Skip to main content

Advertisement

Log in

The effect of magnetic bead size on the isolation efficiency of lung cancer cells in a serpentine microchannel with added cavities

  • Research
  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

An investigation was conducted to examine the effect of magnetic bead (MB) size on the effectiveness of isolating lung cancer cells using the immunomagnetic separation (IMS) method in a serpentine microchannel with added cavities (SMAC) structure. Carboxylated magnetic beads were specifically conjugated to target cells through a modification procedure using aptamer materials. Cells immobilized with different sizes (in micrometers) of MBs were captured and isolated in the proposed device for comparison and analysis. The study yields significance regarding the clarification of device working principles by using a computational model. Furthermore, an accurate evaluation of the MB size impact on capture efficiency was achieved, including the issue of MB-cell accumulation at the inlet-channel interface, despite it being overlooked in many previous studies. As a result, our findings demonstrated an increasing trend in binding efficiency as the MB size decreased, evidenced by coverages of 50.5%, 60.1%, and 73.4% for sizes of 1.36 μm, 3.00 μm, and 4.50 μm, respectively. Additionally, the overall capture efficiency (without considering the inlet accumulation) was also higher for smaller MBs. However, when accounting for the actual number of cells entering the channel (i.e., the effective capture), larger MBs showed higher capture efficiency. The highest effective capture achieved was 88.4% for the size of 4.50 μm. This research provides an extensive insight into the impact of MB size on the performance of IMS-based devices and holds promise for the efficient separation of circulating cancer cells (CTCs) in practical applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • V. Akpe, T.H. Kim, C.L. Brown, I.E. Cock, Circulating tumour cells: a broad perspective. J. R. Soc. Interface. 17(168), 20200065 (2020)

    Article  CAS  PubMed Central  Google Scholar 

  • R. Barry, D. Ivanov, Microfluidics in biotechnology. J. Nanobiotechnol. 2, 1–5 (2004)

    Article  Google Scholar 

  • N. Bohmer, N. Demarmels, E. Tsolaki, L. Gerken, K. Keevend, S. Bertazzo, M. Lattuada, I.K. Herrmann, Removal of cells from body fluids by magnetic separation in batch and continuous mode: influence of bead size, concentration, and contact time. ACS Appl. Mater. Interfaces 9(35), 29571–29579 (2017)

    Article  CAS  PubMed  Google Scholar 

  • P. Chen, Y.-Y. Huang, K. Hoshino, X. Zhang, Multiscale immunomagnetic enrichment of circulating tumor cells: from tubes to microchips. Lab Chip 14(3), 446–458 (2014)

    Article  CAS  PubMed  Google Scholar 

  • A.G. Dardeer, N.G. Hussein, S.A. Abd El-Kaream, New impacts of Garcinia Cambogia as Sono/photosensitiser on Ehrlich ascites carcinoma bearing mice. Int J Inf Res Rev 8, 7182 (2021)

    Google Scholar 

  • J.F. Edd, A. Mishra, K.C. Smith, R. Kapur, S. Maheswaran, D.A. Haber, M. Toner, Isolation of circulating tumor cells. Iscience 25(8), 104696 (2022)

  • X. Fan, C. Jia, J. Yang, G. Li, H. Mao, Q. Jin, J. Zhao, A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells. Biosens. Bioelectron. 71, 380–386 (2015)

    Article  CAS  PubMed  Google Scholar 

  • K. Hanada, A. Okazaki, N. Hirano, Y. Izumi, T. Minami, J. Ikemoto, K. Kanemitsu, F. Hino, Effective screening for early diagnosis of pancreatic cancer. Best Pract. Res. Clin. Gastroenterol. 29(6), 929–939 (2015)

    Article  PubMed  Google Scholar 

  • N. Hao, J.X. Zhang, Magnetic nanotechnology for circulating tumor biomarkers screening: Rational design, microfluidics integration and applications. Biomicrofluidics 13(5), 051501 (2019)

    Article  Google Scholar 

  • M. Hejazian, W. Li, N.-T. Nguyen, Lab on a chip for continuous-flow magnetic cell separation. Lab Chip 15(4), 959–970 (2015)

