting devices in endocytic membrane traffic. Cell 118(6):767–780. doi:10.1016/j.cell.2004.09.003S0092867404008335[pii]

    PubMed  CAS  Google Scholar 

  24. Orlandi PA, Fishman PH (1998) Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J Cell Biol 141(4):905–915

    PubMed  CAS  Google Scholar 

  25. Smart EJ, Graf GA, McNiven MA, Sessa WC, Engelman JA, Scherer PE, Okamoto T, Lisanti MP (1999) Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol 19(11):7289–7304

    PubMed  CAS  Google Scholar 

  26. Schnitzer JE, Liu J, Oh P (1995) Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases. J Biol Chem 270(24):14399–14404

    PubMed  CAS  Google Scholar 

  27. Wiechen K, Diatchenko L, Agoulnik A, Scharff KM, Schober H, Arlt K, Zhumabayeva B, Siebert PD, Dietel M, Schafer R, Sers C (2001) Caveolin-1 is down-regulated in human ovarian carcinoma and acts as a candidate tumor suppressor gene. Am J Pathol 159(5):1635–1643. doi:S0002-9440(10)63010-6[pii]10.1016/S0002-9440(10)63010-6

    PubMed  CAS  Google Scholar 

  28. Bender FC, Reymond MA, Bron C, Quest AF (2000) Caveolin-1 levels are down-regulated in human colon tumors, and ectopic expression of caveolin-1 in colon carcinoma cell lines reduces cell tumorigenicity. Cancer Res 60(20):5870–5878

    PubMed  CAS  Google Scholar 

  29. Wiechen K, Sers C, Agoulnik A, Arlt K, Dietel M, Schlag PM, Schneider U (2001) Down-regulation of caveolin-1, a candidate tumor suppressor gene, in sarcomas. Am J Pathol 158(3):833–839

    PubMed  CAS  Google Scholar 

  30. Ho CC, Huang PH, Huang HY, Chen YH, Yang PC, Hsu SM (2002) Up-regulated caveolin-1 accentuates the metastasis capability of lung adenocarcinoma by inducing filopodia formation. Am J Pathol 161(5):1647–1656

    PubMed  CAS  Google Scholar 

  31. Yoo SH, Park YS, Kim HR, Sung SW, Kim JH, Shim YS, Lee SD, Choi YL, Kim MK, Chung DH (2003) Expression of caveolin-1 is associated with poor prognosis of patients with squamous cell carcinoma of the lung. Lung Cancer 42(2):195–202. doi:S0169500203002873[pii]

    PubMed  Google Scholar 

  32. Kato K, Hida Y, Miyamoto M, Hashida H, Shinohara T, Itoh T, Okushiba S, Kondo S, Katoh H (2002) Overexpression of caveolin-1 in esophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Cancer 94(4):929–933. doi:10.1002/cncr.10329[pii]

    PubMed  CAS  Google Scholar 

  33. Yang G, Truong LD, Wheeler TM, Thompson TC (1999) Caveolin-1 expression in clinically confined human prostate cancer: a novel prognostic marker. Cancer Res 59(22):5719–5723

    PubMed  CAS  Google Scholar 

  34. Lee SW, Reimer CL, Oh P, Campbell DB, Schnitzer JE (1998) Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene 16(11):1391–1397. doi:10.1038/sj.onc.1201661

    PubMed  CAS  Google Scholar 

  35. Fiucci G, Ravid D, Reich R, Liscovitch M (2002) Caveolin-1 inhibits anchorage-independent growth, anoikis and invasiveness in MCF-7 human breast cancer cells. Oncogene 21(15):2365–2375. doi:10.1038/sj.onc.1205300

    PubMed  CAS  Google Scholar 

  36. Engelman JA, Wykoff CC, Yasuhara S, Song KS, Okamoto T, Lisanti MP (1997) Recombinant expression of caveolin-1 in oncogenically transformed cells abrogates anchorage-independent growth. J Biol Chem 272(26):16374–16381

    PubMed  CAS  Google Scholar 

  37. Zou W, McDaneld L, Smith LM (2003) Caveolin-1 haploinsufficiency leads to partial transformation of human breast epithelial cells. Anticancer Res 23(6C):4581–4586

    PubMed  CAS  Google Scholar 

  38. Williams TM, Lisanti MP (2005) Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol 288(3):C494–C506. doi:288/3/C494[pii]10.1152/ajpcell.00458.2004

    PubMed  CAS  Google Scholar 

  39. Lee RJ, Albanese C, Fu M, D’Amico M, Lin B, Watanabe G, Haines GK 3rd, Siegel PM, Hung MC, Yarden Y, Horowitz JM, Muller WJ, Pestell RG (2000) Cyclin D1 is required for transformation by activated Neu and is induced through an E2F-dependent signaling pathway. Mol Cell Biol 20(2):672–683

    PubMed  CAS  Google Scholar 

  40. Schlegel A, Arvan P, Lisanti MP (2001) Caveolin-1 binding to endoplasmic reticulum membranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum. J Biol Chem 276(6):4398–4408. doi:10.1074/jbc.M005448200M005448200[pii]

