Skip to main content

Advertisement

Log in

Green tea EGCG effectively alleviates experimental colitis in middle-aged male mice by attenuating multiple aspects of oxi-inflammatory stress and cell cycle deregulation

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Age-dependent increased risk of inflammatory bowel diseases such as ulcerative colitis is being increasingly realized, and yet therapies targeting this disorder within the purview of aging are limited. The present study attempted to assess the efficacy of green tea epigallocatechin gallate (EGCG) consumption in preventing the severity and progression of dextran sulphate sodium (DSS)-induced ulcerative colitis in 18 months old middle-aged male mice. Acute colitis was induced in animals using DSS and protective effects of EGCG consumption were examined. Different parameters related to disease progression and molecular markers related to oxi-inflammatory stress, localized and systemic cytokine response, epithelial barrier integrity, and cell cycle progression profile were evaluated. DSS treatment induced rapid and severe symptoms of colitis such as consistently increased DAI score, shortened and inflamed colon accompanied by increased levels of inflammatory proteins (TNFα/IL-6/IL-1β) in both the colon tissue and cultured splenocytes indicating exaggerated Th1 immune response. Markers of oxidative stress increased while antioxidant defences and the expression of tight junction genes in the colonic cells were attenuated. Dysregulation in the expression of cell cycle inhibitory genes (p53/p21WAF1/p16Ink4a) indicated possible induction of colitis-induced dysplasia. On the other hand, EGCG consumption strongly attenuated all the measured ostensible as well as molecular markers of the disease progression as evidenced by improved DAI score, cellular antioxidant capacity, attenuated Th1 cytokine response both in the colon and cultured splenocytes, enhanced expression of tight junction genes, and cell cycle inhibitors thereby suggesting systemic effects of EGCG. Together, these observations suggest that drinking EGCG-rich green tea can be a significant way of managing the severity of colitis during aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All material used and data generated or analysed during this study are included in this published article.

References

  • Arnesen H, Müller MH, Aleksandersen M, Østby GC, Carlsen H, Paulsen JE, Boysen P (2021) Induction of colorectal carcinogenesis in the C57BL/6J and A/J mouse strains with a reduced DSS dose in the AOM/DSS model. Lab Anim Res 37(1):1

    Article  Google Scholar 

  • Bábíčková J, Tóthová Ľ, Lengyelová E, Bartoňová A, Hodosy J, Gardlík R, Celec P (2015) Sex differences in experimentally induced colitis in mice: a role for estrogens. Inflammation 38(5):1996–2006

    Article  Google Scholar 

  • Bauer C, Duewell P, Mayer C, Lehr HA, Fitzgerald KA, Dauer M, Tschopp J, Endres S, Latz E, Schnurr M (2010) Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the nlrp3 inflammasome. Gut 59(9):1192–1199. https://doi.org/10.1136/gut.2009.197822

    Article  CAS  Google Scholar 

  • Bing X, Xuelei L, Wanwei D, Linlang L, Keyan C (2017) Egcg maintains th1/th2 balance and mitigates ulcerative colitis induced by dextran sulfate sodium through tlr4/myd88/nf-κb signaling pathway in rats. Can J Gastroenterol Hepatol 2017:3057268. https://doi.org/10.1155/2017/3057268

    Article  Google Scholar 

  • Bitzer ZT, Elias RJ, Vijay-Kumar M, Lambert JD (2016) (-)-Epigallocatechin-3-gallate decreases colonic inflammation and permeability in a mouse model of colitis, but reduces macronutrient digestion and exacerbates weight loss. Mol Nutr Food Res 60(10):2267–2274

    Article  CAS  Google Scholar 

  • Bouameur S, Menad A, Hamadou T, Amp O, Rgensen B, Ameddah S (2022) Gelidium spinosum red algae ameliorates oxidative /nitrosative stress and inflammation in dss -induced ulcerative colitis in mice. Egypt J Chem 65(3):341–352. https://doi.org/10.21608/ejchem.2021.88910.4293

    Article  Google Scholar 

  • Bourgonje AR, Feelisch M, Faber KN, Pasch A, Dijkstra G, van Goor H (2020) Oxidative stress and redox-modulating therapeutics in inflammatory bowel disease. Trends Mol Med 26(11):1034–1046. https://doi.org/10.1016/j.molmed.2020.06.006

