Skip to main content

Advertisement

Log in

Araucaria Forest conservation: mechanisms providing resistance to invasion by exotic timber trees

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Since only 12.6% of the Brazilian Araucaria Forest remains and timber tree monocultures are expanding, biological invasion is a potential threat to the conservation of natural forest remnants. Here, we test (1) the susceptibility of Araucaria Forest to invasion by Pinus taeda and Eucalyptus saligna, (2) the efficiency of different mechanisms controlling the early establishment of these two exotic timber tree species, and (3) the potential of the native timber tree Araucaria angustifolia to establish successfully in ecologically-managed monocultures of Araucaria, Pinus and Eucalyptus. In Araucaria Forest, more than a thousand Pinus seeds landed annually in a hectare; however, experimentally exposed seeds were 100% removed in only 6 days. Furthermore, all experimentally transplanted seedlings of Pinus taeda and Eucalyptus saligna died in less than a year in Araucaria Forest, but not in the monocultures. Correlative evidence suggests that this mortality was associated to plant community richness, plant abundance, and soil fertility. Araucaria angustifolia, in contrast, showed an establishment success in ecologically-managed tree monocultures as high as that exhibited in its natural habitat. The current resistance of Araucaria Forest to invasion by exotic timber trees is good news for the conservation of Araucaria Forest remnants and for its keystone species. The understanding of the mechanisms providing such resistance against invasion points towards management tools for minimizing future threats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anjos L (1991) Ciclo anual de Cyanocorax caeruleus em Floresta de Araucária (Passeriformes: Corvidae). Ararajuba 2:19–23

    Google Scholar 

  • Backes A (1999) Condicionamento climático e distribuição geográfica de Araucaria angustifolia (Bertol.) Kuntze no Brasil. Pesqui Bot 49:31–51

    Google Scholar 

  • Behling H, Pillar VD (2007) Late Quaternary vegetation, biodiversity and fire dynamics on the southern Brazilian highland and their implication for conservation and management of modern Araucaria forest and grassland ecosystems. Philos Trans R Soc B Biol Sci 362:243–251

    Article  Google Scholar 

  • Behling H, Pillar VD, Orloic L, Bauermann SG (2004) Late quaternary Araucaria forest, grassland (Campos), fire and climate dynamics, studied by high-resolution pollen, charcoal and multivariate analysis of the Cambara do Sul core in southern Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 203:277–297

    Article  Google Scholar 

  • Bracelpa (2008) Área total reflorestada por Estado existente em 3/12/2006. http://www.bracelpa.org.br/bra/estatisticas/pdf/anual/reflo_02.pdf. Accessed 28 ago 2008

  • Bustamante RO, Simonetti JA (2005) Is Pinus radiata invading the native vegetation in central Chile? Demographic responses in a fragmented forest. Biol Invasions 7:243–249

    Article  Google Scholar 

  • Castro J, Gomez JM, Garcia D, Zamora R, Hodar JA (1999) Seed predation and dispersal in relict Scots pine forests in southern Spain. Plant Ecol 145:115–123

    Article  Google Scholar 

  • Castro J, Zamora R, Hodar JA (2002) Mechanisms blocking Pinus sylvestris colonization of Mediterranean, mountain meadows. J Veg Sci 13:725–731

    Article  Google Scholar 

  • Collins AR, Jose S, Daneshgar P, Ramsey CL (2007) Elton’s hypothesis revisited: an experimental test using cogongrass. Biol Invasions 9:433–443

    Article  Google Scholar 

  • Crawley MJ (2005) Statistics: an introduction using R. Wiley, West Sussex

    Google Scholar 

  • Daehler CC (2009) Short lag times for invasive tropical plants: evidence from experimental plantings in Hawai’i. PLoS One 4:e4462

    Article  PubMed  Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534

    Article  Google Scholar 

  • Diez J (2005) Invasion biology of Australian ectomycorrhizal fungi introduced with eucalypt plantations into the Iberian Peninsula. Biol Invasions 7:3–15

    Article  Google Scholar 

  • Duarte LD, Dillenburg LR (2000) Ecophysiological responses of Araucaria angustifolia (Araucariaceae) seedlings to different irradiance levels. Aust J Bot 48:531–537