    PubMed  CAS  Google Scholar 

  41. Glait C, Ravid D, Lee SW, Liscovitch M, Werner H (2006) Caveolin-1 controls BRCA1 gene expression and cellular localization in human breast cancer cells. FEBS Lett 580(22):5268–5274. doi:S0014-5793(06)01061-1[pii]10.1016/j.febslet.2006.08.071

    PubMed  CAS  Google Scholar 

  42. Wang Y, Yu J, Zhan Q (2008) BRCA1 regulates caveolin-1 expression and inhibits cell invasiveness. Biochem Biophys Res Commun 370(2):201–206. doi:S0006-291X(08)00459-2[pii]10.1016/j.bbrc.2008.03.031

    PubMed  CAS  Google Scholar 

  43. Caselli A, Mazzinghi B, Camici G, Manao G, Ramponi G (2002) Some protein tyrosine phosphatases target in part to lipid rafts and interact with caveolin-1. Biochem Biophys Res Commun 296(3):692–697. doi:S0006291X02009282[pii]

    PubMed  CAS  Google Scholar 

  44. Williams TM, Lee H, Cheung MW, Cohen AW, Razani B, Iyengar P, Scherer PE, Pestell RG, Lisanti MP (2004) Combined loss of INK4a and caveolin-1 synergistically enhances cell proliferation and oncogene-induced tumorigenesis: role of INK4a/CAV-1 in mammary epithelial cell hyperplasia. J Biol Chem 279(23):24745–24756. doi:10.1074/jbc.M402064200M402064200[pii]

    PubMed  CAS  Google Scholar 

  45. Xie Z, Zeng X, Waldman T, Glazer RI (2003) Transformation of mammary epithelial cells by 3-phosphoinositide-dependent protein kinase-1 activates beta-catenin and c-Myc, and down-regulates caveolin-1. Cancer Res 63(17):5370–5375

    PubMed  CAS  Google Scholar 

  46. Rodriguez DA, Tapia JC, Fernandez JG, Torres VA, Munoz N, Galleguillos D, Leyton L, Quest AF (2009) Caveolin-1-mediated suppression of cyclooxygenase-2 via a beta-catenin-Tcf/Lef-dependent transcriptional mechanism reduced prostaglandin E2 production and survivin expression. Mol Biol Cell 20(8):2297–2310. doi:E08-09-0939[pii]10.1091/mbc.E08-09-0939

    PubMed  CAS  Google Scholar 

  47. Galbiati F, Volonte D, Brown AM, Weinstein DE, Ben-Ze’ev A, Pestell RG, Lisanti MP (2000) Caveolin-1 expression inhibits Wnt/beta-catenin/Lef-1 signaling by recruiting beta-catenin to caveolae membrane domains. J Biol Chem 275(30):23368–23377. doi:10.1074/jbc.M002020200M002020200[pii]

    PubMed  CAS  Google Scholar 

  48. Torres VA, Tapia JC, Rodriguez DA, Lladser A, Arredondo C, Leyton L, Quest AF (2007) E-cadherin is required for caveolin-1-mediated down-regulation of the inhibitor of apoptosis protein survivin via reduced beta-catenin-Tcf/Lef-dependent transcription. Mol Cell Biol 27(21):7703–7717. doi:MCB.01991-06[pii]10.1128/MCB.01991-06

    PubMed  CAS  Google Scholar 

  49. Zhang W, Razani B, Altschuler Y, Bouzahzah B, Mostov KE, Pestell RG, Lisanti MP (2000) Caveolin-1 inhibits epidermal growth factor-stimulated lamellipod extension and cell migration in metastatic mammary adenocarcinoma cells (MTLn3). Transformation suppressor effects of adenovirus-mediated gene delivery of caveolin-1. J Biol Chem 275(27):20717–20725. doi:10.1074/jbc.M909895199M909895199[pii]

    PubMed  CAS  Google Scholar 

  50. Sotgia F, Williams TM, Schubert W, Medina F, Minetti C, Pestell RG, Lisanti MP (2006) Caveolin-1 deficiency (-/-) conveys premalignant alterations in mammary epithelia, with abnormal lumen formation, growth factor independence, and cell invasiveness. Am J Pathol 168(1):292–309. doi:168/1/292[pii]

    PubMed  CAS  Google Scholar 

  51. Le Lay S, Kurzchalia TV (2005) Getting rid of caveolins: phenotypes of caveolin-deficient animals. Biochim Biophys Acta 1746(3):322–333. doi:S0167-4889(05)00103-5[pii]10.1016/j.bbamcr.2005.06.001

    PubMed  CAS  Google Scholar 

  52. Lee H, Park DS, Razani B, Russell RG, Pestell RG, Lisanti MP (2002) Caveolin-1 mutations (P132L and null) and the pathogenesis of breast cancer: caveolin-1 (P132L) behaves in a dominant-negative manner and caveolin-1 (-/-) null mice show mammary epithelial cell hyperplasia. Am J Pathol 161(4):1357–1369

    PubMed  CAS  Google Scholar 

  53. Williams TM, Sotgia F, Lee H, Hassan G, Di Vizio D, Bonuccelli G, Capozza F, Mercier I, Rui H, Pestell RG, Lisanti MP (2006) Stromal and epithelial caveolin-1 both confer a protective effect against mammary hyperplasia and tumorigenesis: caveolin-1 antagonizes cyclin D1 function in mammary epithelial cells. Am J Pathol 169(5):1784–1801. doi:169/5/1784[pii]

