Skip to main content
Log in

Microfluidic Device for Cell Trapping with Carbon Electrodes Using Dielectrophoresis

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

Dielectrophoresis (DEP) devices have proven to be one of the most promising tools to transport, accumulate and sort various cells and particles. The major challenge in the development of DEP devices is the high cost, low yield using Microelectromechanical systems (MEMS). In this paper, we demonstrate a facile, low-cost, and high-throughput method of constructing continuous-flow DEP devices using screen-printing technology. Much literature has concluded that the use of carbon electrodes provides more cost effective and more durable DEP devices than metal electrodes. More efficient devices not only need to be constructed from a low cost material but also from an inexpensive fabrication technique. In this study, we used yeast cells as model cells to perform a comparative study on trapping efficiency of carbon and gold electrode DEP devices. We have proposed, the sealing of carbon DEP device with glass, instead of PDMS, using adhesive bonding technique which not only reduce the leakage problem but also increases the device performance. We also report the biocompatibility analysis of carbon paste and the results indicates its usefulness in eventual studies involving carbon-MEMS devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • S. Agarwal, A. Sebastian, L.M. Forrester, G.H. Markx, Formation of embryoid bodies using dielectrophoresis. Biomicrofluidics 6(2), 24101 (2012)

    Article  Google Scholar 

  • F.F. Becker, X.B. Wang, Y. Huang, R. Pethig, J. Vykoukal, P.R.C. Gascoyne, Separation of human breast cancer cells from blood by differential dielectric affinity. Proc. Natl. Acad. Sci. 92(3), 860–864 (1995)

    Article  Google Scholar 

  • M. Blazewicz, Carbon materials in the treatment of soft and hard tissue injuries. Eur. cell. Mater. 2, 21–29 (2001)

    Google Scholar 

  • J.Y. Chan, A.B.A. Kayani, M.A.M. Ali, C.K. Kok, B.Y. Majlis, S.L.L. Hoe, M. Marzuki, A.S.B. Khoo, K. Ostrikov, M.A. Rahman, S. Sriram, Dielectrophoresis-based microfluidic platforms for cancer diagnostics. Biomicrofluidics 12(1), 011503 (2018)

    Article  Google Scholar 

  • P.R.C. Gascoyne, X. Wang, Y. Huang, F.F. Becker, Dielectrophoretic Separation of Cancer Cells from Blood. IEEE Trans. Ind. Appl. 33(3), 670–678 (1997)

    Article  Google Scholar 

  • W.A. Germishuizen, C. Walti, R. Wirtz, M.B. Johnston, M. Pepper, A.G. Davies, A.P.J. Middelberg, Selective dielectrophoretic manipulation of surface-immobilized DNA molecules. Nanotechnology 14(8), 896–902 (2003)

    Article  Google Scholar 

  • N.G. Green, H. Morgan, Separation of submicrometre particles using a combination of dielectrophoretic and electrohydrodynamic forces. J. Phys. D. Appl. Phys. 31(7), L25 (1998)

    Article  Google Scholar 

  • M.P. Hughes, H. Morgan, F.J. Rixon, J.P.H. Burt, R. Pethig, Manipulation of herpes simplex virus type 1 by dielectrophoresis. Biochim. Biophys. Acta Gen. Subj. 1425(1), 119–126 (1998)

    Article  Google Scholar 

  • M.D.C. Jaramillo, E. Torrents, R. Martínez-Duarte, M. Madou, A. Juarez, On-line separation of bacterial cells by carbon-electrode dielectrophoresis. Electrophoresis 31(17), 2921–2928 (2010)

    Article  Google Scholar 

  • K. Kinoshita, Carbon: electrochemical and physicochemical propertie, Wiley, (1998)

  • W.V. Kotlensky, H.E. Martens, Tensile properties of glassy carbon to 2900°C. Nature 06, 1276–1247 (1965)