    Article  Google Scholar 

  • Duarte LS, Dillemburg LR, Rosa LMG (2002) Assessing the role of light availability in the regeneration of Araucaria angustifolia (Araucariaceae). Aust J Bot 50:741–751

    Article  Google Scholar 

  • Duarte LS, Dos-Santos MMG, Hartz SM, Pillar VD (2006) Role of nurse plants in Araucaria Forest expansion over grassland in south Brazil. Aust Ecol 31:520–528

    Article  Google Scholar 

  • Ehrenfeld JG, Kourtev P, Huang WZ (2001) Changes in soil functions following invasions of exotic understory plants in deciduous forests. Ecol Appl 11:1287–1300

    Article  Google Scholar 

  • Elton C (1958) The ecology of invasions by animals and plants. The University of Chicago, Chicago

    Google Scholar 

  • Fargione J, Tilman D (2005) Diversity decreases invasion via both sampling and complementarity effects. Ecol Lett 8:604–611

    Article  Google Scholar 

  • Fonseca CR, Joner F (2007) Two-sided edge effect studies and the restoration of endangered ecosystems. Restor Ecol 15:609–615

    Article  Google Scholar 

  • Fonseca CR, Ganade G, Baldissera R, Becker CG, Boelter CR, Brescovit AD, Campos LM, Fleck T, Fonseca VS, Hartz SM, Joner F, Käffer MI, Leal-Zanchet AM, Marcelli MP, Mesquita AS, Mondin CA, Paz CP, Petry MV, Piovensan FN, Putzke J, Stranz A, Vergara M, Vieira EM (2009a) Towards an ecologically-sustainable forestry in the Atlantic Forest. Biol Conserv 142:1209–1219

    Article  Google Scholar 

  • Fonseca CR, Souza AF, Leal-Zanchet AM, Dutra TL, Backes A, Ganade G (2009b) Floresta com Araucária: Ecologia, Conservação e Desenvolvimento Sustentável. Holos, Ribeirão Preto

    Google Scholar 

  • Forsyth GG, Richardson DM, Brown PJ, van Wilgen BW (2004) A rapid assessment of the invasive status of Eucalyptus species in two South African provinces. S Afr J Sci 100:75–77

    Google Scholar 

  • Frazer GW, Fournier RA, Trofymow JA, Hall RJ (2001) A comparison of digital and film fisheye photography for analysis of forest canopy structure and gap light transmission. Agric For Metereol 109:249–263

    Article  Google Scholar 

  • Fridley J, Stachowicz J, Naeem S, Sax D, Seabloom EW, Smith MD, Stohlgren TJ, Tilman D, von Holle B (2007) The invasion paradox: reconcilling pattern and process in species invasions. Ecology 88:3–17

    Article  CAS  PubMed  Google Scholar 

  • Funk JL, Vitousek PM (2007) Resource-use efficiency and plant invasion in low-resource systems. Nature 446:1079–1081

    Article  CAS  PubMed  Google Scholar 

  • Galindo-Leal C, de Gusmão Câmara I (2003) The Atlantic Forest of South America: biodiversity status, threats and outlook. Island Press, Washington, DC

    Google Scholar 

  • Gap Light Analyser (1999) Version 2.0. Simon Fraser University (SFU), Burnaby

  • Guerra MP, Silveira V, Reis MS, Schneider L (2002) Exploração, manejo e conservação da araucária (Araucaria angustifolia). In: Simões LL, Lino CF (eds) Sustentável Mata Atlântica: a exploração de seus recursos florestais. Senac, São Paulo, pp 85–102

    Google Scholar 

  • Guerrero PC, Bustamante RO (2007) Can native tree species regenerate in Pinus radiata plantations in Chile? Evidence from field and laboratory experiments. For Ecol Manag 253:97–102

    Article  Google Scholar 

  • Guglielme I, Ganade G (2006) Predação de sementes afetando a distribuição de indivíduos de Araucaria angustifolia ao longo de uma borda de floresta com campo. Neotrop Biol Conserv 2:62–71