    PubMed  CAS  Google Scholar 

  54. Williams TM, Medina F, Badano I, Hazan RB, Hutchinson J, Muller WJ, Chopra NG, Scherer PE, Pestell RG, Lisanti MP (2004) Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo. Role of Cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion. J Biol Chem 279(49):51630–51646. doi:10.1074/jbc.M409214200M409214200[pii]

    PubMed  CAS  Google Scholar 

  55. Sloan EK, Stanley KL, Anderson RL (2004) Caveolin-1 inhibits breast cancer growth and metastasis. Oncogene 23(47):7893–7897. doi:10.1038/sj.onc.12080621208062[pii]

    PubMed  CAS  Google Scholar 

  56. Sagara Y, Mimori K, Yoshinaga K, Tanaka F, Nishida K, Ohno S, Inoue H, Mori M (2004) Clinical significance of caveolin-1, caveolin-2 and HER2/neu mRNA expression in human breast cancer. Br J Cancer 91(5):959–965. doi:10.1038/sj.bjc.66020296602029[pii]

    PubMed  CAS  Google Scholar 

  57. Park SS, Kim JE, Kim YA, Kim YC, Kim SW (2005) Caveolin-1 is down-regulated and inversely correlated with HER2 and EGFR expression status in invasive ductal carcinoma of the breast. Histopathology 47(6):625–630. doi:HIS2303[pii]10.1111/j.1365-2559.2005.02303.x

    PubMed  Google Scholar 

  58. Sloan EK, Ciocca DR, Pouliot N, Natoli A, Restall C, Henderson MA, Fanelli MA, Cuello-Carrion FD, Gago FE, Anderson RL (2009) Stromal cell expression of caveolin-1 predicts outcome in breast cancer. Am J Pathol 174(6):2035–2043. doi:ajpath.2009.080924[pii]10.2353/ajpath.2009.080924

    PubMed  CAS  Google Scholar 

  59. Perrone G, Altomare V, Zagami M, Morini S, Petitti T, Battista C, Muda AO, Rabitti C (2009) Caveolin-1 expression in human breast lobular cancer progression. Mod Pathol 22(1):71–78. doi:modpathol2008154[pii]10.1038/modpathol.2008.154

    PubMed  CAS  Google Scholar 

  60. Weigelt B, Geyer FC, Natrajan R, Lopez-Garcia MA, Ahmad AS, Savage K, Kreike B, Reis-Filho JS (2010) The molecular underpinning of lobular histological growth pattern: a genome-wide transcriptomic analysis of invasive lobular carcinomas and grade- and molecular subtype-matched invasive ductal carcinomas of no special type. J Pathol 220(1):45–57. doi:10.1002/path.2629

    PubMed  CAS  Google Scholar 

  61. Jones C, Mackay A, Grigoriadis A, Cossu A, Reis-Filho JS, Fulford L, Dexter T, Davies S, Bulmer K, Ford E, Parry S, Budroni M, Palmieri G, Neville AM, O’Hare MJ, Lakhani SR (2004) Expression profiling of purified normal human luminal and myoepithelial breast cells: identification of novel prognostic markers for breast cancer. Cancer Res 64(9):3037–3045

    PubMed  CAS  Google Scholar 

  62. Charafe-Jauffret E, Ginestier C, Monville F, Finetti P, Adelaide J, Cervera N, Fekairi S, Xerri L, Jacquemier J, Birnbaum D, Bertucci F (2006) Gene expression profiling of breast cell lines identifies potential new basal markers. Oncogene 25(15):2273–2284. doi:1209254[pii]10.1038/sj.onc.1209254

    PubMed  CAS  Google Scholar 

  63. Grigoriadis A, Mackay A, Reis-Filho JS, Steele D, Iseli C, Stevenson BJ, Jongeneel CV, Valgeirsson H, Fenwick K, Iravani M, Leao M, Simpson AJ, Strausberg RL, Jat PS, Ashworth A, Neville AM, O’Hare MJ (2006) Establishment of the epithelial-specific transcriptome of normal and malignant human breast cells based on MPSS and array expression data. Breast Cancer Res 8(5):R56. doi:bcr1604[pii]10.1186/bcr1604

    PubMed  Google Scholar 

  64. Hayashi K, Matsuda S, Machida K, Yamamoto T, Fukuda Y, Nimura Y, Hayakawa T, Hamaguchi M (2001) Invasion activating caveolin-1 mutation in human scirrhous breast cancers. Cancer Res 61(6):2361–2364

    PubMed  CAS  Google Scholar 

  65. Li T, Sotgia F, Vuolo MA, Li M, Yang WC, Pestell RG, Sparano JA, Lisanti MP (2006) Caveolin-1 mutations in human breast cancer: functional association with estrogen receptor alpha-positive status. Am J Pathol 168(6):1998–2013. doi:168/6/1998[pii]

    PubMed  CAS  Google Scholar 

  66. Syeed N, Husain SA, Abdullah S, Sameer AS, Chowdri NA, Nanda MS, Siddiqi MA (2010) Caveolin-1 promotes mammary tumorigenesis: mutational profile of the Kashmiri population. Asian Pac J Cancer Prev 11(3):689–696