    Article  CAS  PubMed  Google Scholar 

  • A. Hrynevich, Y. Li, G. Cedillo-Servin, J. Malda, M. Castilho, (Bio) fabrication of microfluidic devices and organs-on-a-chip, 3D Printing in Medicine, (Elsevier, 2023), pp. 273–336

  • M.S. Kim, T.S. Sim, Y.J. Kim, S.S. Kim, H. Jeong, J.-M. Park, H.-S. Moon, S.I. Kim, O. Gurel, S.S. Lee, SSA-MOA: a novel CTC isolation platform using selective size amplification (SSA) and a multi-obstacle architecture (MOA) filter. Lab Chip 12(16), 2874–2880 (2012)

    Article  CAS  PubMed  Google Scholar 

  • G. Korir, M. Prakash, Punch card programmable microfluidics. PLoS ONE 10(3), e0115993 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  • B. Kwak, J. Lee, D. Lee, K. Lee, O. Kwon, S. Kang, Y. Kim, Selective isolation of magnetic nanoparticle-mediated heterogeneity subpopulation of circulating tumor cells using magnetic gradient based microfluidic system. Biosens. Bioelectron. 88, 153–158 (2017)

    Article  CAS  PubMed  Google Scholar 

  • P. Li, Y. Tian, D. Pappas, Comparison of inlet geometry in microfluidic cell affinity chromatography. Anal. Chem. 83(3), 774–781 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • F. Li, H. Xu, P. Sun, Z. Hu, Z.P. Aguilar, Size effects of magnetic beads in circulating tumour cells magnetic capture based on streptavidin–biotin complexation. IET Nanobiotechnol. 13(1), 6–11 (2019)

    Article  PubMed  Google Scholar 

  • F. Li, H. Xu, Y. Zhao, Magnetic particles as promising circulating tumor cell catchers assisting liquid biopsy in cancer diagnosis: A review. TrAC, Trends Anal. Chem. 145, 116453 (2021)

    Article  CAS  Google Scholar 

  • P.-H. Lin, B.-R. Li, Passively driven microfluidic device with simple operation in the development of nanolitre droplet assay in nucleic acid detection. Sci. Rep. 11(1), 21019 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • S. Lin, X. Zhi, D. Chen, F. Xia, Y. Shen, J. Niu, S. Huang, J. Song, J. Miao, D. Cui, A flyover style microfluidic chip for highly purified magnetic cell separation. Biosens. Bioelectron. 129, 175–181 (2019)

    Article  CAS  PubMed  Google Scholar 

  • D. Lin, L. Shen, M. Luo, K. Zhang, J. Li, Q. Yang, F. Zhu, D. Zhou, S. Zheng, Y. Chen, Circulating tumor cells: Biology and clinical significance. Signal Transduct. Target. Ther. 6(1), 404 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Y. Mao, X. Huang, S. Xiong, H. Xu, Z.P. Aguilar, Y. Xiong, Large-volume immunomagnetic separation combined with multiplex PCR assay for simultaneous detection of Listeria monocytogenes and Listeria ivanovii in lettuce. Food Control 59, 601–608 (2016)

    Article  CAS  Google Scholar 

  • H. Mikhail, I. Mekkawy, Magnetic susceptibility of lead sulphide. Czechoslov. J. Phys. B 28(2), 216–219 (1978)

    Article  Google Scholar 

  • B. Mostert, S. Sleijfer, J.A. Foekens, J.W. Gratama, Circulating tumor cells (CTCs): detection methods and their clinical relevance in breast cancer. Cancer Treat. Rev. 35(5), 463–474 (2009)

    Article  CAS  PubMed  Google Scholar 

  • M.D. Nelson, N. Ramkumar, B.K. Gale, Flexible, transparent, sub-100 µm microfluidic channels with fused deposition modeling 3D-printed thermoplastic polyurethane. J. Micromech. Microeng. 29(9), 095010 (2019)

    Article  CAS  Google Scholar 

  • N.-V. Nguyen, C.-P. Jen, Selective detection of human lung adenocarcinoma cells based on the aptamer-conjugated self-assembled monolayer of gold nanoparticles. Micromachines 10(3), 195 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • N.-V. Nguyen, C.-H. Yang, C.-J. Liu, C.-H. Kuo, D.-C. Wu, C.-P. Jen, An aptamer-based capacitive sensing platform for specific detection of lung carcinoma cells in the microfluidic chip. Biosensors 8(4), 98 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • W. Pakhira, R. Kumar, K.M. Ibrahimi, Distinct separation of multiple CTCs using inertial focusing phenomena utilizing single-looped spiral microfluidic lab-on-chip. Chem. Eng. Sci. 275, 118724 (2023)

