Skip to main content
Log in

Magnetic nanoparticles fabricated/integrated with microfluidics for biological applications: A review

  • Review
  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Nanostructured materials have gained significant attention in recent years for their potential in biological applications, such as cell and biomolecular sorting, as well as early detection of metastatic cancer. Among these materials, magnetic nanoparticles (MNPs) stand out for their easy functionalization, high specific surface area, chemical stability, and superparamagnetic properties. However, conventional fabrication methods can lead to inconsistencies in MNPs' characteristics and performance, highlighting the need for a cost-effective, controllable, and reproducible synthesis approach. In this review, we will discuss the utilization of microfluidic technology as a cutting-edge strategy for the continuous and regulated synthesis of MNPs. This approach has proven effective in producing MNPs with a superior biomedical performance by offering precise control over particle size, shape, and surface properties. We will examine the latest research findings on developing and integrating MNPs synthesized through continuous microfluidic processes for a wide range of biological applications. By providing an overview of the current state of the field, this review aims to showcase the advantages of microfluidics in the fabrication and integration of MNPs, emphasizing their potential to revolutionize diagnostic and therapeutic methods within the realm of biotechnology.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • M. Abdelkarim, L. Perez-Davalos, Y. Abdelkader, A. Abostait, H.I. Labouta, Critical design parameters to develop biomimetic organ-on-a-chip models for the evaluation of the safety and efficacy of nanoparticles. Expert Opin. Drug Deliv. 20, 13–30 (2023)

    Article  CAS  PubMed  Google Scholar 

  • R. Abedini-Nassab, M. Pouryosef Miandoab, M. Şaşmaz, Microfluidic synthesis, control, and sensing of magnetic nanoparticles: a review. Micromachines 12, 768 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  • P. Agnihotri, V. Lad, Controlled release and separation of magnetic nanoparticles using microfluidics by varying bifurcation angle of microchannels. J. Inorg. Organomet. Polym. Mater. 29, 309–315 (2019)

    Article  CAS  Google Scholar 

  • S. Agrawal, K. Paknikar, D. Bodas, Development of immunosensor using magnetic nanoparticles and circular microchannels in PDMS. Microelectron. Eng. 115, 66–69 (2014)

    Article  CAS  Google Scholar 

  • S.R. Ali, M. De, Superparamagnetic nickel nanocluster-embedded MoS2 nanosheets for gram-selective bacterial adhesion and antibacterial activity. ACS Biomater. Sci. Eng. 8, 2932–2942 (2022)

    Article  CAS  PubMed  Google Scholar 

  • M.A. Bellrichard, Improving ligament tissue scaffold with the use of genipin and gold nanoparticles (University of Missouri, Columbia, 2020)

    Google Scholar 

  • J. Bemetz, A. Wegemann, K. Saatchi, A. Haase, U.O. HäFeli, R. Niessner, B. Gleich, M. Seidel, Microfluidic-based synthesis of magnetic nanoparticles coupled with miniaturized NMR for online relaxation studies. Mater 90, 9975–9982 (2018)

    CAS  Google Scholar 

  • N. Bhalla, D.W.Y. Chung, Y.-J. Chang, K.J.S. Uy, Y.Y. Ye, T.-Y. Chin, H.C. Yang, D.G. Pijanowska, Microfluidic platform for enzyme-linked and magnetic particle-based immunoassay. Micromachines 4, 257–271 (2013)

    Article  PubMed  Google Scholar 

  • A. Burklund, J.D. Petryk, P.J. Hoopes, J.X. Zhang, Microfluidic enrichment of bacteria coupled to contact-free lysis on a magnetic polymer surface for downstream molecular detection. Biomicrofluidics 14, 034115 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • G. Cai, S. Wang, L. Zheng, J. Lin, A fluidic device for immunomagnetic separation of foodborne bacteria using self-assembled magnetic nanoparticle chains. Micromachines 9, 624 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • M.J. Camacho, D.C. Albuquerque, E. De Andrade, V.C. Martins, M.L. Inácio, M. Mota, P.P. Freitas, A lab-on-a-chip approach for the detection of the quarantine potato cyst nematode Globodera pallida. Sensors 23, 647 (2023)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Q. Cao, X. Han, L. Li, Numerical analysis of magnetic nanoparticle transport in microfluidic systems under the influence of permanent magnets. J. Phys. D. Copiar 45, 465001 (2012)