    PubMed  Google Scholar 

  67. Chen ST, Lin SY, Yeh KT, Kuo SJ, Chan WL, Chu YP, Chang JG (2004) Mutational, epigenetic and expressional analyses of caveolin-1 gene in breast cancers. Int J Mol Med 14(4):577–582

    PubMed  CAS  Google Scholar 

  68. Koike S, Kodera Y, Nakao A, Iwata H, Yatabe Y (2010) Absence of the caveolin-1 P132L mutation in cancers of the breast and other organs. J Mol Diagn 12(5):712–717. doi:jmoldx.2010.090180[pii]10.2353/jmoldx.2010.090180

    PubMed  CAS  Google Scholar 

  69. Lacroix-Triki M, Geyer FC, Reis-Filho JS (2010) Caveolin-1 P132L mutation in human cancers: 1 CAVeat to be voiced. J Mol Diagn 12(5):562–565. doi:jmoldx.2010.100093[pii]10.2353/jmoldx.2010.100093

    PubMed  CAS  Google Scholar 

  70. Hurlstone AF, Reid G, Reeves JR, Fraser J, Strathdee G, Rahilly M, Parkinson EK, Black DM (1999) Analysis of the CAVEOLIN-1 gene at human chromosome 7q31.1 in primary tumours and tumour-derived cell lines. Oncogene 18(10):1881–1890. doi:10.1038/sj.onc.1202491

    PubMed  CAS  Google Scholar 

  71. Wu P, Qi B, Zhu H, Zheng Y, Li F, Chen J (2007) Suppression of staurosporine-mediated apoptosis in Hs578T breast cells through inhibition of neutral-sphingomyelinase by caveolin-1. Cancer Lett 256(1):64–72. doi:S0304-3835(07)00234-0[pii]10.1016/j.canlet.2007.05.007

    PubMed  CAS  Google Scholar 

  72. Ravid D, Maor S, Werner H, Liscovitch M (2005) Caveolin-1 inhibits cell detachment-induced p53 activation and anoikis by upregulation of insulin-like growth factor-I receptors and signaling. Oncogene 24(8):1338–1347. doi:1208337[pii]10.1038/sj.onc.1208337

    PubMed  CAS  Google Scholar 

  73. Zajchowski DA, Bartholdi MF, Gong Y, Webster L, Liu HL, Munishkin A, Beauheim C, Harvey S, Ethier SP, Johnson PH (2001) Identification of gene expression profiles that predict the aggressive behavior of breast cancer cells. Cancer Res 61(13):5168–5178

    PubMed  CAS  Google Scholar 

  74. Yamaguchi H, Takeo Y, Yoshida S, Kouchi Z, Nakamura Y, Fukami K (2009) Lipid rafts and caveolin-1 are required for invadopodia formation and extracellular matrix degradation by human breast cancer cells. Cancer Res 69(22):8594–8602. doi:0008-5472.CAN-09-2305[pii]10.1158/0008-5472.CAN-09-2305

    PubMed  CAS  Google Scholar 

  75. Joshi B, Strugnell SS, Goetz JG, Kojic LD, Cox ME, Griffith OL, Chan SK, Jones SJ, Leung SP, Masoudi H, Leung S, Wiseman SM, Nabi IR (2008) Phosphorylated caveolin-1 regulates Rho/ROCK-dependent focal adhesion dynamics and tumor cell migration and invasion. Cancer Res 68(20):8210–8220. doi:68/20/8210[pii]10.1158/0008-5472.CAN-08-0343

    PubMed  CAS  Google Scholar 

  76. Nestl A, Von Stein OD, Zatloukal K, Thies WG, Herrlich P, Hofmann M, Sleeman JP (2001) Gene expression patterns associated with the metastatic phenotype in rodent and human tumors. Cancer Res 61(4):1569–1577

    PubMed  CAS  Google Scholar 

  77. Lavie Y, Fiucci G, Liscovitch M (1998) Up-regulation of caveolae and caveolar constituents in multidrug-resistant cancer cells. J Biol Chem 273(49):32380–32383

    PubMed  CAS  Google Scholar 

  78. Lavie Y, Fiucci G, Liscovitch M (2001) Upregulation of caveolin in multidrug resistant cancer cells: functional implications. Adv Drug Deliv Rev 49(3):317–323. doi:S0169409X01001442[pii]

    PubMed  CAS  Google Scholar 

  79. Storch CH, Ehehalt R, Haefeli WE, Weiss J (2007) Localization of the human breast cancer resistance protein (BCRP/ABCG2) in lipid rafts/caveolae and modulation of its activity by cholesterol in vitro. J Pharmacol Exp Ther 323(1):257–264. doi:jpet.107.122994[pii]10.1124/jpet.107.122994

    PubMed  CAS  Google Scholar 

  80. Zhu H, Cai C, Chen J (2004) Suppression of P-glycoprotein gene expression in Hs578T/Dox by the overexpression of caveolin-1. FEBS Lett 576(3):369–374. doi:S0014579304011573[pii]10.1016/j.febslet.2004.09.041