    Article  CAS  Google Scholar 

  • Brighenti E, Calabrese C, Liguori G, Giannone FA, Trere D, Montanaro L, Derenzini M (2014) Interleukin 6 downregulates p53 expression and activity by stimulating ribosome biogenesis: a new pathway connecting inflammation to cancer. Oncogene 33(35):4396–4406

    Article  CAS  Google Scholar 

  • Brückner M, Westphal S, Domschke W, Kucharzik T, Lügering A (2012) Green tea polyphenol epigallocatechin-3-gallate shows therapeutic antioxidative effects in a murine model of colitis. J Crohns Colitis 6(2):226–235

    Article  Google Scholar 

  • Butter M, Weiler S, Biedermann L, Scharl M, Rogler G, Bischoff-Ferrari HA, Misselwitz B (2018) Clinical manifestations, pathophysiology, treatment and outcome of inflammatory bowel diseases in older people. Maturitas 110:71–78. https://doi.org/10.1016/j.maturitas.2018.01.015

    Article  Google Scholar 

  • Cao H, Liu J, Shen P, Cai J, Han Y, Zhu K, Fu Y, Zhang N, Zhang Z, Cao Y (2018) Protective effect of Naringin on DSS-induced ulcerative colitis in mice. J Agric Food Chem 66(50):13133–13140. https://doi.org/10.1021/acs.jafc.8b03942

    Article  CAS  Google Scholar 

  • Chang W-CL, Coudry RA, Clapper ML, Zhang X, Williams K-L, Spittle CS, Li T, Cooper HS (2007) Loss of p53 enhances the induction of colitis-associated neoplasia by dextran sulfate sodium. Carcinogenesis 28(11):2375–2381. https://doi.org/10.1093/carcin/bgm134

    Article  CAS  Google Scholar 

  • Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M (2014) Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol 104(1):15–25

    Article  Google Scholar 

  • Clapper ML, Cooper HS, Chang WC (2007) Dextran sulfate sodium-induced colitis-associated neoplasia: a promising model for the development of chemopreventive interventions 1. Acta Pharmacol Sin 28(9):1450–1459

    Article  CAS  Google Scholar 

  • Cooks T, Pateras IS, Tarcic O, Solomon H, Schetter AJ, Wilder S, Lozano G, Pikarsky E, Forshew T, Rozenfeld N, Harpaz N (2013) Mutant p53 prolongs NF-κB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell 23(5):634–646

    Article  CAS  Google Scholar 

  • Coward S, Clement F, Benchimol EI, Bernstein CN, Avina-Zubieta JA, Bitton A, Carroll MW, Hazlewood G, Jacobson K, Jelinski S et al (2019) Past and future burden of inflammatory bowel diseases based on modeling of population-based data. Gastroenterology 156(5):1345-1353.e1344. https://doi.org/10.1053/j.gastro.2019.01.002

    Article  Google Scholar 

  • Dong Y, Lei J, Zhang B (2020) Dietary quercetin alleviated DSS-induced colitis in mice through several possible pathways by transcriptome analysis. Curr Pharm Biotechnol 21(15):1666–1673. https://doi.org/10.2174/1389201021666200711152726

    Article  CAS  Google Scholar 

  • Dou W, Zhang J, Zhang E, Sun A, Ding L, Chou G, Wang Z, Mani S (2013) Chrysin ameliorates chemically induced colitis in the mouse through modulation of a PXR/NF-κB signaling pathway. J Pharmacol Exp Ther 345(3):473–482

    Article  CAS  Google Scholar 

  • Dryden GW, Lam A, Beatty K, Qazzaz HH, McClain CJ (2013) A pilot study to evaluate the safety and efficacy of an oral dose of (−)-epigallocatechin-3-gallate–rich polyphenon E in patients with mild to moderate ulcerative colitis. Inflamm Bowel Dis 19(9):1904–1912

    Google Scholar 

  • Du Y, Ding H, Vanarsa K, Soomro S, Baig S, Hicks J, Mohan C (2019) Low dose epigallocatechin gallate alleviates experimental colitis by subduing inflammatory cells and cytokines, and improving intestinal permeability. Nutrients 11(8):1743. https://doi.org/10.3390/nu11081743