    Article  Google Scholar 

  • F. Chen, S. Lee, K. Han, L. Ty, N, N-Dimethyl-4,4′-azodianiline functionalized magnetic nanoparticles for enhanced sensitivity of nucleic acid amplification tests. Sens. Actuators B Chem. 332, 129461 (2021)

    Article  CAS  Google Scholar 

  • H. Chen, Z. Zhang, H. Liu, Z. Zhang, C. Lin, B. Wang, Hybrid magnetic and deformability based isolation of circulating tumor cells using microfluidics. AIP Adv. 9, 025023 (2019)

    Article  Google Scholar 

  • A. Chicharo, F. Cardoso, S. Cardoso, P.P. Freitas, Dynamical detection of magnetic nanoparticles in paper microfluidics with spin valve sensors for point-of-care applications. IEEE Trans. Magn. 50, 1–4 (2014)

    Article  Google Scholar 

  • Š. Durdík, A. Krafčík, M. Babincová, P. Babinec, Conceptual design of integrated microfluidic system for magnetic cell separation, electroporation, and transfection. Phys. Med. 29, 562–567 (2013)

    Article  PubMed  Google Scholar 

  • F. Ender, D. Weiser, A. Vitéz, G. Sallai, M. Németh, L, P., In-situ measurement of magnetic nanoparticle quantity in a microfluidic device. Microsyst. Technol. 23, 3979–3990 (2017)

    Article  CAS  Google Scholar 

  • A. Fabozzi, F. Della Sala, M. Di Gennaro, M. Barretta, G. Longobardo, N. Solimando, M. Pagliuca, A, B., Design of functional nanoparticles by microfluidic platforms as advanced drug delivery systems for cancer therapy. Lab Chip 23, 1389–1409 (2023)

    Article  CAS  PubMed  Google Scholar 

  • M.A. Farzin, H. Abdoos, R. Saber, AuNP-based biosensors for the diagnosis of pathogenic human coronaviruses: COVID-19 pandemic developments. Anal. Bioanal. Chem. 414, 7069–7084 (2022a)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • M.A. Farzin, H. Abdoos, R. Saber, Graphite nanocrystals coated paper-based electrode for detection of SARS-Cov-2 gene using DNA-functionalized Au@ carbon dot core-shell nanoparticles. Microchem. J. 179, 107585 (2022b)

    Article  Google Scholar 

  • B. Fischer, L. Mao, M. Gungormus, C. Tamerler, M. Sarikaya, H. Koser, Ferro-microfluidic device for pathogen detection, in 2008 3rd IEEE international conference on nano/micro engineered and molecular systems (IEEE, 2008), pp. 907–910

    Chapter  Google Scholar 

  • M. Frenea-Robin, J. Marchalot, Basic principles and recent advances in magnetic cell separation. Magnetochemistry 8, 11 (2022)

    Article  CAS  Google Scholar 

  • M. Gao, Y. Gao, G. Chen, X. Huang, X. Xu, J. Lv, J. Wang, D. Xu, G. Liu, Recent advances and future trends in the detection of contaminants by molecularly imprinted polymers in food samples. Front. Chem. 8, 616326 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • M. Gharibshahian, O. Mirzaee, M. Nourbakhsh, Evaluation of superparamagnetic and biocompatible properties of mesoporous silica coated cobalt ferrite nanoparticles synthesized via microwave modified Pechini method. J. Magn. Magn. Mater. 425, 48–56 (2017)

    Article  CAS  Google Scholar 

  • P. Ghassemi, Label-free microfluidic devices for single-cell analysis and liquid biopsies (Virginia Tech, 2023)

    Google Scholar 

  • L. Göpfert, M. Schoenen, O. Reisen, E.M. Buhl, B. Mues, T. Schmitz-Rode, I. Slabu, Enabling continuous flow manufacturing of magnetic nanoparticles with a millifluidic system. J. Magn. Magn. Mater 563, 169985 (2022)

    Article  Google Scholar 

  • T. Gu, Y. Zhang, S.A. Khan, T.A. Hatton, Continuous flow synthesis of superparamagnetic nanoparticles in reverse miniemulsion systems. Colloids Interface Sci. Commun 28, 1–4 (2019)