    PubMed  CAS  Google Scholar 

  81. Dasari A, Bartholomew JN, Volonte D, Galbiati F (2006) Oxidative stress induces premature senescence by stimulating caveolin-1 gene transcription through p38 mitogen-activated protein kinase/Sp1-mediated activation of two GC-rich promoter elements. Cancer Res 66(22):10805–10814. doi:66/22/10805[pii]10.1158/0008-5472.CAN-06-1236

    PubMed  CAS  Google Scholar 

  82. Li J, Hassan GS, Williams TM, Minetti C, Pestell RG, Tanowitz HB, Frank PG, Sotgia F, Lisanti MP (2005) Loss of caveolin-1 causes the hyper-proliferation of intestinal crypt stem cells, with increased sensitivity to whole body gamma-radiation. Cell Cycle 4(12):1817–1825. doi:2199[pii]

    PubMed  CAS  Google Scholar 

  83. Liedtke C, Kersting C, Burger H, Kiesel L, Wulfing P (2007) Caveolin-1 expression in benign and malignant lesions of the breast. World J Surg Oncol 5:110. doi:1477-7819-5-110[pii]10.1186/1477-7819-5-110

    PubMed  Google Scholar 

  84. Yang G, Truong LD, Timme TL, Ren C, Wheeler TM, Park SH, Nasu Y, Bangma CH, Kattan MW, Scardino PT, Thompson TC (1998) Elevated expression of caveolin is associated with prostate and breast cancer. Clin Cancer Res 4(8):1873–1880

    PubMed  CAS  Google Scholar 

  85. Garcia S, Dales JP, Charafe-Jauffret E, Carpentier-Meunier S, Andrac-Meyer L, Jacquemier J, Andonian C, Lavaut MN, Allasia C, Bonnier P, Charpin C (2007) Poor prognosis in breast carcinomas correlates with increased expression of targetable CD146 and c-Met and with proteomic basal-like phenotype. Hum Pathol 38(6):830–841. doi:S0046-8177(06)00668-X[pii]10.1016/j.humpath.2006.11.015

    PubMed  CAS  Google Scholar 

  86. Han SY, Druck T, Huebner K (2003) Candidate tumor suppressor genes at FRA7G are coamplified with MET and do not suppress malignancy in a gastric cancer. Genomics 81(2):105–107. doi:S0888754302000290[pii]

    PubMed  CAS  Google Scholar 

  87. Nupponen NN, Kakkola L, Koivisto P, Visakorpi T (1998) Genetic alterations in hormone-refractory recurrent prostate carcinomas. Am J Pathol 153(1):141–148. doi:S0002-9440(10)65554-X[pii]10.1016/S0002-9440(10)65554-X

    PubMed  CAS  Google Scholar 

  88. Van den Eynden GG, Van Laere SJ, Van der Auwera I, Merajver SD, Van Marck EA, van Dam P, Vermeulen PB, Dirix LY, van Golen KL (2006) Overexpression of caveolin-1 and -2 in cell lines and in human samples of inflammatory breast cancer. Breast Cancer Res Treat 95(3):219–228. doi:10.1007/s10549-005-9002-1

    PubMed  Google Scholar 

  89. Witkiewicz AK, Dasgupta A, Sotgia F, Mercier I, Pestell RG, Sabel M, Kleer CG, Brody JR, Lisanti MP (2009) An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am J Pathol 174(6):2023–2034. doi:ajpath.2009.080873[pii]10.2353/ajpath.2009.080873

    PubMed  CAS  Google Scholar 

  90. Witkiewicz AK, Dasgupta A, Sammons S, Er O, Potoczek MB, Guiles F, Sotgia F, Brody JR, Mitchell EP, Lisanti MP (2010) Loss of stromal caveolin-1 expression predicts poor clinical outcome in triple negative and basal-like breast cancers. Cancer Biol Ther 10(2):135–143. doi:11983[pii]

    PubMed  Google Scholar 

  91. Witkiewicz AK, Dasgupta A, Nguyen KH, Liu C, Kovatich AJ, Schwartz GF, Pestell RG, Sotgia F, Rui H, Lisanti MP (2009) Stromal caveolin-1 levels predict early DCIS progression to invasive breast cancer. Cancer Biol Ther 8(11):1071–1079. doi:8874[pii]

    PubMed  CAS  Google Scholar 

  92. Goetz JG, Minguet S, Navarro-Lerida I, Lazcano JJ, Samaniego R, Calvo E, Tello M, Osteso-Ibanez T, Pellinen T, Echarri A, Cerezo A, Klein-Szanto AJ, Garcia R, Keely PJ, Sanchez-Mateos P, Cukierman E, Del Pozo MA (2011) Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell 146(1):148–163. doi:S0092-8674(11)00645-3[pii]10.1016/j.cell.2011.05.040

    PubMed  CAS  Google Scholar 

  93. Mercier I, Casimiro MC, Wang C, Rosenberg AL, Quong J, Minkeu A, Allen KG, Danilo C, Sotgia F, Bonuccelli G, Jasmin JF, Xu H, Bosco E, Aronow B, Witkiewicz A, Pestell RG, Knudsen ES, Lisanti MP (2008) Human breast cancer-associated fibroblasts (CAFs) show caveolin-1 downregulation and RB tumor suppressor functional inactivation: implications for the response to hormonal therapy. Cancer Biol Ther 7(8):1212–1225. doi:6220[pii]