    Google Scholar 

  • Higgins SI, Richardson DM (1998) Pine invasions in the southern hemisphere: modelling interactions between organism, environment and disturbance. Plant Ecol 135:79–93

    Article  Google Scholar 

  • Hilton-Taylor C (2000) IUCN red list of threatened species. IUCN, Gland

    Google Scholar 

  • Hórus (2008) Instituto Hórus de Desenvolvimento e Conservação Ambiental. http://www.institutohorus.org.br. Accessed in 28 Ago 2008

  • Howard TG, Gurevitch J, Hyatt L, Carreiro M, Lerdau M (2004) Forest invasibility in communities in southeastern New York. Biol Invasions 6:393–410

    Article  Google Scholar 

  • Iob G, Vieira EM (2008) Seed predation of Araucaria angustifolia (Araucariaceae) in the Brazilian Araucaria Forest: influence of deposition site and comparative role of small and ‘large’ mammals. Plant Ecol 198:185–196

    Article  Google Scholar 

  • Jackson RB, Jobbágy EG, Avissar R, Roy SB, Barrett DJ, Cook CW, Farley KA, le Maitre DC, McCarl BA, Murray BC (2005) Trading water for carbon with biological carbon sequestration. Science 310:1944–1947

    Article  CAS  PubMed  Google Scholar 

  • Karl T, Harley P, Guenther A, Rasmussen R, Baker B, Jardine K, Nemitz E (2005) The bi-directional exchange of oxygenated VOCs between a loblolly pine (Pinus taeda) plantation and the atmosphere. Atmos Chem Phys 5:3015–3031

    Article  CAS  Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170

    Article  Google Scholar 

  • Kennedy TA, Naeem S, Howe KM, Knops JMH, Tilman D, Reich P (2002) Biodiversity as a barrier to ecological invasion. Nature 417:636–638

    Article  CAS  PubMed  Google Scholar 

  • Kota NL, Landenberger RE, McGraw JB (2007) Germination and early growth of Ailanthus and tulip poplar in three levels of forest disturbance. Biol Invasions 9:197–211

    Article  Google Scholar 

  • Lavi A, Perevolotsky A, Kigel J, Noy-Meir I (2005) Invasion of Pinus halepensis from plantations into adjacent natural habitats. Appl Veg Sci 8:85–92

    Article  Google Scholar 

  • Le Maitre DC, van Wilgen BW, Gelderblom CM, Bailey C, Chapman RA, Nel JA (2002) Invasive alien trees and water resources in South Africa: case studies of the costs and benefits of management. For Ecol Manag 160:143–159

    Article  Google Scholar 

  • Ledgard N (2001) The spread of lodgepole pine (Pinus contorta, Dougl.) in New Zealand. For Ecol Manag 141:43–57

    Article  Google Scholar 

  • Levine JM (2000) Species diversity and biological invasions: relating local process to community pattern. Science 288:852–854

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Stiling P (2006) Testing the enemy release hypothesis: a review and meta-analysis. Biol Invasions 8:1535–1545

    Article  Google Scholar 

  • Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536

    Article  Google Scholar 

  • Luttge U, Berg A, Fetene M, Nauke P, Peter D, Beck E (2003) Comparative characterization of photosynthetic performance and water relations of native trees and exotic plantation trees in an Ethiopian forest. Trees 17:40–50

    Article  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710

    Article  Google Scholar 

  • Mantovani A, Morellato LPC, Reis MS (2004) Fenologia reprodutiva e produção de sementes em Araucaria angustifolia (Bert.) O. Kuntze. Rev Bras Bot 27:787–796

    Article  Google Scholar 

  • Matthews S (2005) América do Sul invadida: a crescente ameaça das espécies exóticas invasoras. GISP—Global Invasive Species Programme, Nairobi

  • McCune B, Mefford MJ (1997) PC-ORD. Multivariate analysis of ecological data. Version 4.0. MjM Software Design, Oregon

    Google Scholar 

  • Mittermeier R, Gil P, Hoffmann M, Pilgrim J, Brooks T, Mittermeier C, Lamoreux J, Fonseca G (2004) Hotspots revisited. CEMEX, Cidade do México