    Article  CAS  Google Scholar 

  • M. Hakim, F. Khorasheh, I. Alemzadeh, M. Vossoughi, A new insight to deformability correlation of circulating tumor cells with metastatic behavior by application of a new deformability-based microfluidic chip. Anal. Chim. Acta 1186, 339115 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Y. Hou, G. Cai, L. Zheng, J. Lin, A microfluidic signal-off biosensor for rapid and sensitive detection of Salmonella using magnetic separation and enzymatic catalysis. Food Control 103, 186–193 (2019)

    Article  CAS  Google Scholar 

  • L.-Y. Hung, J.-C. Chang, Y.-C. Tsai, C.-C. Huang, C.-P. Chang, C.-S. Yeh, G.-B. Lee, Magnetic nanoparticle-based immunoassay for rapid detection of influenza infections by using an integrated microfluidic system. Nanomedicine 10, 819–829 (2014)

    Article  CAS  PubMed  Google Scholar 

  • S.H. Jung, Y.K. Hahn, S. Oh, S. Kwon, E. Um, S. Choi, J.H. Kang, Advection flows-enhanced magnetic separation for high-throughput bacteria separation from undiluted whole blood. Small 14, 1801731 (2018)

    Article  Google Scholar 

  • A.A. Kajani, L. Rafiee, M. Samandari, M.A. Mehrgardi, B. Zarrin, S.H. Javanmard, Facile, rapid and efficient isolation of circulating tumor cells using aptamer-targeted magnetic nanoparticles integrated with a microfluidic device. RSC Adv. 12, 32834–32843 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • J.H. Kang, E. Um, A. Diaz, H. Driscoll, M.J. Rodas, K. Domansky, A.L. Watters, M. Super, H.A. Stone, D.E. Ingber, Optimization of pathogen capture in flowing fluids with magnetic nanoparticles. Small 11, 5657–5666 (2015)

    Article  CAS  PubMed  Google Scholar 

  • S. Khizar, H. Ben Halima, N.M. Ahmad, N. Zine, A. Errachid, A. Elaissari, Magnetic nanoparticles in microfluidic and sensing: from transport to detection. J. Electrophor. 41, 1206–1224 (2020)

    Article  CAS  Google Scholar 

  • S. Khizar, N. Zine, A. Errachid, N. Jaffrezic-Renault, A. Elaissari, Microfluidic-based nanoparticle synthesis and their potential applications. Electrophor. 43, 819–838 (2022)

    Article  CAS  Google Scholar 

  • J.A. Kim, H.J. Lee, H.-J. Kang, T.H. Park, The targeting of endothelial progenitor cells to a specific location within a microfluidic channel using magnetic nanoparticles. Biomed. Microdevices 11, 287–296 (2009)

    Article  PubMed  Google Scholar 

  • D. Kinahan, D. Mager, E. Vereshchagina, C. Miyazaki, Advances in microfluidics technology for diagnostics and detection (MDPI-Multidisciplinary Digital Publishing Institute, 2021)

    Google Scholar 

  • Q. Kong, Y. Wang, L. Zhang, S. Ge, J. Yu, A novel microfluidic paper-based colorimetric sensor based on molecularly imprinted polymer membranes for highly selective and sensitive detection of bisphenol A. Sens. Actuators. B. Chem 243, 130–136 (2017)

    Article  CAS  Google Scholar 

  • J. Kumar, S. Basak, A. Kalkal, G. Packirisamy, Recent advances in nanotechnology and microfluidic-based approaches for isolation and detection of circulating tumor cells (CTCs). Nano-Struct. Nano-Objects 31, 100886 (2022)

    Article  CAS  Google Scholar 

  • S. Kumari, U. Saha, M. Bose, D. Murugan, V. Pachauri, V.R. Sai, N. Madaboosi, Microfluidic platforms for single cell analysis: applications in cellular manipulation and optical biosensing. J. Chemom. 11, 107 (2023)

    CAS  Google Scholar 

  • J.-J. Lee, K.J. Jeong, M. Hashimoto, A.H. Kwon, A. Rwei, S.A. Shankarappa, J.H. Tsui, D.S. Kohane, Synthetic ligand-coated magnetic nanoparticles for microfluidic bacterial separation from blood. Nano Lett. 14, 1–5 (2014)