    PubMed  CAS  Google Scholar 

  94. Martinez-Outschoorn UE, Pavlides S, Whitaker-Menezes D, Daumer KM, Milliman JN, Chiavarina B, Migneco G, Witkiewicz AK, Martinez-Cantarin MP, Flomenberg N, Howell A, Pestell RG, Lisanti MP, Sotgia F (2010) Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: Implications for breast cancer and DCIS therapy with autophagy inhibitors. Cell Cycle 9(12):2423–2433. doi:12048[pii]

    PubMed  CAS  Google Scholar 

  95. Bonuccelli G, Whitaker-Menezes D, Castello-Cros R, Pavlides S, Pestell RG, Fatatis A, Witkiewicz AK, Vander Heiden MG, Migneco G, Chiavarina B, Frank PG, Capozza F, Flomenberg N, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2010) The reverse Warburg effect: Glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle 9(10):1960–1971. doi:11601[pii]

    PubMed  CAS  Google Scholar 

  96. Pavlides S, Tsirigos A, Vera I, Flomenberg N, Frank PG, Casimiro MC, Wang C, Pestell RG, Martinez-Outschoorn UE, Howell A, Sotgia F, Lisanti MP (2010) Transcriptional evidence for the “reverse Warburg effect” in human breast cancer tumor stroma and metastasis: similarities with oxidative stress, inflammation, Alzheimer’s disease, and “neuron-glia metabolic coupling”. Aging (Albany NY) 2(4):185–199. doi:v2/n4/full/100134.html[pii]

    CAS  Google Scholar 

  97. Bartholomew JN, Volonte D, Galbiati F (2009) Caveolin-1 regulates the antagonistic pleiotropic properties of cellular senescence through a novel Mdm2/p53-mediated pathway. Cancer Res 69(7):2878–2886. doi:0008-5472.CAN-08-2857[pii]10.1158/0008-5472.CAN-08-2857

    PubMed  CAS  Google Scholar 

  98. Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 360(8):790–800. doi:360/8/790[pii]10.1056/NEJMra0801289

    PubMed  CAS  Google Scholar 

  99. Weigelt B, Baehner FL, Reis-Filho JS (2010) The contribution of gene expression profiling to breast cancer classification, prognostication and prediction: a retrospective of the last decade. J Pathol 220(2):263–280. doi:10.1002/path.2648

    PubMed  CAS  Google Scholar 

  100. Desmedt C, Haibe-Kains B, Wirapati P, Buyse M, Larsimont D, Bontempi G, Delorenzi M, Piccart M, Sotiriou C (2008) Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res 14(16):5158–5165. doi:14/16/5158[pii]10.1158/1078-0432.CCR-07-4756

    PubMed  CAS  Google Scholar 

  101. Iwamoto T, Bianchini G, Booser D, Qi Y, Coutant C, Shiang CY, Santarpia L, Matsuoka J, Hortobagyi GN, Symmans WF, Holmes FA, O’Shaughnessy J, Hellerstedt B, Pippen J, Andre F, Simon R, Pusztai L (2011) Gene pathways associated with prognosis and chemotherapy sensitivity in molecular subtypes of breast cancer. J Natl Cancer Inst 103(3):264–272. doi:djq524[pii]10.1093/jnci/djq524

    PubMed  CAS  Google Scholar 

  102. Charafe-Jauffret E, Monville F, Bertucci F, Esterni B, Ginestier C, Finetti P, Cervera N, Geneix J, Hassanein M, Rabayrol L, Sobol H, Taranger-Charpin C, Xerri L, Viens P, Birnbaum D, Jacquemier J (2007) Moesin expression is a marker of basal breast carcinomas. Int J Cancer 121(8):1779–1785. doi:10.1002/ijc.22923

    PubMed  CAS  Google Scholar 

  103. Finn RS, Dering J, Ginther C, Wilson CA, Glaspy P, Tchekmedyian N, Slamon DJ (2007) Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/“triple-negative” breast cancer cell lines growing in vitro. Breast Cancer Res Treat 105(3):319–326. doi:10.1007/s10549-006-9463-x

    PubMed  CAS  Google Scholar 

  104. Huang F, Reeves K, Han X, Fairchild C, Platero S, Wong TW, Lee F, Shaw P, Clark E (2007) Identification of candidate molecular markers predicting sensitivity in solid tumors to dasatinib: rationale for patient selection. Cancer Res 67(5):2226–2238. doi:67/5/2226[pii]10.1158/0008-5472.CAN-06-3633

    PubMed  CAS  Google Scholar 

  105. Schlegel A, Wang C, Katzenellenbogen BS, Pestell RG, Lisanti MP (1999) Caveolin-1 potentiates estrogen receptor alpha (ERalpha) signaling. Caveolin-1 drives ligand-independent nuclear translocation and activation of ERalpha. J Biol Chem 274(47):33551–33556

    PubMed  CAS  Google Scholar 

  106. Nawaz Z, Lonard DM, Dennis AP, Smith CL, O’Malley BW (1999) Proteasome-dependent degradation of the human estrogen receptor. Proc Natl Acad Sci USA 96(5):1858–1862

