Skip to main content
Log in

Degradation characteristics of crude oil by a consortium of bacteria in the existence of chlorophenol

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

In order to enhance the degradation effect of microorganisms on crude oil in the existence of chlorophenol compounds, oil-degrading bacteria C4 (Alcaligenes faecails), C5 (Bacillus sp.) and 2,4-dichlorophenol (2,4-DCP) degrading bacteria L3 (Bacillus marisflavi), L4 (Bacillus aquimaris) were isolated to construct a highly efficient consortium named (C4C5 + L3L4). When the compound bacteria agent combination by VC4: VC5: VL3: VL4 = 1:2:2:1, the crude oil degradation efficiency of 7 days was stable at 50.63% ~ 55.43% under different conditions. Degradation mechanism was analyzed by FTIR, GC–MS and IC technology and the following conclusions showed that in the system of adding consortium (C4C5 + L3L4), the heavy components were converted into saturated and unsaturated components. The bacterial consortium could first degrade medium and long chain alkanes into short chain hydrocarbons and then further degrade. And the dechlorination efficiency of 2,4-DCP in the degradation system reached 73.83%. The results suggested that the potential applicability and effectiveness of the selected bacteria consortium for the remediation of oil-contaminated water or soil with the existence of chlorophenol compound.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets and materials were used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  • Alkhuraiji TS, Alkhuraiji WS (2019) Detailed study of water radiolysis-based degradation of chloroorganic pollutants in aqueous solutions. J Hazard Mater 368:569–577. https://doi.org/10.1016/j.jhazmat.2019.01.090

    Article  CAS  PubMed  Google Scholar 

  • Arora P, Bae H (2014) Bacterial degradation of chlorophenols and their derivatives. Microb Cell Fact 13(1):1–17

    Article  Google Scholar 

  • Atakpa EO, Zhou H, Jiang L, Ma Y, Liang Y, Li Y, Zhang D, Zhang C (2022) Improved degradation of petroleum hydrocarbons by co-culture of fungi and biosurfactant-producing bacteria. Chemosphere 290:133337. https://doi.org/10.1016/j.chemosphere.2021.133337

    Article  CAS  PubMed  Google Scholar 

  • Bharali P, Das S, Konwar BK, Thakur AJ (2011) Crude biosurfactant from thermophilic Alcaligenes faecalis: Feasibility in petro-spill bioremediation. Int Biodeter Biodegr 65(5):682–690. https://doi.org/10.1016/j.ibiod.2011.04.001

    Article  CAS  Google Scholar 

  • Bilen Ozyurek S, Seyis Bilkay I (2018) Biodegradation of petroleum by Klebsiella pneumoniae isolated from drilling fluid. Int J Environ Sci Te 15(10):2107–2116. https://doi.org/10.1007/s13762-017-1581-y

    Article  CAS  Google Scholar 

  • Chang Q, Tang H (2014) Immobilization of horseradish peroxidase on NH2-modified magnetic Fe3O4/SiO2 particles and its application in removal of 2,4-dichlorophenol. Molecules 19(10):15768–15782

    Article  Google Scholar 

  • Chen L, Yong R, Xing B, Mai B, He J, Wei X, Fu J, Sheng G (2005) Contents and sources of polycyclic aromatic hydrocarbons and organochlorine pesticides in vegetable soils of Guangzhou, China. Chemosphere 60(7):879–890

    Article  CAS  Google Scholar 

  • Chettri B, Singha NA, Mukherjee A, Rai AN, Singh AK (2019) Hydrocarbon degradation potential and competitive persistence of hydrocarbonoclastic bacterium Acinetobacter pittii strain ABC. Arch Microbiol 201(8):1129–40

    Article  CAS  Google Scholar 

  • Descorme C (2017) Catalytic wastewater treatment: oxidation and reduction processes. Recent Studies on chlorophenols. Catal Today S092058611730189X.