    Google Scholar 

  • Naeem S, Knops JMH, Tilman D, Howe KM, Kennedy T, Gale S (2000) Plant diversity increases resistance to invasion in the absence of covarying extrinsic factors. Oikos 91:97–108

    Article  Google Scholar 

  • Nuñez MA, Simberloff D, Relva MA (2008) Seed predation as a barrier to alien conifer invasions. Biol Invasions 10:1389–1398

    Article  Google Scholar 

  • Overbeck G, Müller S, Fidelis A, Pfadenhauer J, Pillar VD, Blanco CC, Boldrini I, Both R, Forneck ED (2007) Brazil’s neglected biome: the South Brazilian Campos. Perspect Plant Ecol Evol Syst 9:101–106

    Article  Google Scholar 

  • Pauchard A, Alaback P, Edlund E (2003) Plant invasions in protected areas at multiple scales: Linaria vulgaris (Scrophulariaceae) in the West Yellowstone area. West N Am Nat 63:416–428

    Google Scholar 

  • Pavan MA, Oliveira EL, Miyazawa M (1996) Determinação indireta da acidez extraível do solo (H + Al) por potenciometria com a solução tampão SMP. Arq Biol Technol 39:307–312

    CAS  Google Scholar 

  • Peña E, Hidalgo M, Langdon B, Pauchard A (2008) Patterns of spread of Pinus contorta Dougl. ex Loud. invasion in a Natural Reserve in southern South America. For Ecol Manag 256:1049–1054

    Article  Google Scholar 

  • Pereira EM, Ganade G (2008) Spread of a Brazilian keystone-species in a landscape mosaic. For Ecol Manag 255:1674–1683

    Article  Google Scholar 

  • Pyšek P, Richardson DM (2006) The biogeography of naturalization in alien plants. J Biogeogr 33:2040–2050

    Article  Google Scholar 

  • Rejmánek M, Richardson DM, Pyšek P (2005) Plant invasions and invasibility of plant communities. In: van der Maarel E (ed) Vegetation ecology. Blackwell, Oxford, pp 332–355

    Google Scholar 

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni F, Hirota M (2009) Brazilian Atlantic forest: how much is left and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  • Richardson DM (1998) Forestry trees as invasive aliens. Conserv Biol 12:18–26

    Article  Google Scholar 

  • Richardson DM, Allsopp N, D’Antonio CM, Milton SJ, Rejmánek M (2000) Plant invasions—the role of mutualisms. Biol Rev 75:65–93

    Article  CAS  PubMed  Google Scholar 

  • Richardson DM, van Wilgen BW, Nuñez MA (2008) Alien conifer invasions in South America: short fuse burning. Biol Invasions 10:573–577

    Article  Google Scholar 

  • Rizvi SJH, Tahir M, Rizvi V, Kohli RK, Ansari A (1999) Allelopathic interactions in agroforestry systems. Crit Rev Plant Sci 18:773–796

    Article  CAS  Google Scholar 

  • Sax D, Brown J (2000) The paradox of invasion. Glob Ecol Biogeogr 9:363–371

    Article  Google Scholar 

  • Sax D, Stachowicz J, Gaines S (2005) Species invasions: insights into ecology, evolution and biogeography. Sinauer, Sunderland

    Google Scholar 

  • Schneider PR, Brena DA, Finger CAG, Longhi SJ, Hoppe JM, Vinadé LF, Brum ET, Salomão ALF, Soligo A (1989) Plano de Manejo para a Floresta Nacional de São Francisco de Paula—RS. Instituto Brasileiro do Meio Ambiente e Recursos Naturais Renováveis, Santa Maria

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176

    Article  Google Scholar 

  • Sick H (1997) Ornitologia Brasileira. Nova Fronteira, Rio de Janeiro

    Google Scholar 

  • Simberloff D, Relva MA, Nuñez MA (2002) Gringos en el bosque: introduced tree invasion in a native Nothophagus/Astrocedrus forest. Biol Invasions 4:35–53

    Article  Google Scholar 

  • Simberloff D, Relva MA, Nuñez M (2003) Introduced species and management of a Nothofagus/Austrocedrus forest. Environ Manage 31(2):263–275

