Skip to main content
Log in

Abiotic barriers limit tree invasion but do not hamper native shrub recruitment in invaded stands

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The interplay between the invasion of alien plant species and re-colonization of native plant species is important for conservation. Sandy coastal plains (called restinga in Brazil) were used as a model system to explore the abiotic barriers that potentially limit the initial establishment of alien and native woody plants in invaded and non-invaded areas. The study tested the influence of light availability, soil type and litter layer on recruitment of a wind-dispersed alien tree (Casuarina equisetifolia) and two bird-dispersed native shrubs under a Casuarina stand and in the preserved restinga. The effect of soil type and the physical and allelopathic effects of Casuarina litter on seedling emergence of the three species were also evaluated under greenhouse conditions. Low dispersal associated with low seedling emergence and zero survival of young plants (mainly due to microhabitat conditions) apparently prevents the spread of Casuarina in the preserved restinga. The main cause of low recruitment of native species in the Casuarina stand was the physical barrier of the litter. However, if seeds overcome this physical barrier, the presence of litter improves seedling emergence and survival of young plants, mainly because the litter increases soil moisture. Sowing seeds below litter and planting young plants of native shrubs on litter can improve the re-colonization of native plants in invaded areas. In conclusion, Casuarina invasion on sandy coastal plains is strongly limited by abiotic barriers, but anthropogenic disturbances are altering the key processes that naturally make the restinga resistant to invasion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Apfelbaum SI, Ludwig JP, Ludwig C (1983) Ecological problems associated with disruption of dune vegetation dynamics by Casuarina equisetifolia L. at Sand Island, Midway Atoll. Atoll Res Bull 261:1–19

    Article  Google Scholar 

  • Araújo DSD (1992) Vegetation types of sandy coastal plains of tropical Brazil: a first approximation. In: Seeliger U (ed) Coastal plant communities of Latin America. Academic Press, San Diego, pp 337–347

    Chapter  Google Scholar 

  • Araújo DSD, Pereira MCA (2002) Sandy coastal vegetation. Eolss Publishers, International Commission on Tropical Biology and Natural Resources, Oxford

    Google Scholar 

  • Araújo DSD, Sá CFC, Fontella-Pereira J, Garcia DS, Ferreira MV, Paixão RJ, Schneider SM, Fonseca-Kruel VS (2009) Área de proteção ambiental de Massambaba, Rio de Janeiro: caracterização fitofisionômica e florística. Rodriguésia 60:67–96

    Google Scholar 

  • Bais HP, Vepachedu R, Gilroy S, Callaway RM, Vivanco JM (2003) Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380

    Article  CAS  PubMed  Google Scholar 

  • Barbiére EB (1984) Cabo Frio e Iguaba Grande, dois microclimas distintos a um curto intervalo espacial. In: Lacerda LD, Araújo DDD, Cerqueira R, Turcq B (eds) Restingas: origem, estrutura, processos. CEUFF, Niterói, pp 3–13

    Google Scholar 

  • Barroso GM, Morim MP, Peixoto AL, Ichaso CLF (1999) Frutos e sementes: morfologia aplicada à sistemática de dicotiledôneas. Universidade Federal de Viçosa, Viçosa

    Google Scholar 

  • Baskin CC, Baskin JM (2014) Seeds: Ecology, biogeography, and evolution of dormancy and germination 2nd. Elsevier, San Diego

    Google Scholar 

  • Bechara FC, Reis A, Bourscheid K, Vieira NK, Trentin BE (2013) Reproductive biology and early establishment of Pinus elliottii var. elliottii in Brazilian sandy coastal plain vegetation: implications for biological invasion. Sci Agric 702:88–92

    Article  Google Scholar 

  • Benevides CR, Haddad IVN, Barreira NP, Rodarte ATA, Galetto L, Santiago-Fernandes LDR, Lima HA (2013) Maytenus obtusifolia Mart. (Celastraceae): a tropical woody species in a transitional evolutionary stage of the gynodioecy–dioecy pathway. Plant Syst Evol 299:1693–1707

    Article  Google Scholar 

  • Bittrich V, Trad RJ, Cabral FN, Nascimento-Jr JE, Souza VC (2015) Clusiaceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB6836. Accessed 28 Aug 2015

  • Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339

    Article  PubMed  Google Scholar 

  • Braz MIG, de Mattos EA (2010) Seed dispersal phenology and germination characteristics of a drought-prone vegetation in southeastern Brazil. Biotropica 42:327–335