  • Fa Lkova M, Vakh C, Shishov A, Zubakina E, Moskvin A, Moskvin L, Bulatov A (2016) Automated IR determination of petroleum products in water based on sequential injection analysis. Talanta 148:661–665

    Article  CAS  Google Scholar 

  • Ghosh S, Chowdhury R, Bhattacharya P (2016) Mixed consortia in bioprocesses: role of microbial interactions. Appl Microbiol Biotechnol 100(10):4283–4295

    Article  CAS  Google Scholar 

  • Guo J, Wu X, Liu S, Zhang Y, Cai Z (2021) Screening of three ammonia-oxidizing bacteria and construction of compounding agent CCZU C6 in high-efficiency ammonia-oxidizing. J Water Process Eng 40:101862. https://doi.org/10.1016/j.jwpe.2020.101862

    Article  Google Scholar 

  • Hamidi Y, Ataei SA, Sarrafi A (2021) Biodegradation of total petroleum hydrocarbons in oily sludge: a comparative study of biostimulation, bioaugmentation, and combination of methods. J Chem Technol Biotechnol 96(5):1302–1307. https://doi.org/10.1002/jctb.6646

    Article  CAS  Google Scholar 

  • Hassen W, Neifar M, Cherif H, Mahjoubi M, Souissi Y, Raddadi N, Fava F, Cherif A (2018) Assessment of genetic diversity and bioremediation potential of pseudomonads isolated from pesticide-contaminated artichoke farm soils. Biotechnology 8(6):263

    Google Scholar 

  • Johnston JE, Lim E, Roh H (2019) Impact of upstream oil extraction and environmental public health: a review of the evidence. Sci Total Environ 657:187–199. https://doi.org/10.1016/j.scitotenv.2018.11.483

    Article  CAS  PubMed  Google Scholar 

  • Kai-Tong W, Li-Yun C, Jian-Feng H, Jie F (2013) A mullite/SiC oxidation protective coating for carbon/carbon composites. J Eur Ceram Soc 33(1):191–198

    Article  Google Scholar 

  • Kalme S, Parshetti G, Gomare S, Govindwar S (2008) Diesel and kerosene degradation by Pseudomonas desmolyticum NCIM 2112 and Nocardia hydrocarbonoxydans NCIM 2386. Curr Microbiol 56(6):581–586

    Article  CAS  Google Scholar 

  • Kikani M, Bhojani G, Amit C, Kumar Madhava A (2021) Chemo-metrically formulated consortium with selectively screened bacterial strains for ameliorated biotransformation and detoxification of 1,4-dioxane. J Hazard Mater 413:125456. https://doi.org/10.1016/j.jhazmat.2021.125456

    Article  CAS  PubMed  Google Scholar 

  • Kumari S, Regar RK, Bajaj A, Ch R, Satyanarayana G, Mudiam M, Manickam N (2017) Simultaneous biodegradation of polyaromatic hydrocarbons by a Stenotrophomonas sp: characterization of nid genes and effect of surfactants on degradation. Indian J Microbiol 57(1):60

    Article  CAS  Google Scholar 

  • Kumari S, Regar RK, Manickam N (2018) Improved polycyclic aromatic hydrocarbon degradation in a crude oil by individual and a consortium of bacteria. Bioresource Technol 254:174–179. https://doi.org/10.1016/j.biortech.2018.01.075

    Article  CAS  Google Scholar 

  • Lim MW, Lau EV, Poh PE (2016) A comprehensive guide of remediation technologies for oil contaminated soil—present works and future directions. Mar Pollut Bull 109(1):14–45. https://doi.org/10.1016/j.marpolbul.2016.04.023

    Article  CAS  PubMed  Google Scholar 

  • Mansur AA, Adetutu EM, Kadali KK, Morrison PD, Nurulita Y, Ball AS (2014) Assessing the hydrocarbon degrading potential of indigenous bacteria isolated from crude oil tank bottom sludge and hydrocarbon-contaminated soil of Azzawiya oil refinery, Libya. Environ Sci Pollut Res 21(18):10725–10735. https://doi.org/10.1007/s11356-014-3018-1