    Article  PubMed  Google Scholar 

  • Solórzano-Filho JA (2001) Demografia fenológica e ecologia da dispersão de sementes de Araucaria angustifolia (Bert.) Kuntze (Araucariaceae), numa população relictual em Campos de Jordão, SP. Master Thesis, Universidade de São Paulo, São Paulo

  • Souza AF (2007) Ecological interpretation of multiple population size structure in trees: the case of Araucaria angustifolia in South America. Austral Ecol 32:524–533

    Article  Google Scholar 

  • Stohlgren TJ, Binkley D, Chong GW, Kalkhan MA, Schell LD, Bull KA, Otsuki Y, Newman G, Bashkin M, Son Y (1999) Exotic plant species invade hot spots of native plant diversity. Ecol Monogr 69:25–46

    Article  Google Scholar 

  • Stohlgren TJ, Bennett DT, Kartese JT (2003) The rich get richer: patterns of plant invasions in the United States. Front Ecol Environ 1:11–14

    Article  Google Scholar 

  • Systat (2004) Systat 11: statistics I, II and III. SPSS, Chicago

    Google Scholar 

  • Theoharides KA, Dukes JS (2007) Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol 176:256–273

    Article  PubMed  Google Scholar 

  • Thomsen MA, D’Antonio CM (2007) Mechanisms of resistance to invasion in a California grassland: the roles of competitor identity, resource availability, and environmental gradients. Oikos 116:17–30

    Article  Google Scholar 

  • Traveset A, Richardson DM (2006) Biological invasions as disruptors of plant reproductive mutualisms. Trends Ecol Evol 21:208–216

    Article  PubMed  Google Scholar 

  • Vieira EM, Paise G, Machado PHD (2006) Feeding of small rodents on seeds and fruits: a comparative analysis of three species of rodents of the Araucaria forest, southern Brazil. Acta Theriol 51:311–318

    Article  Google Scholar 

  • Vilá M, Pino J, Font X (2007) Regional assessment of plant invasions across different habitat types. J Veg Sci 18:35–42

    Article  Google Scholar 

  • Vitousek PM, Mooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  • Williams MC, Wardle GM (2005) The invasion of two native Eucalypt forests by Pinus radiata in the Blue Mountains, New South Wales, Australia. Biol Conserv 125:55–64

    Article  Google Scholar 

  • Zalba SM, Mondin CA, Ziller SR (2009) Plantas invasoras na Floresta com Araucária: novas espécies, novos impactos, novos desafios. In: Fonseca CR, Souza AF, Leal-Zanchet AM, Dutra TL, Backes A, Ganade G (eds) Floresta com Araucária: Ecologia, Conservação e Desenvolvimento Sustentável. Holos, Ribeirão Preto, pp 267–272

    Google Scholar 

  • Zanini L, Ganade G, Hubel I (2006) Facilitation and competition influence succession in a subtropical old field. Plant Ecol 185:179–190

    Article  Google Scholar 

Download references

Acknowledgments

This project was fully supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq: 479223/2006-8), and by the Universidade do Vale do Rio dos Sinos (UNISINOS). The authors would like to thank CNPq for a research fellowship (CRF; 305428/2005-5) and the Fundação de Amparo à Pesquisa do Rio Grande do Sul (FAPERGS) for an undergraduate studentship (CE). We are also grateful to Micheline Vergara, Gislene Ganade, Clóvis Azambuja, and Marco Aurélio Pizo for information on plant community and seed rain; Juliana Pille Arnold, Carlos Renato Boelter, Cláudia Pandolfo Paz, and Tomás Fleck for field assistance and friendship; Artur José Soligo and Edenice Brandão Ávila de Souza for making available the infrastructure of the São Francisco de Paula National Forest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Roberto Fonseca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emer, C., Fonseca, C.R. Araucaria Forest conservation: mechanisms providing resistance to invasion by exotic timber trees. Biol Invasions 13, 189–202 (2011). https://doi.org/10.1007/s10530-010-9801-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-010-9801-0

Keywords

Navigation