    Article  PubMed  Google Scholar 

  • T.Y. Lee, K.-A. Hyun, S.-I. Kim, H.-I. Jung, An integrated microfluidic chip for one-step isolation of circulating tumor cells. Sens. Actuators. B. Chem 238, 1144–1150 (2017)

    Article  CAS  Google Scholar 

  • O. Lefebvre, F.M. Nkot, C. Smadja, E. Martincic, M. Woytasik, M. Ammar, Innovative methods for the integration of immunosensors based on magnetic nanoparticles in lab-on-chip. Proc. Technol 27, 210–211 (2017)

    Article  Google Scholar 

  • U. Lehmann, C. Vandevyver, V.K. Parashar, M.A. Gijs, Droplet-based DNA purification in a magnetic lab-on-a-chip. Angew. Chem. Int. Ed. 45, 3062–3067 (2006)

    Article  CAS  Google Scholar 

  • T. Lund-Olesen, H. Bruus, M.F. Hansen, Quantitative characterization of magnetic separators: comparison of systems with and without integrated microfluidic mixers. Biomed. Microdevices 9, 195–205 (2007)

    Article  PubMed  Google Scholar 

  • J. Ma, Y. Wang, J. Liu, Biomaterials meet microfluidics: from synthesis technologies to biological applications. Micromachines 8, 255 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  • K. Mirkale, R. Gaikwad, B. Majhy, G. Narendran, A. Sen, Advances in microfluidic techniques for detection and isolation of circulating tumor cells, in Advanced micro-and nano-manufacturing technologies: applications in biochemical and biomedical engineering (Springer, 2021)

    Google Scholar 

  • S. Mourdikoudis, R.M. Pallares, N.T. Thanh, Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10, 12871–12934 (2018)

    Article  CAS  PubMed  Google Scholar 

  • A. Myklatun, M. Cappetta, M. Winklhofer, V. Ntziachristos, G.G. Westmeyer, Microfluidic sorting of intrinsically magnetic cells under visual control. Sci. Rep. 7, 1–8 (2017)

    Article  CAS  Google Scholar 

  • A. Nakhlband, H. Kholafazad-Kordasht, M. Rahimi, A. Mokhtarzadeh, J. Soleymani, Applications of magnetic materials in the fabrication of microfluidic-based sensing systems: Recent advances. Microchem. J. 173, 107042 (2022)

    Article  CAS  Google Scholar 

  • R. Nasiri, A. Shamloo, J. Akbari, Design of a hybrid inertial and magnetophoretic microfluidic device for CTCs separation from blood. Micromachines 12, 877 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  • R. Nasiri, A. Shamloo, J. Akbari, Design of two Inertial-based microfluidic devices for cancer cell separation from Blood: A serpentine inertial device and an integrated inertial and magnetophoretic device. Chem. Eng. Sci. 252, 117283 (2022)

    Article  CAS  Google Scholar 

  • A. Nigam, S. Saini, B. Singh, A.K. Rai, S. Pawar, Zinc doped magnesium ferrite nanoparticles for evaluation of biological properties viz antimicrobial, biocompatibility, and in vitro cytotoxicity. Mater 31, 103632 (2022)

    CAS  Google Scholar 

  • M. Okochi, H. Tsuchiya, F. Kumazawa, M. Shikida, H. Honda, Droplet-based gene expression analysis using a device with magnetic force-based-droplet-handling system. J. Biosci. 109, 193–197 (2010)

    CAS  Google Scholar 

  • D. Olmos, H.-T. Arkenau, J. Ang, I. Ledaki, G. Attard, C. Carden, A. Reid, A’hern, R., Fong, P. & Oomen, N., Circulating tumour cell (CTC) counts as intermediate end points in castration-resistant prostate cancer (CRPC): a single-centre experience. Ann. Oncol. 20, 27–33 (2009)

    Article  CAS  PubMed  Google Scholar 

  • O. Osman, S. Toru, F. Dumas-Bouchiat, N. Dempsey, N. Haddour, L.-F. Zanini, F. Buret, G. Reyne, M. Frenea-Robin, Microfluidic immunomagnetic cell separation using integrated permanent micromagnets. Biomicrofluidics 7, 054115 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • N. Pamme, C. Wilhelm, Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis. Lab Chip 6, 974–980 (2006)