    Article  CAS  Google Scholar 

  • Men Y, Lee P, Harding KC (2013) Characterization of four TCE-dechlorinating microbial enrichments grown with different cobalamin stress and methanogenic conditions. Appl Microbiol Biotechnol 97(14):6439–6450

    Article  CAS  Google Scholar 

  • Mnif I, Mnif S, Sahnoun R, Maktouf S, Ayedi Y, Ellouze-Chaabouni S, Ghribi D (2015) Biodegradation of diesel oil by a novel microbial consortium: comparison between co-inoculation with biosurfactant-producing strain and exogenously added biosurfactants. Environ Sci Pollut R 22(19):14852–14861. https://doi.org/10.1007/s11356-015-4488-5

    Article  CAS  Google Scholar 

  • Nawawi NM, Ahmad SA, Shukor MY, Syed MA, Khalil KA, Ab Rahman NA, Dahalan FA, Ibrahim AL (2015) Statistical optimisation for improvement of phenol degradation by Rhodococcus sp. NAM 81. J Environ Biol 37(3):443–451

    Google Scholar 

  • Nievas ML, Commendatore MG, Olivera NL, Esteves JL, Bucala V (2006) Biodegradation of bilge waste from Patagonia with an indigenous microbial community. Bioresour Technol 97(18):2280–90

    Article  CAS  Google Scholar 

  • Nikolaivits E, Agrafiotis A, Baira E, Le Goff G, Tsafantakis N, Chavanich SA, Benayahu Y, Ouazzani J, Fokialakis N, Topakas E (2020) Degradation mechanism of 2,4-dichlorophenol by fungi isolated from marine invertebrates. Int J Mol Sci 21(9):3317. https://doi.org/10.3390/ijms21093317

    Article  CAS  PubMed Central  Google Scholar 

  • Nisenbaum M, Corti-Monzón G, Villegas-Plazas M, Junca H, Mangani A, Patat ML, González JF, Murialdo SE (2020) Enrichment and key features of a robust and consistent indigenous marine-cognate microbial consortium growing on oily bilge wastewaters. Biodegradation 31(1–2):91–108. https://doi.org/10.1007/s10532-020-09896-w

    Article  PubMed  Google Scholar 

  • Papazi A, Karamanli M, Kotzabasis K (2019) Comparative biodegradation of all chlorinated phenols by the microalga Scenedesmus obliquus—the biodegradation strategy of microalgae. J Biotechnol 296:61–68

    Article  CAS  Google Scholar 

  • Parekh VR, Traxler R, Sobek J (1977) N-Alkane oxidation enzymes of a pseudomonad. Appl Environ Microbiol 33(4):881–884

    Article  CAS  Google Scholar 

  • Pourfadakari S, Ghafari S, Takdastan A, Jorfi S (2021) A salt resistant biosurfactant produced by moderately halotolerant Pseudomonas aeruginosa (AHV-KH10) and its application for bioremediation of diesel-contaminated sediment in saline environment. Biodegradation 32(3):327–341. https://doi.org/10.1007/s10532-021-09941-2

    Article  CAS  PubMed  Google Scholar 

  • Rahman KSM, Rahman TJ, Kourkoutas Y, Petsas I, Marchant R, Banat IM (2003) Enhanced bioremediation of n-alkane in petroleum sludge using bacterial consortium amended with rhamnolipid and micronutrients. Bioresource Technol 90(2):159–168

    Article  CAS  Google Scholar 

  • Ratajczak A, Geissdörfer W, Hillen W (1998) Alkane hydroxylase from Acinetobacter sp. strain ADP1 is encoded by alkM and belongs to a new family of bacterial integral-membrane hydrocarbon hydroxylases. Appl Environ Microbiol 64(4):1175–1179