    Article  CAS  Google Scholar 

  • F. Petersson, L. Åberg, A.-M. Swärd-Nilsson, T. Laurell, Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Anal. Chem. 79(14), 5117–5123 (2007)

    Article  CAS  PubMed  Google Scholar 

  • G.C. Porter, S.N. Sikora, J.-U. Shim, B.J. Murray, M.D. Tarn, On-chip density-based sorting of supercooled droplets and frozen droplets in continuous flow. Lab Chip 20(21), 3876–3887 (2020)

    Article  CAS  PubMed  Google Scholar 

  • P. Puri, V. Kumar, S. Belgamwar, N. Sharma, Microfluidic device for cell trapping with carbon electrodes using dielectrophoresis. Biomed. Microdevice 20, 1–10 (2018)

    Article  CAS  Google Scholar 

  • A. Quarta, M. Amorín, M.J. Aldegunde, L. Blasi, A. Ragusa, S. Nitti, G. Pugliese, G. Gigli, J.R. Granja, T. Pellegrino, Novel synthesis of platinum complexes and their intracellular delivery to tumor cells by means of magnetic nanoparticles. Nanoscale 11(48), 23482–23497 (2019)

    Article  PubMed  Google Scholar 

  • D. Rodoplu, C.-S. Chang, C.-Y. Kao, C.-H. Hsu, A simple magnetic-assisted microfluidic method for rapid detection and phenotypic characterization of ultralow concentrations of bacteria. Talanta 230, 122291 (2021)

    Article  CAS  PubMed  Google Scholar 

  • E.B. Setterington, E.C. Alocilja, Electrochemical biosensor for rapid and sensitive detection of magnetically extracted bacterial pathogens. Biosensors 2(1), 15–31 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • S.S. Shevkoplyas, A.C. Siegel, R.M. Westervelt, M.G. Prentiss, G.M. Whitesides, The force acting on a superparamagnetic bead due to an applied magnetic field. Lab Chip 7(10), 1294–1302 (2007)

    Article  CAS  PubMed  Google Scholar 

  • X.-Y. Sun, Q.-Z. Gan, J.-M. Ouyang, Size-dependent cellular uptake mechanism and cytotoxicity toward calcium oxalate on Vero cells. Sci. Rep. 7(1), 41949 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • M. Tang, C.-Y. Wen, L.-L. Wu, S.-L. Hong, J. Hu, C.-M. Xu, D.-W. Pang, Z.-L. Zhang, A chip assisted immunomagnetic separation system for the efficient capture and in situ identification of circulating tumor cells. Lab Chip 16(7), 1214–1223 (2016)

    Article  CAS  PubMed  Google Scholar 

  • W. Tang, S. Zhu, D. Jiang, L. Zhu, J. Yang, N. Xiang, Channel innovations for inertial microfluidics. Lab Chip 20(19), 3485–3502 (2020)

    Article  CAS  PubMed  Google Scholar 

  • S.K. Tiwari, S. Bhat, K.K. Mahato, Design and fabrication of low-cost microfluidic channel for biomedical application. Sci. Rep. 10(1), 9215 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • H. Vu-Dinh, H. Feng, C.-P. Jen, Effective isolation for Lung carcinoma cells based on Immunomagnetic separation in a Microfluidic Channel. Biosensors 11(1), 23 (2021a)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • H. Vu-Dinh, W.Y. Tsao, C.-P. Jen, Enhanced immunoassay in a nanofluidic preconcentrator utilizing nano-interstices among self-assembled gold nanoparticles. Biomed. Microdevice 24(2), 19 (2022)

    Article  CAS  Google Scholar 

  • H. Vu-Dinh, L. Do Quang, C.C. Chang, C.N. Nhu, H.T. Thanh, T.T. Bui, T.C. Duc, C.-P. Jen, Immunomagnetic separation in a novel cavity-added serpentine microchannel structure for the selective isolation of lung adenocarcinoma cells. Biomed. Microdevices 23(4), 1–13 (2021)