    Article  CAS  Google Scholar 

  • Eichele DD, Kharbanda KK (2017) Dextran sodium sulfate colitis murine model: an indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J Gastroenterol 23(33):6016–6029. https://doi.org/10.3748/wjg.v23.i33.6016

    Article  CAS  Google Scholar 

  • Faye AS, Colombel JF (2022) Aging and IBD: a new challenge for clinicians and researchers. Inflamm Bowel Dis 28(1):126–132. https://doi.org/10.1093/ibd/izab039

    Article  Google Scholar 

  • Flurkey K, Currer JM, Harrison DE (2007) Mouse models in aging research. The mouse in biomedical research. Academic Press, Cambridge, pp 637–672

    Chapter  Google Scholar 

  • Foersch S, Neurath MF (2014) Colitis-associated neoplasia: molecular basis and clinical translation. Cell Mol Life Sci 71(18):3523–3535. https://doi.org/10.1007/s00018-014-1636-x

    Article  CAS  Google Scholar 

  • Fujii S, Fujimori T, Kawamata H, Takeda J, Kitajima K, Omotehara F, Kaihara T, Kusaka T, Ichikawa K, Ohkura Y et al (2004) Development of colonic neoplasia in p53 deficient mice with experimental colitis induced by dextran sulphate sodium. Gut 53(5):710. https://doi.org/10.1136/gut.2003.028779

    Article  CAS  Google Scholar 

  • Glauben R, Batra A, Fedke I, Zeitz M, Lehr HA, Leoni F, Mascagni P, Fantuzzi G, Dinarello CA, Siegmund B (2006) Histone hyperacetylation is associated with amelioration of experimental colitis in mice. J Immunol 176(8):5015–5022. https://doi.org/10.4049/jimmunol.176.8.5015

    Article  CAS  Google Scholar 

  • Goodman WA, Havran HL, Quereshy HA, Kuang S, De Salvo C, Pizarro TT (2018) Estrogen receptor α loss-of-function protects female mice from DSS-induced experimental colitis. Cell Mol Gastroenterol Hepatol 5(4):630

    Article  Google Scholar 

  • Gudkov AV, Komarova EA (2016) P53 and the carcinogenicity of chronic inflammation. Cold Spring Harb Perspect Med. https://doi.org/10.1101/cshperspect.a026161

    Article  Google Scholar 

  • Gudkov AV, Gurova KV, Komarova EA (2011) Inflammation and p53: a tale of two stresses. Genes Cancer 2(4):503–516. https://doi.org/10.1177/1947601911409747

    Article  CAS  Google Scholar 

  • Gupta M, Mishra V, Gulati M, Kapoor B, Kaur A, Gupta R, Tambuwala MM (2022) Natural compounds as safe therapeutic options for ulcerative colitis. Inflammopharmacology 30(2):397–434. https://doi.org/10.1007/s10787-022-00931-1

    Article  CAS  Google Scholar 

  • Han SG, Han S-S, Toborek M, Hennig B (2012) EGCG protects endothelial cells against PCB 126-induced inflammation through inhibition of AhR and induction of Nrf2-regulated genes. Toxicol Appl Pharmacol 261(2):181–188. https://doi.org/10.1016/j.taap.2012.03.024

    Article  CAS  Google Scholar 

  • Holczer M, Besze B, Zámbó V, Csala M, Bánhegyi G, Kapuy O (2018) Epigallocatechin-3-gallate (EGCG) promotes autophagy-dependent survival via influencing the balance of MTOR-AMPK pathways upon endoplasmic reticulum stress. Oxid Med Cell Longev 2018:6721530. https://doi.org/10.1155/2018/6721530

    Article  CAS  Google Scholar 

  • Holleran G, Scaldaferri F, Gasbarrini A, Currò D (2020) Herbal medicinal products for inflammatory bowel disease: a focus on those assessed in double-blind randomised controlled trials. Phytother Res 34(1):77–93. https://doi.org/10.1002/ptr.6517

    Article  Google Scholar 

  • Hossen I, Hua W, Ting L, Mehmood A, Jingyi S, Duoxia X, Yanping C, Hongqing W, Zhipeng G, Kaiqi Z et al (2020) Phytochemicals and inflammatory bowel disease: a review. Crit Rev Food Sci Nutr 60(8):1321–1345. https://doi.org/10.1080/10408398.2019.1570913