    Article  CAS  Google Scholar 

  • Roy S, Hens D, Biswas D, Biswas D, Kumar R (2002) Survey of petroleum-degrading bacteria in coastal waters of Sunderban Biosphere Reserve. World J Microbiol Biotechnol 18(6):575–581

    Article  CAS  Google Scholar 

  • Roy A, Dutta A, Pal S, Gupta A, Sarkar J, Chatterjee A, Saha A, Sarkar P, Sar P, Kazy SK (2018) Biostimulation and bioaugmentation of native microbial community accelerated bioremediation of oil refinery sludge. Bioresour Technol 253:22–32. https://doi.org/10.1016/j.biortech.2018.01.004

    Article  CAS  PubMed  Google Scholar 

  • Shen XH, Zhou NY, Liu SJ (2012) Degradation and assimilation of aromatic compounds by Corynebacterium glutamicum: another potential for applications for this bacterium? Appl Microbiol Biotechnol 95(1):77–89

    Article  CAS  Google Scholar 

  • Silva, M.G., Volco, L.M., Seus, E.R., Machado, M.I., Mirlean, N., Baisch, P., Júnior, F.S., 2021. Comparative evaluation of different bioremediation techniques for crude oil-contaminated soil. Int. J. Environ. Sci. Te., 1–12.

  • Singh SN, Kumari B, Mishra S (2012) Microbial degradation of alkanes. Springer, Berlin

    Book  Google Scholar 

  • Song W, Wang J, Yan Y, An L, Zhang F, Wang L, Xu Y, Tian M, Nie Y, Wu X (2018) Shifts of the indigenous microbial communities from reservoir production water in crude oil- and asphaltene-degrading microcosms. Int Biodeter Biodegr 132:18–29. https://doi.org/10.1016/j.ibiod.2018.04.015

    Article  CAS  Google Scholar 

  • Steliga T, Wojtowicz K, Kapusta P, Brzeszcz J (2020) Assessment of biodegradation efficiency of polychlorinated biphenyls (PCBs) and petroleum hydrocarbons (TPH) in soil using three individual bacterial strains and their mixed culture. Molecules 25(3):709. https://doi.org/10.3390/molecules25030709

    Article  CAS  PubMed Central  Google Scholar 

  • Sun S, Su Y, Chen S, Cui W, Zhao C, Liu Q (2022) Bioremediation of oil-contaminated soil: exploring the potential of endogenous hydrocarbon degrader Enterobacter sp. SAVR S-1. Appl Soil Ecol 173:104387. https://doi.org/10.1016/j.apsoil.2022.104387

    Article  Google Scholar 

  • Tian X, Song Y, Shen Z, Zhou Y, Liu T (2019) A comprehensive review on toxic petrochemical wastewater pretreatment and advanced treatment. J Clean Prod 245:118692

    Article  Google Scholar 

  • Tkaczyk A, Mitrowska K, Posyniak A (2020) Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: a review. Sci Total Environ 717:137222. https://doi.org/10.1016/j.scitotenv.2020.137222

    Article  CAS  PubMed  Google Scholar 

  • Tong J, Han X, Wang S, Jiang X (2011) Evaluation of structural characteristics of Huadian Oil Shale Kerogen using direct techniques (solid-state13 C NMR, XPS, FT-IR, and XRD). Energ Fuel 25(9):4006–4013. https://doi.org/10.1021/ef200738p

    Article  CAS  Google Scholar 

  • Trivedi N, Gupta V, Kumar M, Kumari P, Reddy C, Jha B (2011) Solvent tolerant marine bacterium Bacillus aquimaris secreting organic solvent stable alkaline cellulase. Chemosphere 83(5):706–712

    Article  CAS  Google Scholar 

  • Wang L, Cheng Y, Lamb D, Dharmarajan R, Chadalavada S, Naidu R (2019) Application of infrared spectrum for rapid classification of dominant petroleum hydrocarbon fractions for contaminated site assessment. Spectrochim Acta Part A 207:183–188. https://doi.org/10.1016/j.saa.2018.09.024