  • H. Vu‐Dinh, L.D. Quang, Y.R. Lin, C.P. Jen, A dielectrophoresis‐based platform of cancerous cell capture using aptamer‐functionalized gold nanoparticles in a microfluidic channel. Electrophoresis 44(11–12), 1002–1015 (2023)

  • R. Wang, Y. Chen, K. Fan, F. Ji, J. Wu, Y.-H. Yu, Nominal effective immunoreaction volume of magnetic beads at single bead level. J. Zhejiang Univ. Sci. B 18(10), 845 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Z. Wang, R. Cai, Z. Gao, Y. Yuan, T. Yue, Immunomagnetic separation: An effective pretreatment technology for isolation and enrichment in food microorganisms detection. Compr. Rev. Food Sci. Food Saf. 19(6), 3802–3824 (2020)

    Article  CAS  PubMed  Google Scholar 

  • C. Xia, X. Dong, H. Li, M. Cao, D. Sun, S. He, F. Yang, X. Yan, S. Zhang, N. Li, Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin. Med. J. 135(05), 584–590 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  • H. Xu, Z.P. Aguilar, L. Yang, M. Kuang, H. Duan, Y. Xiong, H. Wei, A. Wang, Antibody conjugated magnetic iron oxide nanoparticles for cancer cell separation in fresh whole blood. Biomaterials 32(36), 9758–9765 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • C.T. Yavuz, J. Mayo, W.W. Yu, A. Prakash, J.C. Falkner, S. Yean, L. Cong, H.J. Shipley, A. Kan, M. Tomson, Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314(5801), 964–967 (2006)

    Article  PubMed  Google Scholar 

  • Z. Zhang, S. Nagrath, Microfluidics and cancer: are we there yet? Biomed. Microdevice 15, 595–609 (2013)

    Article  CAS  Google Scholar 

  • Y. Zhang, M. Li, X. Gao, Y. Chen, T. Liu, Nanotechnology in cancer diagnosis: progress, challenges and opportunities. J. Hematol. Oncol. 12(1), 1–13 (2019)

    Article  Google Scholar 

  • Z. Zhao, L. Xu, X. Shi, W. Tan, X. Fang, D. Shangguan, Recognition of subtype non-small cell lung cancer by DNA aptamers selected from living cells. Analyst 134(9), 1808–1814 (2009)

    Article  CAS  PubMed  Google Scholar 

  • J. Zhou, A. Kulasinghe, A. Bogseth, K. O’Byrne, C. Punyadeera, I. Papautsky, Isolation of circulating tumor cells in non-small-cell-lung-cancer patients using a multi-flow microfluidic channel. Microsyst. Nanoeng. 5(1), 8 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • W. Zhuge, H. Liu, W. Wang, J. Wang, Microfluidic bioscaffolds for regenerative engineering. Eng. Regen. 3(1), 110–120 (2022)

  • Z. Zhuo, J. Wang, Y. Luo, R. Zeng, C. Zhang, W. Zhou, K. Guo, H. Wu, W. Sha, H. Chen, Targeted extracellular vesicle delivery systems employing superparamagnetic iron oxide nanoparticles. Acta Biomater. 134, 13–31 (2021)

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is funded by the Ministry of Science and Technology of the Republic of China (Taiwan) through the grant number of MOST 109-2923-E-194-001-MY3 as well as well as Changhua Christian Hospital (110-CCH-MST-142) in Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

T-C. S. and H. V.-D. wrote the main manuscript text; H. V.-D. and S.-H. L. curated the experimental data; L. D. Q. performed the numerical results; T. C. D. and C.P. J. reviewed the manuscript; C.-P. J. supervised and validated the design and concept of this work. All authors reviewed the manuscript.

Corresponding author

Correspondence to Chun-Ping Jen.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18660 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, TC., Vu-Dinh, H., Lin, SH. et al. The effect of magnetic bead size on the isolation efficiency of lung cancer cells in a serpentine microchannel with added cavities. Biomed Microdevices 26, 7 (2024). https://doi.org/10.1007/s10544-023-00689-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-023-00689-5

Keywords

Navigation