    Article  CAS  PubMed  Google Scholar 

  • F. Pampaloni, E.G. Reynaud, E.H. Stelzer, The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 8, 839–845 (2007)

    Article  CAS  PubMed  Google Scholar 

  • C. Park, J. Lee, Y. Kim, J. Kim, J. Lee, S. Park, 3D-printed microfluidic magnetic preconcentrator for the detection of bacterial pathogen using an ATP luminometer and antibody-conjugated magnetic nanoparticles. J. Microbiol. 132, 128–133 (2017)

    CAS  Google Scholar 

  • J. Pivetal, S. Toru, M. Frenea-Robin, N. Haddour, S. Cecillon, N.M. Dempsey, F. Dumas-Bouchiat, P. Simonet, Selective isolation of bacterial cells within a microfluidic device using magnetic probe-based cell fishing. Sens. Actuators B Chem. 195, 581–589 (2014)

    Article  CAS  Google Scholar 

  • B.A. Prabowo, E. Fernandes, P. Freitas, A pump-free microfluidic device for fast magnetic labeling of ischemic stroke biomarkers. Anal. Bioanal. Chem. 414, 2571–2583 (2022)

    Article  CAS  PubMed  Google Scholar 

  • W. Qi, L. Zheng, S. Wang, F. Huang, Y. Liu, H. Jiang, J. Lin, A microfluidic biosensor for rapid and automatic detection of Salmonella using metal-organic framework and Raspberry Pi. Biosens. Bioelectron. 178, 113020 (2021)

    Article  CAS  PubMed  Google Scholar 

  • R. Nasiri, A. Shamloo, S. Ahadian, L. Amirifar, J. Akbari, M.J. Goudie, K. Lee, N. Ashammakhi, M.R. Dokmeci, D.J.S.D. Carlo, Microfluidic-based approaches in targeted cell/particle separation based on physical properties: Fundamentals and applications. Small 16, 2000171 (2020)

    Article  CAS  Google Scholar 

  • D. Robert, N. Pamme, H. Conjeaud, F. Gazeau, A. Iles, C. Wilhelm, Cell sorting by endocytotic capacity in a microfluidic magnetophoresis device. Lab Chip 11, 1902–1910 (2011)

    Article  CAS  PubMed  Google Scholar 

  • V. Román-Pizarro, A.M. Carrión-Escudero, Á. Écija-Arenas, J.M. Fernández-Romero, Study of the inhibition effects on glutathione peroxidase immobilized on MNPs using a stopped-flow microfluidic system. Anal. Bioanal. Chem. 415, 2091–2100 (2023)

    Article  PubMed  PubMed Central  Google Scholar 

  • N. Roy, S. Jaiswal, A. Dhwaj, D. Verma, A. Prabhakar, Nanobiosensor-based microfluidic point-of-care platforms: fabrication, characterization, and applications, in Nanobiosensors for point-of-care medical diagnostics (Springer, 2023)

    Google Scholar 

  • A.-E. Saliba, L. Saias, E. Psychari, N. Minc, D. Simon, F.-C. Bidard, C. Mathiot, J.-Y. Pierga, V. Fraisier, J. Salamero, Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays. Proc. Natl. Acad. Sci. 107, 14524–14529 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • M.G. Sande, L. Roque, A. Braga, M. Marques, D. Ferreira, A. Saragliadis, J.L. Rodrigues, D. Linke, D. Ramada, C. Silva, Design of new hydrolyzed collagen-modified magnetic nanoparticles to capture pathogens. J. Biomed. Mater. Res. B Appl. Biomater. 111, 354–365 (2023)

    Article  CAS  PubMed  Google Scholar 

  • E. Sehit, J. Drzazgowska, D. Buchenau, C. Yesildag, M. Lensen, Z. Altintas, Ultrasensitive nonenzymatic electrochemical glucose sensor based on gold nanoparticles and molecularly imprinted polymers. Biosens. Bioelectron. 165, 112432 (2020)