    Article  CAS  Google Scholar 

  • Wang W, Zhao L, Cao X (2020a) The microorganism and biochar-augmented bioreactive top-layer soil for degradation removal of 2,4-dichlorophenol from surface runoff. Sci Total Environ 733:139244. https://doi.org/10.1016/j.scitotenv.2020.139244

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Cai T, Wen W, Ai J, Ai J, Zhang Z, Zhu L, George SC (2020b) Surfactin for enhanced removal of aromatic hydrocarbons during biodegradation of crude oil. Fuel 267:117272. https://doi.org/10.1016/j.fuel.2020.117272

    Article  CAS  Google Scholar 

  • Xu N, Bao M, Sun P, Li Y (2013) Study on bioadsorption and biodegradation of petroleum hydrocarbons by a microbial consortium. Bioresour Technol 149(12):22–30

    Article  CAS  Google Scholar 

  • Yan N, An M, Chu J, Cao L, Zhu G, Wu W, Wang L, Zhang Y, Rittmann BE (2021) More rapid dechlorination of 2,4-dichlorophenol using acclimated bacteria. Bioresour Technol 326:124738. https://doi.org/10.1016/j.biortech.2021.124738

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Yang Y, Wu WM, Zhao J, Jiang L (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48(23):13776–13784

    Article  CAS  Google Scholar 

  • Yang K, Zhao Y, Ji M, Li Z, Zhai S, Zhou X, Wang Q, Wang C, Liang B (2021) Challenges and opportunities for the biodegradation of chlorophenols: aerobic, anaerobic and bioelectrochemical processes. Water Res 193:116862. https://doi.org/10.1016/j.watres.2021.116862

    Article  CAS  PubMed  Google Scholar 

  • Ying W, Shen Z, Chen X (2010) Effects of experimental parameters on 2,4-dichlorphenol degradation over Er-chitosan-PbO2 electrode. J Hazard Mater 178(1–3):867–874

    Google Scholar 

  • Yoon SH, Ha SM, Kwon S, Lim J, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67(5):1613–1617

    Article  CAS  Google Scholar 

  • Yuhong L, Ansong G, Haiping H (2008) The influence of biodegradation on resins and asphaltenes in the Liaohe Basin. Org Geochem 40(3):312–320

    Google Scholar 

  • Zhang X, Kong D, Liu X, Xie H, Lou X, Zeng C (2021) Combined microbial degradation of crude oil under alkaline conditions by Acinetobacter baumannii and Talaromyces sp. Chemosphere 273:129666. https://doi.org/10.1016/j.chemosphere.2021.129666

    Article  CAS  PubMed  Google Scholar 

  • Zheng C, Yu L, Huang L, Xiu J, Huang Z (2012) Investigation of a hydrocarbon-degrading strain, Rhodococcus ruber Z25, for the potential of microbial enhanced oil recovery. J Petrol Sci Eng 81:49–56. https://doi.org/10.1016/j.petrol.2011.12.019

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the grant funded by the State Key Laboratory of Petroleum Pollution Control.

Funding

This study was supported by the Independent Project Program of State Key Laboratory of Petroleum Pollution Control (Grant No. PPC2018014), CNPC Research Institute of Safety and Environmental Technology.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the design of the research. JL and QL carried out research methods, data analysis and first draft writing, as the co-first author. SS, XZ, XZ, JY, WC, YD participated in research methods, data analysis, revision of manuscripts.

Corresponding author

Correspondence to Qiyou Liu.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work; there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Liu, Q., Sun, S. et al. Degradation characteristics of crude oil by a consortium of bacteria in the existence of chlorophenol. Biodegradation 33, 461–476 (2022). https://doi.org/10.1007/s10532-022-09992-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-022-09992-z

Keywords

Navigation