    Google Scholar 

  • M. Li, S. Li, W. Cao, W. Li, W. Wen, G. Alici, Continuous particle focusing in a waved microchannel using negative dc dielectrophoresis. J. Micromech. Microeng. 22(9), 095001–095008 (2012)

    Article  Google Scholar 

  • X. Lin, J. Yao, H. Dong, X. Cao, Effective Cell and Particle Sorting and Separation in Screen-Printed Continuous-Flow Microfluidic Devices with 3D Sidewall Electrodes. Ind. Eng. Chem. Res. 55(51), 13085–13093 (2016)

    Article  Google Scholar 

  • M. Madou, S. Sharma, Micro and nano patterning of carbon electrodes for bioMEMS, Bioinspired. Bioimmim. Nanobiomaterials. 1(4), 252–265 (2012)

    Article  Google Scholar 

  • R. Martinez-Duarte, Carbon-electrode Dielectrophoresis for Bioparticle Manipulation. ECS Trans. 61(7), 11–22 (2014)

    Article  Google Scholar 

  • R. Martinez-Duarte, J. Andrade-Roman, S. Martinez, M. Madou, A High Throughput Multi-Stage, Multi-Frequency Filter and Separation Device Based on Carbon Dielectrophoresis. NSTI-Nanotech. 3, 316–319 (2008)

    Google Scholar 

  • R. Martinez-Duarte, R.A. Gorkin, K. Abi-Samra, M.J. Madou, The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform. Lab Chip 10(8), 1030–1043 (2010)

    Article  Google Scholar 

  • R. Martinez-Duarte, P. Renaud, M.J. Madou, A novel approach to dielectrophoresis using carbon electrodes. Electrophoresis 32(17), 2385–2392 (2011)

    Google Scholar 

  • K.E. Mccloskey, J.J. Chalmers, M. Zborowski, Magnetic Cell Separation : Characterization of Magnetophoretic Mobility. Anal. Chem. 75(24), 6868–6874 (2003)

    Article  Google Scholar 

  • A.R. Minerick, R. Zhou, P. Takhistov, H.C. Chang, Manipulation and characterization of red blood cells with alternating current fields in microdevices. Electrophoresis 24(21), 3703–3717 (2003)

    Article  Google Scholar 

  • H. Morgan, M.P. Hughes, N.G. Green, Separation of submicron bioparticles by dielectrophoresis. Biophys. J. 77(1), 516–525 (1999)

    Article  Google Scholar 

  • E. Peiner, A. Tibrewala, R. Bandorf, L. Holger, L. Doering, W. Limmer, Diamond-like carbon for MEMS. J. Micromech. Microeng. 17(7), S83–S90 (2007)

    Article  Google Scholar 

  • R. Pethig, Y. Huang, X. Wang, J.P.H. Burt, Positive and negative dielectrophoretic collection of colloidal particles using interdigitated castellated microelectrodes. J. Phys. D. Appl. Phys. 25(5), 881–888 (1992)

    Article  Google Scholar 

  • O. Pilloni, J.L. Benitez Benitez, L.F. Olguin, C.A.P. Morales, L.O. Ramos, Micro Device for Bio-Particle Positioning in a 3D space based on Carbon MEMS and Dielectrophoretic Forces. ECS Trans. 72(31), 17–24 (2016)

    Article  Google Scholar 

  • P. Puri, V Kumar, M Ananthasubramanian, N.N Sharma, ISSS 2017, International Conf. on Smart Materials Structures and Systems, IISc, Bangalore, 5-7 July, (2017)

  • C. Qian, H. Huang, L. Chen, X. Li, Z. Ge, T. Chen, Z. Yang, L. Sun, Dielectrophoresis for bioparticle manipulation. Int. J. Mol. Sci. 15(10), 18281–18309 (2014)

    Article  Google Scholar 

  • Q. Ramadan, V. Samper, D. Poenar, Z. Liang, C. Yu, T.M. Lim, Simultaneous cell lysis and bead trapping in a continuous flow microfluidic device. Sensors Actuators B Chem. 113(2), 944–955 (2006)