    Article  CAS  PubMed  Google Scholar 

  • T. Sergeyeva, D. Yarynka, L. Dubey, I. Dubey, E. Piletska, R. Linnik, M. Antonyuk, T. Ternovska, O. Brovko, S. Piletsky, Sensor based on molecularly imprinted polymer membranes and smartphone for detection of Fusarium contamination in cereals. J. Sens. 20, 4304 (2020)

    Article  CAS  Google Scholar 

  • R. Serrano García, S. Stafford, Gun’ko, Y. K., Recent progress in synthesis and functionalization of multimodal fluorescent-magnetic nanoparticles for biological applications. J. Appl. Sci. 8, 172 (2018)

    Article  Google Scholar 

  • A. Shamloo, A. Naghdloo, M. Besanjideh, Cancer cell enrichment on a centrifugal microfluidic platform using hydrodynamic and magnetophoretic techniques. Sci. Rep. 11, 1939 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • S. Sharma, V. Bhatia, Magnetic nanoparticles in microfluidics-based diagnostics: an appraisal. Nanomedicine 16, 1329–1342 (2021)

    Article  CAS  PubMed  Google Scholar 

  • F. Sheikhzadeh, A. Carraro, J. Korbelik, C. Macaulay, M. Guillaud, R.K. Ward, Automatic labeling of molecular biomarkers on a cell-by-cell basis in immunohistochemistry images using convolutional neural networks, in Medical imaging 2016: digital pathology (SPIE, 2016), pp.203–208

    Google Scholar 

  • D. Shi, M. Sadat, A.W. Dunn, D.B. Mast, Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications. Nanoscale 7, 8209–8232 (2015)

    Article  CAS  PubMed  Google Scholar 

  • P.-H. Shih, J.-Y. Shiu, P.-C. Lin, C.-C. Lin, T. Veres, P. Chen, On chip sorting of bacterial cells using sugar-encapsulated magnetic nanoparticles. J. Appl. Phys. 103, 07A316 (2008)

    Article  Google Scholar 

  • A. Shiriny, M. Bayareh, Inertial focusing of CTCs in a novel spiral microchannel. Chem. Eng. Sci. 229, 116102 (2021)

    Article  CAS  Google Scholar 

  • S. Siavashy, M. Soltani, F. Ghorbani-Bidkorbeh, N. Fallah, G. Farnam, S.A. Mortazavi, F.H. Shirazi, M.H.H. Tehrani, M.H. Hamedi, Microfluidic platform for synthesis and optimization of chitosan-coated magnetic nanoparticles in cisplatin delivery. Carbohydr. Polym. 265, 118027 (2021)

    Article  CAS  PubMed  Google Scholar 

  • M. Sinha, J. Jupe, H. Mack, T.P. Coleman, S.M. Lawrence, S.I. Fraley, Emerging technologies for molecular diagnosis of sepsis. Clin. Microbiol. Rev. 31, e00089–e00117 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Y. Sun, H. Li, G. Cui, X. Wu, M. Yang, Y. Piao, Z. Bai, L. Wang, M. Kraft, W. Zhao, A magnetic nanoparticle assisted microfluidic system for low abundance cell sorting with high recovery. Micro. Nano. Eng. 15, 100136 (2022)

    Article  CAS  Google Scholar 

  • K. Suresh Babu, M. Anandkumar, T. Tsai, T. Kao, B. Stephen Inbaraj, B. Chen, Cytotoxicity and antibacterial activity of gold-supported cerium oxide nanoparticles. Int. J. Nanomed. 9, 5515–5531 (2014)

    Google Scholar 

  • M. Takahashi, T.S. Le, S. Maenosono, Modern biomedical applications of magnetic nanoparticles, in Modern biomedical applications of magnetic nanoparticles (Springer, 2022)

    Google Scholar 

  • Y.W. Tan, S.S. Leong, J. Lim, W.M. Yeoh, P.Y. Toh, Low-gradient magnetic separation of magnetic nanoparticles under continuous flow: experimental study, transport mechanism and mathematical modelling. J. Electrophor. 43, 2234–2249 (2022)

    Article  CAS  Google Scholar 

  • M.D. Tarn, R.F. Fakhrullin, V.N. Paunov, N. Pamme, Microfluidic device for the rapid coating of magnetic cells with polyelectrolytes. Mater. Lett. 95, 182–185 (2013)