    Article  CAS  Google Scholar 

  • Hruz P, Juillerat P, Kullak-Ublick GA, Schoepfer AM, Mantzaris GJ, Rogler G (2020) Management of the elderly inflammatory bowel disease patient. Digestion 101(suppl 1):105–119. https://doi.org/10.1159/000503099

    Article  Google Scholar 

  • Huang SC, Kao YH, Shih SF, Tsai MC, Lin CS, Chen LW, Chuang YP, Tsui PF, Ho LJ, Lai JH et al (2021) Epigallocatechin-3-gallate exhibits immunomodulatory effects in human primary t cells. Biochem Biophys Res Commun 550:70–76. https://doi.org/10.1016/j.bbrc.2021.02.132

    Article  CAS  Google Scholar 

  • Hwang DY, Park JH, Yim SV, Son Y, Hong HS (2016) Substance-P protects intestinal epithelium against dextran sulfate sodium-induced toxicity in vitro. Mol Cell Toxicol 12(4):391–398

    Article  CAS  Google Scholar 

  • Inoue T, Murano M, Kuramoto T, Ishida K, Kawakami K, Abe Y, Morita E, Murano N, Toshina K, Nishikawa T et al (2007) Increased proliferation of middle to distal colonic cells during colorectal carcinogenesis in experimental murine ulcerative colitis. Oncol Rep 18(6):1457–1462

    Google Scholar 

  • Ioachim EE, Katsanos KH, Michael MC, Tsianos EV, Agnantis NJ (2004) Immunohistochemical expression of cyclin D1, cyclin E, p21/waf1 and p27/kip1 in inflammatory bowel disease: correlation with other cell-cycle-related proteins (Rb, p53, ki-67 and PCNA) and clinicopathological features. Int J Colorectal Dis 19(4):325–333. https://doi.org/10.1007/s00384-003-0571-3

    Article  Google Scholar 

  • Joshi L, Ponnana M, Sivangala R, Chelluri LK, Nallari P, Penmetsa S, Valluri V, Gaddam S (2015) Evaluation of TNF-α, IL-10 and IL-6 cytokine production and their correlation with genotype variants amongst tuberculosis patients and their household contacts. PLoS ONE 10(9):e0137727. https://doi.org/10.1371/journal.pone.0137727

    Article  CAS  Google Scholar 

  • Kanlaya R, Khamchun S, Kapincharanon C, Thongboonkerd V (2016) Protective effect of epigallocatechin-3-gallate (EGCG) via Nrf2 pathway against oxalate-induced epithelial mesenchymal transition (EMT) of renal tubular cells. Sci Rep 6(1):30233. https://doi.org/10.1038/srep30233

    Article  CAS  Google Scholar 

  • Kaur A, Goggolidou P (2020) Ulcerative colitis: understanding its cellular pathology could provide insights into novel therapies. J Inflamm 17(1):15. https://doi.org/10.1186/s12950-020-00246-4

    Article  Google Scholar 

  • Kim JM, Heo HJ (2022) The roles of catechins in regulation of systemic inflammation. Food Sci Biotechnol. https://doi.org/10.1007/s10068-022-01069-0

    Article  Google Scholar 

  • Kumar R, Sharma A, Kumari A, Gulati A, Padwad Y, Sharma R (2019) Epigallocatechin gallate suppresses premature senescence of preadipocytes by inhibition of PI3K/Akt/mTOR pathway and induces senescent cell death by regulation of Bax/Bcl-2 pathway. Biogerontology 20(2):171–189. https://doi.org/10.1007/s10522-018-9785-1

    Article  CAS  Google Scholar 

  • Kumar R, Sharma A, Padwad Y, Sharma R (2020) Preadipocyte secretory factors differentially modulate murine macrophage functions during aging which are reversed by the application of phytochemical EGCG. Biogerontology 21(3):325–343. https://doi.org/10.1007/s10522-020-09861-3

    Article  CAS  Google Scholar 

  • Kuriyama S, Shimazu T, Ohmori K, Kikuchi N, Nakaya N, Nishino Y, Tsubono Y, Tsuji I (2006) Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: The Ohsaki study. JAMA 296(10):1255–1265. https://doi.org/10.1001/jama.296.10.1255