    Article  Google Scholar 

  • T. Ryll, G. Dutina, A. Reyes, J. Gunson, L. Krummen, T. Etcheverry, Performance of small-scale CHO perfusion cultures using an acoustic cell filtration device for cell retention: characterization of separation efficiency and impact of perfusion on product quality. Biotechnol. Bioeng. 9(4), 440–449 (2000)

    Article  Google Scholar 

  • A.C. Sabuncu, J.A. Liu, S.J. Beebe, A. Beskok, Dielectrophoretic separation of mouse melanoma clones. Biomicrofluidics 4(2), 21101 (2010)

    Article  Google Scholar 

  • J. Sullivan, T. Friedmann, K. Hjort, Diamond and Amorphous carbon. MRS Bull. 26(4), 309–311 (2001)

    Article  Google Scholar 

  • G.T. Teixidor, R.A. Gorkin, P.P. Tripathi, G.S. Bisht, M. Kulkarni, T.K. Maiti, T.K. Bhattacharyya, J.R. Subramanian, A. Sharma, B.Y. Park, M. Madou, Carbon microelectromechanical systems as a substratum for cell growth. Biomed. Mater. 3(3), 034116–034124 (2008)

    Article  Google Scholar 

  • V.V. Tuchin, A clear vision for laser diagnostics (review). IEEE J. Sel. Top. Quantum Electron. 13(6), 1621–1628 (2007)

    Article  Google Scholar 

  • H. Xu, K. Malladi, C. Wang, L. Kulinsky, M. Song, M. Madou, Carbon post-microarrays for glucose sensors. Biosens. Bioelectron. 23(11), 1637–1644 (2008)

    Article  Google Scholar 

  • S. Yamada, H. Sato, Some physical properties of glassy carbon. Nature 193, 261–262 (1962)

    Article  Google Scholar 

  • F. Yang, X. Yang, H. Jiang, P. Bulkhaults, P. Woods, Dielectrophoretic separation of colorectal cancer cells. Biomicrofluidics 4(1), 13204 (2010)

    Article  Google Scholar 

  • J. Zhu, X. Xuan, Particle electrophoresis and dielectrophoresis in curved microchannels. J. Colloid Interface Sci. 340(2), 285–290 (2009)

    Article  Google Scholar 

  • J. Zhu, X. Xuan, Curvature-induced dielectrophoresis for continuous separation of particles by charge in spiral microchannels. Biomicrofluidics 5(2), 024111–024123 (2011)

    Article  Google Scholar 

  • K. Zhu, A.S. Kaprelyants, E.G. Salina, G.H. Markx, Separation by dielectrophoresis of dormant and nondormant bacterial cells of Mycobacterium smegmatis. Biomicrofluidics 4(2), 22809 (2010a)

    Article  Google Scholar 

  • J. Zhu, T.R.J. Tzeng, X. Xuan, Continuous dielectrophoretic separation of particles in a spiral microchannel. Electrophoresis 31(8), 1382–1388 (2010b)

    Article  Google Scholar 

  • H. Zhu, X. Lin, Y. Su, H. Dong, J. Wu, Screen-printed microfluidic dielectrophoresis chip for cell separation, Biosens. Bioelectron. Biosens. Bioelectron. 63, 371–378 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge CeNSE IISC, Bangalore and Director, SCL Mohali for allowing us to avail the fabrication facility, Dept. of Biological science, BITS, Pilani for extending their help in cell culturing, which has led to the completion of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paridhi Puri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puri, P., Kumar, V., Belgamwar, S.U. et al. Microfluidic Device for Cell Trapping with Carbon Electrodes Using Dielectrophoresis. Biomed Microdevices 20, 102 (2018). https://doi.org/10.1007/s10544-018-0350-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10544-018-0350-0

Keywords

Navigation