    PubMed  CAS  Google Scholar 

  107. Zhang X, Shen P, Coleman M, Zou W, Loggie BW, Smith LM, Wang Z (2005) Caveolin-1 down-regulation activates estrogen receptor alpha expression and leads to 17beta-estradiol-stimulated mammary tumorigenesis. Anticancer Res 25(1):369–375

    PubMed  Google Scholar 

  108. Kranenburg O, Verlaan I, Moolenaar WH (2001) Regulating c-Ras function. Cholesterol depletion affects caveolin association, GTP loading, and signaling. Curr Biol 11(23):1880–1884. doi:S0960-9822(01)00582-6[pii]

    PubMed  CAS  Google Scholar 

  109. Mercier I, Casimiro MC, Zhou J, Wang C, Plymire C, Bryant KG, Daumer KM, Sotgia F, Bonuccelli G, Witkiewicz AK, Lin J, Tran TH, Milliman J, Frank PG, Jasmin JF, Rui H, Pestell RG, Lisanti MP (2009) Genetic ablation of caveolin-1 drives estrogen-hypersensitivity and the development of DCIS-like mammary lesions. Am J Pathol 174(4):1172–1190. doi:174/4/1172[pii]10.2353/ajpath.2009.080882

    PubMed  CAS  Google Scholar 

  110. Engelman JA, Zhang XL, Lisanti MP (1999) Sequence and detailed organization of the human caveolin-1 and -2 genes located near the D7S522 locus (7q31.1). Methylation of a CpG island in the 5′ promoter region of the caveolin-1 gene in human breast cancer cell lines. FEBS Lett 448(2–3):221–230. doi:S0014-5793(99)00365-8[pii]

    PubMed  CAS  Google Scholar 

  111. Coleman KM, Smith CL (2001) Intracellular signaling pathways: nongenomic actions of estrogens and ligand-independent activation of estrogen receptors. Front Biosci 6:D1379–D1391

    PubMed  CAS  Google Scholar 

  112. Kelly MJ, Levin ER (2001) Rapid actions of plasma membrane estrogen receptors. Trends Endocrinol Metab 12(4):152–156. doi:S1043-2760(01)00377-0[pii]

    PubMed  CAS  Google Scholar 

  113. Levin ER (2001) Cell localization, physiology, and nongenomic actions of estrogen receptors. J Appl Physiol 91(4):1860–1867

    PubMed  CAS  Google Scholar 

  114. Razandi M, Pedram A, Levin ER (2000) Plasma membrane estrogen receptors signal to antiapoptosis in breast cancer. Mol Endocrinol 14(9):1434–1447

    PubMed  CAS  Google Scholar 

  115. Razandi M, Alton G, Pedram A, Ghonshani S, Webb P, Levin ER (2003) Identification of a structural determinant necessary for the localization and function of estrogen receptor alpha at the plasma membrane. Mol Cell Biol 23(5):1633–1646

    PubMed  CAS  Google Scholar 

  116. Acconcia F, Ascenzi P, Bocedi A, Spisni E, Tomasi V, Trentalance A, Visca P, Marino M (2005) Palmitoylation-dependent estrogen receptor alpha membrane localization: regulation by 17beta-estradiol. Mol Biol Cell 16(1):231–237. doi:E04-07-0547[pii]10.1091/mbc.E04-07-0547

    PubMed  CAS  Google Scholar 

  117. Pedram A, Razandi M, Sainson RC, Kim JK, Hughes CC, Levin ER (2007) A conserved mechanism for steroid receptor translocation to the plasma membrane. J Biol Chem 282(31):22278–22288. doi:M611877200[pii]10.1074/jbc.M611877200

    PubMed  CAS  Google Scholar 

  118. Levin ER (2009) Membrane oestrogen receptor alpha signalling to cell functions. J Physiol 587(Pt 21):5019–5023. doi:jphysiol.2009.177097[pii]10.1113/jphysiol.2009.177097

    PubMed  CAS  Google Scholar 

  119. Thomas NB, Hutcheson IR, Campbell L, Gee J, Taylor KM, Nicholson RI, Gumbleton M (2010) Growth of hormone-dependent MCF-7 breast cancer cells is promoted by constitutive caveolin-1 whose expression is lost in an EGF-R-mediated manner during development of tamoxifen resistance. Breast Cancer Res Treat 119(3):575–591. doi:10.1007/s10549-009-0355-8

    PubMed  CAS  Google Scholar 

  120. Lu Z, Ghosh S, Wang Z, Hunter T (2003) Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell 4(6):499–515. doi:S1535610803003040[pii]

    PubMed  CAS  Google Scholar 

  121. Ringerike T, Blystad FD, Levy FO, Madshus IH, Stang E (2002) Cholesterol is important in control of EGF receptor kinase activity but EGF receptors are not concentrated in caveolae. J Cell Sci 115(Pt 6):1331–1340

    PubMed  CAS  Google Scholar 

  122. Kim YN, Wiepz GJ, Guadarrama AG, Bertics PJ (2000) Epidermal growth factor-stimulated tyrosine phosphorylation of caveolin-1. Enhanced caveolin-1 tyrosine phosphorylation following aberrant epidermal growth factor receptor status. J Biol Chem 275(11):7481–7491