    Article  Google Scholar 

  • Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78:1958–1965

    Article  Google Scholar 

  • Cavalcante A, Braz MIG, de Mattos EA (2010) Germination biology and seedling growth of Clusia hilariana Schltdl., a dominant CAM-tree of drought-prone sandy coastal plains. Ecol Res 25:781–787

    Article  Google Scholar 

  • Cavalin PO, de Mattos EA (2007) Spatio-temporal variation of photosynthetic pigments in CAM tree Clusia hilariana Schlechtendal associated with dry spells during rainy season in south-eastern Brazil. Trees 21:671–675

    Article  CAS  Google Scholar 

  • Correia CMB, Dias ATC, Scarano FR (2010) Plant-plant associations and population structure of four woody plant species in a patchy coastal vegetation of Southeastern Brazil. Rev Bras Biol 33:607–613

    Google Scholar 

  • Coutts SR, van Klinken RD, Yokomizo H, Buckley YM (2011) What are the key drives of spread in invasive plants: dispersal, demography or landscape: and can we use this knowledge to aid management? Biol Invasions 13:1649–1661

    Article  Google Scholar 

  • de la Penã E, Bonte D, Roiloa S, Rodíguez-Echeverría S, Freitas H (2010) Plant-soil feedback as mechanism of invasion by Carpobrotus edulis. Biol Invasions 12:3637–3648

    Article  Google Scholar 

  • Dechoum MS, Zenni RD, Castellani TT, Zalba SM, Rejmánek M (2015) Invasions across secondary forest successional stages: effects of local plant community, soil, litter, and herbivory on Hovenia dulcis seed germination and seedling establishment. Plant Ecol 216:823–833

    Article  Google Scholar 

  • Dias ATC, Zaluar HLT, Ganade G, Scarano FR (2005) Canopy composition influencing plant patch dynamics in a Brazilian sandy coastal plain. J Trop Ecol 21:343–347

    Article  Google Scholar 

  • Dias ATC, de Mattos EA, Vieira SA, Azeredo JV, Scarano FR (2006) Aboveground biomass stock of native woodland on a Brazilian sandy coastal plains: estimates based on the dominant tree species. For Ecol Manag 226:364–367

    Article  Google Scholar 

  • Eckstein RL, Donath TW (2005) Interactions between litter and water availability affect seedling emergence in four familial pairs of floodplain species. J Ecol 93:807–816

    Article  Google Scholar 

  • Emer C, Fonseca CR (2011) Araucaria Forest conservation: mechanisms providing resistance to invasion by exotic timber tress. Biol Invasions 13:189–202. doi:10.1007/s10530-010-9801-0

    Article  Google Scholar 

  • Ens E, French K (2008) Exotic woody invader limits the recruitment of three indigenous plant species. Biol Conserv 141:590–595

    Article  Google Scholar 

  • Facelli JM, Pickett STA (1991) Plant litter: its dynamics and effects on plant community structure. Bot Rev 57:1–32

    Article  Google Scholar 

  • Faria APG, Matallana G, Wendt T, Scarano FR (2006) Low fruit set in the abundant dioecious tree Clusia hilariana (Clusiaceae) in a Brazilian restinga. Flora 201:606–611

    Article  Google Scholar 

  • Franco AC, Haag-Kerwer A, Herzog B, Grams T, Ball E, de Mattos EA, Scarano FR, Barreto SMB, Garcia MA, Mantovani A, Lutge U (1996) The effect of light levels on daily patterns of chlorophyll fluorescence and organic acid accumulation in the tropical CAM tree Clusia hilariana. Trees 10:359–365

    Google Scholar 

  • Fuentes-Ramírez A, Pauchard A, Cavieres LA, García RA (2011) Survival and growth of Acacia dealbata vs. native trees across an invasion front in south-central Chile. Forest Ecol Manag 261:1003–1009

    Article  Google Scholar 

  • Garwwod NC (1996) Functional morphology of tropical tree seedlings. In: Swaine MD (ed) The ecology of tropical forest tree seedlings man and the biosphere. Parthenon Publishing Group, New York, pp 59–129

    Google Scholar 

  • Gomes VSM (2006) Variação espacial e dieta de aves terrestres na Restinga de Jurubatiba, RJ. PhD Thesis, Universidade Federal do Rio de Janeiro

  • Gómez-Aparicio L, Valladares F, Zamora R, Quero JL (2005) Response of tree seedlings to the abiotic heterogeneity generated by nurse shrubs: an experimental approach at different scales. Ecography 28:757–768

    Article  Google Scholar 

  • Grotkopp E, Rejmánek M (2007) High seedling relative growth rate and specific leaf area are traits of invasive species: phylogenetically independent contrasts of woody angiosperms. Am J Bot 94:526–532