    Article  CAS  Google Scholar 

  • Kwon J, Lee C, Heo S, Kim B, Hyun CK (2021) DSS-induced colitis is associated with adipose tissue dysfunction and disrupted hepatic lipid metabolism leading to hepatosteatosis and dyslipidemia in mice. Sci Rep 11(1):1–6

    Google Scholar 

  • Laroui H, Ingersoll SA, Liu HC, Baker MT, Ayyadurai S, Charania MA, Laroui F, Yan Y, Sitaraman SV, Merlin D (2012) Dextran sodium sulfate (DSS) induces colitis in mice by forming nano-lipocomplexes with medium-chain-length fatty acids in the colon. PLoS ONE 7(3):e32084

    Article  CAS  Google Scholar 

  • Levine JS, Burakoff R (2011) Extraintestinal manifestations of inflammatory bowel disease. Gastroenterol Hepatol (NY) 7(4):235–241

    Google Scholar 

  • Li J, Sapper TN, Mah E, Rudraiah S, Schill KE, Chitchumroonchokchai C, Moller MV, McDonald JD, Rohrer PR, Manautou JE et al (2016) Green tea extract provides extensive Nrf2-independent protection against lipid accumulation and NFκB pro-inflammatory responses during nonalcoholic steatohepatitis in mice fed a high-fat diet. Mol Nutr Food Res 60(4):858–870. https://doi.org/10.1002/mnfr.201500814

    Article  CAS  Google Scholar 

  • Li H, Fan C, Lu H, Feng C, He P, Yang X, Xiang C, Zuo J, Tang W (2020) Protective role of berberine on ulcerative colitis through modulating enteric glial cells–intestinal epithelial cells–immune cells interactions. Acta Pharm Sin B 10(3):447–461. https://doi.org/10.1016/j.apsb.2019.08.006

    Article  CAS  Google Scholar 

  • Lilja S, Oldenburg J, Pointner A, Dewald L, Lerch M, Hippe B, Switzeny O, Haslberger A (2020) Epigallocatechin gallate effectively affects senescence and anti-SASP via SIRT3 in 3T3-L1 preadipocytes in comparison with other bioactive substances. Oxid Med Cell Longev. https://doi.org/10.1155/2020/4793125

    Article  Google Scholar 

  • Liu AL, Wang HY, Lü H, Qian JM (2019) Effect of aging on experimental colitis in mice and its associated mechanism]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 41(1):28–36. https://doi.org/10.3881/j.issn.1000-503X.10840

    Article  Google Scholar 

  • Liu A, Lv H, Wang H, Yang H, Li Y, Qian J (2020) Aging increases the severity of colitis and the related changes to the gut barrier and gut microbiota in humans and mice. J Gerontol A 75(7):1284–1292. https://doi.org/10.1093/gerona/glz263

    Article  CAS  Google Scholar 

  • Liverani E, Scaioli E, Digby RJ, Bellanova M, Belluzzi A (2016) How to predict clinical relapse in inflammatory bowel disease patients. World J Gastroenterol 22(3):1017–1033. https://doi.org/10.3748/wjg.v22.i3.1017

    Article  CAS  Google Scholar 

  • Ma Y, Liu G, Tang M, Fang J, Jiang H (2021) Epigallocatechin gallate can protect mice from acute stress induced by LPS while stabilizing gut microbes and serum metabolites levels. Front Immunol. https://doi.org/10.3389/fimmu.2021.640305

    Article  Google Scholar 

  • Miao YL, Xiao YL, Du Y, Duan LP (2013) Gene expression profiles in peripheral blood mononuclear cells of ulcerative colitis patients. World J Gastroenterol 19(21):3339–3346. https://doi.org/10.3748/wjg.v19.i21.3339

    Article  Google Scholar 

  • Munkholm P (2003) Review article: the incidence and prevalence of colorectal cancer in inflammatory bowel disease. Aliment Pharmacol Ther 18(Suppl 2):1–5. https://doi.org/10.1046/j.1365-2036.18.s2.2.x

    Article  Google Scholar 

  • Musial C, Kuban-Jankowska A, Gorska-Ponikowska M (2020) Beneficial properties of green tea catechins. Int J Mol Sci 21(5):1744