    PubMed  CAS  Google Scholar 

  123. Mercier I, Bryant KG, Sotgia F, Bonuccelli G, Witkiewicz AK, Dasgupta A, Jasmin JF, Pestell RG, Lisanti MP (2009) Using caveolin-1 epithelial immunostaining patterns to stratify human breast cancer patients and predict the caveolin-1 (P132L) mutation. Cell Cycle 8(9):1396–1401. doi:8307[pii]

    PubMed  CAS  Google Scholar 

  124. Bonuccelli G, Casimiro MC, Sotgia F, Wang C, Liu M, Katiyar S, Zhou J, Dew E, Capozza F, Daumer KM, Minetti C, Milliman JN, Alpy F, Rio MC, Tomasetto C, Mercier I, Flomenberg N, Frank PG, Pestell RG, Lisanti MP (2009) Caveolin-1 (P132L), a common breast cancer mutation, confers mammary cell invasiveness and defines a novel stem cell/metastasis-associated gene signature. Am J Pathol 174(5):1650–1662. doi:ajpath.2009.080648[pii]10.2353/ajpath.2009.080648

    PubMed  CAS  Google Scholar 

  125. Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2009) The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8(23):3984–4001. doi:10238[pii]

    PubMed  CAS  Google Scholar 

  126. Mercier I, Jasmin JF, Pavlides S, Minetti C, Flomenberg N, Pestell RG, Frank PG, Sotgia F, Lisanti MP (2009) Clinical and translational implications of the caveolin gene family: lessons from mouse models and human genetic disorders. Lab Invest 89(6):614–623. doi:labinvest200923[pii]10.1038/labinvest.2009.23

    PubMed  CAS  Google Scholar 

  127. Carver LA, Schnitzer JE (2003) Caveolae: mining little caves for new cancer targets. Nat Rev Cancer 3(8):571–581. doi:10.1038/nrc1146nrc1146[pii]

    PubMed  CAS  Google Scholar 

  128. Gratton JP, Lin MI, Yu J, Weiss ED, Jiang ZL, Fairchild TA, Iwakiri Y, Groszmann R, Claffey KP, Cheng YC, Sessa WC (2003) Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice. Cancer Cell 4(1):31–39. doi:S1535610803001685[pii]

    PubMed  CAS  Google Scholar 

  129. Bucci M, Gratton JP, Rudic RD, Acevedo L, Roviezzo F, Cirino G, Sessa WC (2000) In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat Med 6(12):1362–1367. doi:10.1038/82176

    PubMed  CAS  Google Scholar 

  130. Cai C, Chen J (2004) Overexpression of caveolin-1 induces alteration of multidrug resistance in Hs578T breast adenocarcinoma cells. Int J Cancer 111(4):522–529. doi:10.1002/ijc.20300

    PubMed  CAS  Google Scholar 

  131. Altundag K, Bulut N, Dizdar O, Harputluoglu H (2006) Albumin-bound paclitaxel, ABI-007 may show better efficacy than paclitaxel in basal-like breast cancers: association between caveolin-1 expression and ABI-007. Breast Cancer Res Treat 100(3):329–330. doi:10.1007/s10549-006-9250-8

    PubMed  Google Scholar 

  132. Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, Hawkins M, O’Shaughnessy J (2005) Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 23(31):7794–7803. doi:JCO.2005.04.937[pii]10.1200/JCO.2005.04.937

    PubMed  CAS  Google Scholar 

  133. Schlegel A, Lisanti MP (2000) A molecular dissection of caveolin-1 membrane attachment and oligomerization. Two separate regions of the caveolin-1 C-terminal domain mediate membrane binding and oligomer/oligomer interactions in vivo. J Biol Chem 275(28):21605–21617. doi:10.1074/jbc.M002558200M002558200[pii]

    PubMed  CAS  Google Scholar 

  134. Galbiati F, Volonte D, Engelman JA, Watanabe G, Burk R, Pestell RG, Lisanti MP (1998) Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO J 17(22):6633–6648

    Google Scholar 

  135. Wu P, Wang X, Li F, Qi B, Zhu H, Liu S, Cui Y, Chen J (2008) Growth suppression of MCF-7 cancer cell-derived xenografts in nude mice by caveolin-1. Biochem Biophys Res Commun 376(1):215–220

    Google Scholar 

Download references

Acknowledgments

Mitch Dowsett, Jorge S. Reis-Filho and Lesley-Ann Martin are funded by Breakthrough Breast Cancer and NHS funding to the Royal Marsden NIHR Biomedical Research Centre. Jorge S. Reis-Filho is a recipient of the 2010 Cancer Research UK Future Leaders Prize. Neill Patani is supported by a Royal College of Surgeons of England and Medical Research Council Clinical Research Training Fellowship.

Conflict of interest

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitch Dowsett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patani, N., Martin, LA., Reis-Filho, J.S. et al. The role of caveolin-1 in human breast cancer. Breast Cancer Res Treat 131, 1–15 (2012). https://doi.org/10.1007/s10549-011-1751-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1751-4

Keywords

Navigation