    Article  CAS  Google Scholar 

  • C. Tassa, S.Y. Shaw, R. Weissleder, Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Acc. Chem. Res. 44, 842–852 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • C.E. Torres, J. Cifuentes, S.C. Gómez, V. Quezada, K.A. Giraldo, P.R. Puentes, L. Rueda-Gensini, J.A. Serna, C. Muñoz-Camargo, L.H. Reyes, Microfluidic synthesis and purification of magnetoliposomes for potential applications in the gastrointestinal delivery of difficult-to-transport drugs. Int. J. Pharm. 14, 315 (2022)

    CAS  Google Scholar 

  • M.G. Toudeshkchouei, A. Tavakoli, H. Mohammadghasemi, A. Karimi, J. Ai, M. Rabiee, N. Rabiee, Recent approaches to mRNA vaccine delivery by lipid-based vectors prepared by continuous-flow microfluidic devices. Future Med. Chem. 14, 1561–1581 (2022)

    Article  CAS  PubMed  Google Scholar 

  • M.G. Toudeshkchoui, N. Rabiee, M. Rabiee, M. Bagherzadeh, M. Tahriri, L. Tayebi, M.R. Hamblin, Microfluidic devices with gold thin film channels for chemical and biomedical applications: a review. Biomed. Microdevices 21, 1–17 (2019)

    Article  Google Scholar 

  • Y. Tsuchido, R. Horiuchi, T. Hashimoto, K. Ishihara, N. Kanzawa, T. Hayashita, Rapid and selective discrimination of Gram-positive and Gram-negative bacteria by boronic acid-modified poly (amidoamine) dendrimer. J. Anal. Chem. 91, 3929–3935 (2019)

    Article  CAS  Google Scholar 

  • M. Unni, J. Zhang, T.J. George, M.S. Segal, Z.H. Fan, C. Rinaldi, Engineering magnetic nanoparticles and their integration with microfluidics for cell isolation. J. Colloid Interface Sci. 564, 204–215 (2020)

    Article  CAS  PubMed  Google Scholar 

  • A. Van Reenen, A.M. De Jong, J.M. Den Toonder, M.W. Prins, Integrated lab-on-chip biosensing systems based on magnetic particle actuation–a comprehensive review. Lab Chip 14, 1966–1986 (2014)

    Article  PubMed  Google Scholar 

  • L. Váradi, J.L. Luo, D.E. Hibbs, J.D. Perry, R.J. Anderson, S. Orenga, P.W. Groundwater, Methods for the detection and identification of pathogenic bacteria: past, present, and future. Chem. Soc. Rev. 46, 4818–4832 (2017)

    Article  PubMed  Google Scholar 

  • C. Wang, L. Qi, R. Liang, A molecularly imprinted polymer-based potentiometric sensor based on covalent recognition for the determination of dopamine. J. Anal. Methods Chem. 13, 620–625 (2021)

    CAS  Google Scholar 

  • C. Wang, M. Ye, L. Cheng, R. Li, W. Zhu, Z. Shi, C. Fan, J. He, J. Liu, Z. Liu, Simultaneous isolation and detection of circulating tumor cells with a microfluidic silicon-nanowire-array integrated with magnetic upconversion nanoprobes. Biomaterials 54, 55–62 (2015)

    Article  CAS  PubMed  Google Scholar 

  • C.-H. Wu, Y.-Y. Huang, P. Chen, K. Hoshino, H. Liu, E.P. Frenkel, J.X. Zhang, K.V. Sokolov, Versatile immunomagnetic nanocarrier platform for capturing cancer cells. ACS Nano 7, 8816–8823 (2013)

    Article  CAS  PubMed  Google Scholar 

  • G. Wu, Y. Zhao, X. Li, M.M. Ali, S. Jia, Y. Ren, L. Hu, Single-cell extracellular vesicle analysis by microfluidics and beyond. Trends Anal. Chem. 159, 116930 (2023)

    Article  CAS  Google Scholar 

  • N. Xia, T.P. Hunt, B.T. Mayers, E. Alsberg, G.M. Whitesides, R.M. Westervelt, D.E. Ingber, Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomed. Microdevices 8, 299–308 (2006)