    Article  PubMed  Google Scholar 

  • Guerrero PC, Bustamante RO (2007) Can Native Tree Species Regenerate in Pinus radiata Plantations in Chile? evidence from field and laboratory experiments. Forest Ecol Manag 253:97–102

    Article  Google Scholar 

  • Hastwell GT, Facelli JM (2003) Differing effects of shade-induced facilitation on growth and survival during the establishment of a chenopod shrub. J Ecol 91:941–950

    Article  Google Scholar 

  • Hata K, Kato H, Kachi N (2009) Community structure of saplings of native woody species under forests dominated by alien woody species, Casuarina equisetifolia, in Chichijima Island. Ogasawara Res 34:33–50

    Google Scholar 

  • Hata K, Kato H, Kachi N (2010a) Litter of an alien tree, Casuarina equisetifolia, inhibits seed germination and initial growth of a native tree on the Ogasawara Islands (subtropical oceanic islands). J For Res 15:384–390

    Article  CAS  Google Scholar 

  • Hata K, Kato H, Kachi N (2010b) Litterfall in forests dominated by an alien woody species, Casuarina equisetifolia, on Chichijima Island. Ogasawara Res 35:1–14

    Google Scholar 

  • Hata K, Kato H, Kachi N (2012) Seedlings of a native shrub can establish under forests dominated by an alien tree, Casuarina equisetifolia, on subtropical oceanic islands. J For Res 17:208–212

    Article  Google Scholar 

  • Hesp PA, Martínez ML (2007) Disturbance processes and dynamics in coastal dunes. In: Johnson EA, Miyanishi K (eds) Plant disturbance ecology. The process and the response. Academic Press, San Diego, pp 215–247

    Chapter  Google Scholar 

  • Hobbs RJ, Higgs ES, Hall CM et al (2014) Managing the whole landscape: historical, hybrid and novel ecosystems. Front Ecol Environ 12:557–564

    Article  Google Scholar 

  • Holmes PM, Richardson DM (1999) Protocols for restoration based on recruitment dynamics, community structure and ecosystem function: perspectives from South African fynbos. Restor Ecol 7:215–230

    Article  Google Scholar 

  • Hovstad KA, Ohlson M (2008) Physical and chemical effects of litter on plant establishment in semi-natural grasslands. Plant Ecol 196:251–260

    Article  Google Scholar 

  • Hulme PE (2007) Biological invasions in Europe: drivers, pressures, states, impacts and responses. In: Hester R, Harrison RM (eds) Biodiversity under Threat. Cambridge University Press, Cambridge, pp 56–80

    Chapter  Google Scholar 

  • Inderjit Seastedt TR, Callaway RM, Pollock JL, Kaur J (2008) Allelopathy and plant invasions: traditional, congeneric, and bio-geographical approaches. Biol Invasions 10:875–890

    Article  Google Scholar 

  • INMET (2014) Instituto Nacional de Meteorologia. http://inmet.gov.br. Acessed 15 Jul 2014

  • I3N Brazil. 2016. Base de dados nacional de espécies exóticas invasoras, I3N Brasil, Instituto Hórus de desenvolvimento e Conservação Ambiental. http://i3n.institutohorus.org.br. Accessed 12 Jan 2016

  • Lacerda LD, Araújo DSD, Maciel NC (1993) Dry coastal ecosystems of the tropical Brazilian coast. In: Van der Maarel E (ed) Dry coastal ecosystems: Africa, America, Asia, Oceania. Elsevier, Amsterdam, pp 477–493

    Google Scholar 

  • Levine JM, Adler PB, Yelenik SG (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 10:975–989

    Article  Google Scholar 

  • Lombardi J, Groppo M, Biral L (2015) Celastraceae in Lista de Espécies da Flora do Brasil. Jardim Botânico do Rio de Janeiro. http://floradobrasil.jbrj.gov.br/jabot/floradobrasil/FB6766. Accessed 28 Aug 2015

  • Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536

    Article  Google Scholar 

  • Loydi A, Donath TW, Eckstein RL, Otte A (2015) Non-native species litter reduces germination and growth of resident forbs and grasses: allelopathic, osmotic or mechanical effects? Biol Invasions 17:581–595

    Article  Google Scholar 

  • Matos IS (2014) Crescimento, Sobrevivência e Plasticidade Fenotípica de Plântulas de Espécies de Restinga sob Gradientes Experimentais de Intensidade de Luz e de Disponibilidade Hídrica. Dissertation, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro

  • McAlpine KG, Jesson LK (2008) Linking seed dispersal, germination and seedling recruitment in the invasive species Berberis darwinii (Darwin’s barberry). Plant Ecol 197:119–129

    Article  Google Scholar 

  • Morton JF (1980) The Australian pine or beefwood (Casuarina equisetifolia L.) an invasive ‘‘weed’’ tree in Florida. Proc Fl State Horticult Soc 93:87–95

    Google Scholar 

  • Nakahira Y, Ohira T (2005) Study on the allelopathy of Casuarina glauca and C. equisetifolia. Kyushu J For Res 58:159–161

    Google Scholar 

  • Novoa A, González L, Moravcová L, Pyšek P (2012) Effects of soil characteristics, allelopathy and frugivory on establishment of the invasive plant Carpobrotus edulis and a cooccuring native Malcolmia littorea. PLoS One 7(12):e53166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novoa A, Rodríguez R, Richardson D, González L (2014) Soil quality: a key factor in understanding plant invasion? the case of Carpobrotus edulis (L.) N.E.Br. Biol Invasions 16:429–443

    Article  Google Scholar 

  • Parrotta JA (1993) Casuarina equisetifolia L. ex J.R. and G. Forst. SO-ITF-SM-46. International Institute of Tropical Forestry, U.S. Department of Agriculture, Forest Service, Puerto Rico

  • Parrotta JA (1995) Influence of overstory composition on understory colonization by native species in plantations on a degraded tropical site. J Veg Sci 6:627–636

    Article  Google Scholar 

  • Parrotta JA (1999) Productivity, nutrient cycling and succession in single- and mixed-species plantations of Casuarina equisetifolia, Eucalyptus robusta and Leucaena leucocephala in Puerto Rico. For Ecol Manag 90:45–77

    Article  Google Scholar 

  • Pimentel D, Lach L, Zuniga R, Morrison D (2000) Environmental and economic costs of non-indigenous species in the United States. Bioscience 50:53–65

    Article  Google Scholar 

  • Potgieter LJ, Richardson DM, Wilson JRU (2014) Casuarina: biogeography and ecology of an important tree genus in a changing world. Biol Invasions 16:609–633

    Article  Google Scholar 

  • Pugnaire FI, Armas C, Valladares F (2004) Soil as a mediator in plant-plant interactions in a semi-arid community. J Veg Sci 15:85–92

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available via http://www.R-project.org/

  • Reinert F, Roberts A, Wilson JM, de Ribas L, Cardinot G, Griffiths H (1997) Gradation in nutrient composition and photosynthetic pathways across the restinga vegetation of Brazil. Bot Acta 110:135–142

    Article  CAS  Google Scholar 

  • Rejmánek M, Richardson D (1996) What attributes make some plant species more invasive? Ecology 77:1655–1661

    Article  Google Scholar 

  • Rejmánek M, Richardson DM (2013) Trees and shrubs as invasive alien species - 2013 update of the global database. Divers Distrib 19:1093–1094

    Article  Google Scholar 

  • Rentería JL (2007) Plan de manejo para la erradicación de Casuarina equisetifolia L. (Casuarinaceae), especie invasora de limitada distribución en la isla Santa Cruz, Galápagos. Estación Científica Charles Darwin, Galápagos, Ecuador

  • Richardson DM (2006) Pinus: a model group for unlocking the secrets of alien plant invasions? Preslia 78:375–388

    Google Scholar 

  • Richardson DM, Higgins SI (1998) Pines as invaders in the southern hemisphere. In: Richardson DM (ed) Ecology and biogeography of Pinus. Cambridge University Press, Cambridge, pp 450–473

    Google Scholar 

  • Richardson DM, Pyšek P (2012) Naturalization of introduced plants: ecological drivers of biogeographic patterns. New Phytol 196:383–396

    Article  PubMed  Google Scholar 

  • Rocha CFD, Van Sluys M, Alves MS, Jamel CE (2007) The remnants of restinga habitats in the Brazilian Atlantic Forest of Rio de Janeiro state, Brazil: habitat loss and risk of disappearance. Braz J Biol 67:263–273

    Article  CAS  PubMed  Google Scholar 

  • Rotundo JL, Aguiar MR (2005) Litter effects on plant regeneration in arid lands: a complex balance between seed retention, longevity and soil–seed-contact. J Ecol 93:829–838

    Article  Google Scholar 

  • Rouget M, Robertson MP, Wilson JRU, Hui C, Essl F, Renteria JL, Richardson DM (2016) Invasion debt—quantifying future biological invasions. Divers Distrib 22:445–456