    Article  CAS  Google Scholar 

  • Nyuyki KD, Cluny NL, Swain MG, Sharkey KA, Pittman QJ (2018) Altered brain excitability and increased anxiety in mice with experimental colitis: consideration of hyperalgesia and sex differences. Front Behav Neurosci 12:58

    Article  Google Scholar 

  • Oz HS, Chen T, de Villiers WJ (2013) Green tea polyphenols and sulfasalazine have parallel anti-inflammatory properties in colitis models. Front Immunol 4:132

    Article  Google Scholar 

  • Pang J, Zhang Z, Zheng TZ, Bassig BA, Mao C, Liu X, Zhu Y, Shi K, Ge J, Yang YJ et al (2016) Green tea consumption and risk of cardiovascular and ischemic related diseases: a meta-analysis. Int J Cardiol 202:967–974. https://doi.org/10.1016/j.ijcard.2014.12.176

    Article  Google Scholar 

  • Park MY, Ji GE, Sung MK (2012) Dietary kaempferol suppresses inflammation of dextran sulfate sodium-induced colitis in mice. Dig Dis Sci 57(2):355–363. https://doi.org/10.1007/s10620-011-1883-8

    Article  CAS  Google Scholar 

  • Peairs A, Dai R, Gan L, Shimp S, Rylander MN, Li L, Reilly CM (2010) Epigallocatechin-3-gallate (EGCG) attenuates inflammation in MRL/lpr mouse mesangial cells. Cell Mol Immunol 7(2):123–132. https://doi.org/10.1038/cmi.2010.1

    Article  CAS  Google Scholar 

  • Picardo S, Altuwaijri M, Devlin SM, Seow CH (2020) Complementary and alternative medications in the management of inflammatory bowel disease. Ther Adv Gastroenterol 13:1756284820927550. https://doi.org/10.1177/1756284820927550

    Article  CAS  Google Scholar 

  • Poehlmann A, Reissig K, Schönfeld P, Walluscheck D, Schinlauer A, Hartig R, Lessel W, Guenther T, Silver A, Roessner A (2013) Repeated H2O2 exposure drives cell cycle progression in an in vitro model of ulcerative colitis. J Cell Mol Med 17(12):1619–1631. https://doi.org/10.1111/jcmm.12150

    Article  CAS  Google Scholar 

  • Qu Y, Li X, Xu F, Zhao S, Wu X, Wang Y, Xie J (2021) Kaempferol alleviates murine experimental colitis by restoring gut microbiota and inhibiting the LPS-TLR4-Nf-κB axis. Front Immunol 12:679897–679897. https://doi.org/10.3389/fimmu.2021.679897

    Article  CAS  Google Scholar 

  • Rabe H, Malmquist M, Barkman C, Östman S, Gjertsson I, Saalman R, Wold AE (2019) Distinct patterns of naive, activated and memory T and B cells in blood of patients with ulcerative colitis or Crohn’s disease. Clin Exp Immunol 197(1):111–129. https://doi.org/10.1111/cei.13294

    Article  CAS  Google Scholar 

  • Ren WY, Wu KF, Li X, Luo M, Liu HC, Zhang SC, Hu Y (2014) Age-related changes in small intestinal mucosa epithelium architecture and epithelial tight junction in rat models. Aging Clin Exp Res 26(2):183–191. https://doi.org/10.1007/s40520-013-0148-0

    Article  Google Scholar 

  • Ren J, Yue B, Wang H, Zhang B, Luo X, Yu Z, Zhang J, Ren Y, Mani S, Wang Z, Dou W (2021) Acacetin ameliorates experimental colitis in mice via inhibiting macrophage inflammatory response and regulating the composition of gut microbiota. Front Physiol 11:577237

    Article  Google Scholar 

  • Riegler G, Tartaglione MT, Carratú R, D’Incá R, Valpiani D, Russo MI, Papi C, Fiorentini MT, Ingrosso M, Andreoli A et al (2000) Age-related clinical severity at diagnosis in 1705 patients with ulcerative colitis. Dig Dis Sci 45(3):462–465. https://doi.org/10.1023/A:1005424603085

    Article  CAS  Google Scholar 

  • Risques RA, Lai LA, Himmetoglu C, Ebaee A, Li L, Feng Z, Bronner MP, Al-Lahham B, Kowdley KV, Lindor KD et al (2011) Ulcerative colitis-associated colorectal cancer arises in a field of short telomeres, senescence, and inflammation. Cancer Res 71(5):1669–1679. https://doi.org/10.1158/0008-5472.Can-10-1966