    Article  CAS  PubMed  Google Scholar 

  • S.-Y. Yang, K.-Y. Lien, K.-J. Huang, H.-Y. Lei, G.-B. Lee, Micro flow cytometry utilizing a magnetic bead-based immunoassay for rapid virus detection. Biosens. Bioelectron. 24, 855–862 (2008)

    Article  CAS  Google Scholar 

  • F. Yao, P. Zhu, J. Chen, S. Li, B. Sun, Y. Li, M. Zou, X. Qi, P. Liang, Q. Chen, Synthesis of nanoparticles via microfluidic devices and integrated applications. Mikrochim. Acta 190, 256 (2023)

    Article  CAS  PubMed  Google Scholar 

  • L. Yao, L. Wang, F. Huang, G. Cai, X. Xi, J. Lin, A microfluidic impedance biosensor based on immunomagnetic separation and urease catalysis for continuous-flow detection of E. coli O157: H7. Sens. Actuators B Chem. 259, 1013–1021 (2018)

    Article  CAS  Google Scholar 

  • S. Yoon, J.A. Kim, S.H. Lee, M. Kim, T.H. Park, Droplet-based microfluidic system to form and separate multicellular spheroids using magnetic nanoparticles. Lab Chip 13, 1522–1528 (2013)

    Article  CAS  PubMed  Google Scholar 

  • F. Zeinali Sehrig, S. Majidi, N. Nikzamir, N. Nikzamir, M. Nikzamir, A. Akbarzadeh, Magnetic nanoparticles as potential candidates for biomedical and biological applications. Artif. Cells. Nanomed. Biotechnol. 44, 918–927 (2016)

    CAS  PubMed  Google Scholar 

  • L. Zeng, X. Chen, R. Zhang, S. Hu, H. Zhang, Y. Zhang, H. Yang, High-resolution separation of nanoparticles using a negative magnetophoretic microfluidic system. Micromachines 13, 377 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  • J. Zhang, N. Nt, Magnetic cell separation, in Magnetic materials and technologies for medical applications (Woodhead Publishing, 2022)

    Google Scholar 

  • L. Zheng, G. Cai, S. Wang, M. Liao, Y. Li, J. Lin, A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157: H7 using gold nanoparticle aggregation and smart phone imaging. Biosens. Bioelectron. 124, 143–149 (2019)

    Article  PubMed  Google Scholar 

  • X.-C. Zhi, M. Zhang, T.-T. Meng, X.-B. Zhang, Z.-D. Shi, Y. Liu, J.-J. Liu, S. Zhang, J. Zhang, Efficacy and feasibility of the immunomagnetic separation based diagnosis for detecting sentinel lymph node metastasis from breast cancer. Int. J. Nanomed. 10, 2775–2784 (2015)

    CAS  Google Scholar 

  • Q. Zhou, Y. Lin, K. Zhang, M. Li, D. Tang, Reduced graphene oxide/BiFeO3 nanohybrids-based signal-on photoelectrochemical sensing system for prostate-specific antigen detection coupling with magnetic microfluidic device. Biosens. Bioelectron. 101, 146–152 (2018)

    Article  CAS  PubMed  Google Scholar 

  • T. Zhu, R. Cheng, S.A. Lee, E. Rajaraman, M.A. Eiteman, T.D. Querec, E.R. Unger, L. Mao, Continuous-flow ferrohydrodynamic sorting of particles and cells in microfluidic devices. Microfluid. Nanofluidics 13, 645–654 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • L. Zou, B. Huang, X. Zheng, H. Pan, Q. Zhang, W. Xie, Z. Zhao, X. Li, Microfluidic synthesis of magnetic nanoparticles in droplet-based microreactors. Mater. Chem. Phys. 276, 125384 (2022)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Mahtab Ghasemi Toudeshkchouei: Conception and design of study, Writing - Original Draft. H. Abdoos: Supervision, Conception and design of study, Writing - Review & Editing.

Corresponding author

Correspondence to Hassan Abdoos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1245 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toudeshkchouei, M.G., Abdoos, H. Magnetic nanoparticles fabricated/integrated with microfluidics for biological applications: A review. Biomed Microdevices 26, 13 (2024). https://doi.org/10.1007/s10544-023-00693-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-023-00693-9

Keywords

Navigation