    Article  Google Scholar 

  • Scarano FR (2002) Structure, function and floristic relationships of plant communities in stressful habitats marginal to the Brazilian Atlantic Rainforest. Ann Bot 90:517–524

    Article  PubMed  PubMed Central  Google Scholar 

  • Scarano FR (2009) Plant communities at the periphery of the Atlantic rain forest: rare-species bias and its risks for conservation. Biol Conserv 142:1201–1208

    Article  Google Scholar 

  • Stricker KB, Stiling P (2013) Seedlings of the introduced invasive shrub Eugenia uniflora (Myrtaceae) outperform those of its native and introduced non-invasive congeners in Florida. Biol Invasions 15:1973–1987. doi:10.1007/s10530-013-0425-z

    Article  Google Scholar 

  • van Wilgen BW, Fill JM, Baard J, Cheney C, Forsyth AT, Kraaij T (2016) Historical costs and projected future scenarios for the management of invasive alien plants in protected areas in the Cape Floristic Region. Biol Conserv 200:168–177

    Article  Google Scholar 

  • Vilà M, Lloret F (2000) Seed dynamics of the mast seeding tussock grass Ampelodesmos mauritanica in Mediterranean shrublands. J Ecol 88:479–491

    Article  Google Scholar 

  • Vilà M, Espinar JL, Hejda M et al (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708

    Article  PubMed  Google Scholar 

  • Wardle DA, Nicholson KS, Rahman A (1996) Use of a comparative approach to identify allelopathic potential and relationship between allelopathy bioassays and ‘‘competition’’ experiments for ten grassland and plant species. J Chem Ecol 22:933–994

    Article  CAS  PubMed  Google Scholar 

  • Warren RJ, Bahn V, Bradford MA (2012) The interaction between propagule pressure, habitat suitability and density-dependent reproduction in species invasion. Oikos 121:874–881

    Article  Google Scholar 

  • West NM, Matlaga DP, Davis AS (2014) Quantifying targets to manage invasion risk: light gradients dominate the early regeneration niche of naturalized and pre-commercial Miscanthus populations. Biol Invasions 16:1991–2001

    Article  Google Scholar 

  • Whistler WA, Elevitch CR (2006) Casuarina equisetifolia (reach she-oak) and C. cunninghamiana (river she-oak). In: Elevitch CR (ed) Species profiles for Pacific Island agroforestry. Permanent Agriculture Resources (PAR), Holualoa, Hawaii, p 16p

    Google Scholar 

  • Xiong SJ, Nilsson C (1999) The effects of plant litter on vegetation: a meta-analysis. J Ecol 87:984–994

    Article  Google Scholar 

  • Zaluar HLT, Scarano FR (2000) Facilitação em restingas de moitas: um século de buscas por espécies focais. In: Esteves FA, Lacerda LD (eds) Ecologia de Restingas e Lagoas Costeiras. NUPEM-UFRJ, Rio de Janeiro, pp 3–23

    Google Scholar 

  • Zar JH (1999) Biostatistical Analysis, 4th edn. Prentice Hall, New Jersey

    Google Scholar 

  • Zefferman E, Stevens JT, Charles GK, Dunbar-Irwin M, Emam T, Fick S, Morales SV, Wolf KM, Young DJN, Young TP (2015) Plant communities in harsh sites are less invaded: a summary of observations and proposed explanations. AoB PLANTS 7:plv056

  • Zenni RD, Ziller SR (2011) An overview of invasive plants in Brazil. Revista Brasil Bot 34:431–446

    Article  Google Scholar 

  • Zimmermann TG, Andrade ACS, Richardson DM (2016) Experimental assessment of factors mediating the naturalisation of a globally invasive tree on sandy coastal plains: a case study from Brazil. AoB PLANTS 8: plw042; doi: 10.1093/aobpla/plw042

Download references

Acknowledgments

Funding for this project was provided by the Instituto de Pesquisas Jardim Botânico do Rio de Janeiro (JBRJ), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ). We thank, F. Silva and I.S. Matos for their field assistance and L.L. Leal for her assistance in the greenhouse. DMR acknowledges funding from the DST-NRF Centre of Excellence for Invasion Biology and the National Research Foundation of South Africa (grant 85417).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thalita G. Zimmermann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmermann, T.G., Andrade, A.C.S. & Richardson, D.M. Abiotic barriers limit tree invasion but do not hamper native shrub recruitment in invaded stands. Biol Invasions 19, 109–129 (2017). https://doi.org/10.1007/s10530-016-1267-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-016-1267-2

Keywords

Navigation