    Article  CAS  Google Scholar 

  • Saba E, Lee YY, Rhee MH, Kim SD (2020) Alleviation of ulcerative colitis potentially through th1/th2 cytokine balance by a mixture of Rg3-enriched korean red ginseng extract and Persicaria tinctoria. Molecules 25(22):5230. https://doi.org/10.3390/molecules25225230

    Article  CAS  Google Scholar 

  • Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM (2005) The antioxidant function of the p53 tumor suppressor. Nat Med 11(12):1306–1313

    Article  CAS  Google Scholar 

  • Samsami-Kor M, Daryani NE, Asl PR, Hekmatdoost A (2015) Anti-inflammatory effects of resveratrol in patients with ulcerative colitis: a randomized, double-blind, placebo-controlled pilot study. Arch Med Res 46(4):280–285. https://doi.org/10.1016/j.arcmed.2015.05.005

    Article  CAS  Google Scholar 

  • Schulz-Heddergott R, Stark N, Edmunds SJ, Li J, Conradi LC, Bohnenberger H, Ceteci F, Greten FR, Dobbelstein M, Moll UM (2018) Therapeutic ablation of gain-of-function mutant p53 in colorectal cancer inhibits Stat3-mediated tumor growth and invasion. Cancer Cell 34(2):298–314

    Article  CAS  Google Scholar 

  • Seril DN, Liao J, Yang GY, Yang CS (2003) Oxidative stress and ulcerative colitis-associated carcinogenesis: studies in humans and animal models. Carcinogenesis 24(3):353–362. https://doi.org/10.1093/carcin/24.3.353

    Article  CAS  Google Scholar 

  • Sharma R, Diwan B (2022) An update on health span and lifespan enhancing attributes of tea amidst the emerging understanding of aging biology. Hum Nutr Metab. https://doi.org/10.1016/j.hnm.2022.200149

    Article  Google Scholar 

  • Sharma R, Kapila R, Dass G, Kapila S (2014a) Improvement in th1/th2 immune homeostasis, antioxidative status and resistance to pathogenic E. coli on consumption of probiotic Lactobacillus rhamnosus fermented milk in aging mice. Age 36(4):9686. https://doi.org/10.1007/s11357-014-9686-4

    Article  CAS  Google Scholar 

  • Sharma R, Kapila R, Haq MRU, Salingati V, Kapasiya M, Kapila S (2014b) Age-associated aberrations in mouse cellular and humoral immune responses. Aging Clin Exp Res 26(4):353–362. https://doi.org/10.1007/s40520-013-0190-y

    Article  Google Scholar 

  • Sharma R, Kapila R, Kapasiya M, Saliganti V, Dass G, Kapila S (2014c) Dietary supplementation of milk fermented with probiotic Lactobacillus fermentum enhances systemic immune response and antioxidant capacity in aging mice. Nutr Res 34(11):968–981. https://doi.org/10.1016/j.nutres.2014.09.006

    Article  CAS  Google Scholar 

  • Sharma R, Sharma A, Kumari A, Kulurkar PM, Raj R, Gulati A, Padwad YS (2017) Consumption of green tea epigallocatechin-3-gallate enhances systemic immune response, antioxidative capacity and HPA axis functions in aged male Swiss albino mice. Biogerontology 18(3):367–382. https://doi.org/10.1007/s10522-017-9696-6

    Article  CAS  Google Scholar 

  • Sharma R, Kumari M, Kumari A, Sharma A, Gulati A, Gupta M, Padwad Y (2019) Diet supplemented with phytochemical epigallocatechin gallate and probiotic Lactobacillus fermentum confers second generation synbiotic effects by modulating cellular immune responses and antioxidant capacity in aging mice. Eur J Nutr 58(7):2943–2957. https://doi.org/10.1007/s00394-018-01890-6

    Article  CAS  Google Scholar 

  • Sharma A, Tirpude NV, Kulurkar PM, Sharma R, Padwad Y (2020) Berberis lycium fruit extract attenuates oxi-inflammatory stress and promotes mucosal healing by mitigating NF-κB/c-jun/mapks signalling and augmenting splenic treg proliferation in a murine model of dextran sulphate sodium-induced ulcerative colitis. Eur J Nutr 59(6):2663–2681. https://doi.org/10.1007/s00394-019-02114-1

    Article  CAS  Google Scholar 

  • Sharma R, Kumar R, Sharma A, Goel A, Padwad Y (2022) Long-term consumption of green tea EGCG enhances murine health span by mitigating multiple aspects of cellular senescence in mitotic and post-mitotic tissues, gut dysbiosis, and immunosenescence. J Nutr Biochem 107:109068. https://doi.org/10.1016/j.jnutbio.2022.109068

    Article  CAS  Google Scholar 

  • Shin JH, Jeon HJ, Park J, Chang MS (2016) Epigallocatechin-3-gallate prevents oxidative stress-induced cellular senescence in human mesenchymal stem cells via nrf2. Int J Mol Med 38(4):1075–1082. https://doi.org/10.3892/ijmm.2016.2694

    Article  CAS  Google Scholar 

  • Somani SJ, Modi KP, Majumdar AS, Sadarani BN (2015) Phytochemicals and their potential usefulness in inflammatory bowel disease. Phytother Res 29(3):339–350. https://doi.org/10.1002/ptr.5271

    Article  CAS  Google Scholar 

  • Su H, Kang Q, Wang H, Yin H, Duan L, Liu Y, Fan R (2019) Changes in expression of p53 and inflammatory factors in patients with ulcerative colitis erratum in 10.3892/etm.2019.7994. Exp Ther Med 17(4):2451–2456. https://doi.org/10.3892/etm.2019.7253

    Article  CAS  Google Scholar 

  • Sun W, Liu X, Zhang H, Song Y, Li T, Liu X, Liu Y, Guo L, Wang F, Yang T et al (2017) Epigallocatechin gallate upregulates nrf2 to prevent diabetic nephropathy via disabling keap1. Free Radic Biol Med 108:840–857. https://doi.org/10.1016/j.freeradbiomed.2017.04.365

    Article  CAS  Google Scholar 

  • Tran L, Greenwood-Van Meerveld B (2013) Age-associated remodeling of the intestinal epithelial barrier. J Gerontol A 68(9):1045–1056. https://doi.org/10.1093/gerona/glt106

    Article  CAS  Google Scholar 

  • Varilek GW, Yang F, Lee EY, DeVilliers WJ, Zhong J, Oz HS, Westberry KF, McClain CJ (2001) Green tea polyphenol extract attenuates inflammation in interleukin-2–deficient mice, a model of autoimmunity. J Nutr 131(7):2034–2039

    Article  CAS  Google Scholar 

  • Verma N, Verma R, Kumari R, Ranjha R, Paul J (2014) Effect of salicin on gut inflammation and on selected groups of gut microbiota in dextran sodium sulfate induced mouse model of colitis. Inflamm Res 63(2):161–169. https://doi.org/10.1007/s00011-013-0685-1

    Article  CAS  Google Scholar 

  • Wong NA, Mayer NJ, Anderson CE, McKenzie HC, Morris RG, Diebold J, Mayr D, Brock IW, Royds JA, Gilmour HM et al (2003) Cyclin d1 and p21 in ulcerative colitis-related inflammation and epithelial neoplasia: a study of aberrant expression and underlying mechanisms. Hum Pathol 34(6):580–588. https://doi.org/10.1016/s0046-8177(03)00125-4

    Article  CAS  Google Scholar 

  • Xu Z, Wei C, Zhang RU, Yao J, Zhang D, Wang L (2015) Epigallocatechin-3-gallate-induced inhibition of interleukin-6 release and adjustment of the regulatory T/T helper 17 cell balance in the treatment of colitis in mice. Exp Ther Med 10(6):2231–2238

    Article  CAS  Google Scholar 

  • Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M (1991) Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352(6333):345–347. https://doi.org/10.1038/352345a0

    Article  CAS  Google Scholar 

  • Zhang LJ, Huang XJ, Shi XD, Chen HH, Cui SW, Nie SP (2019) Protective effect of three glucomannans from different plants against DSS induced colitis in female BALB/c mice. Food Funct 10(4):1928–1939

    Article  CAS  Google Scholar 

  • Zhao J, Hong T, Dong M, Meng Y, Mu J (2013) Protective effect of myricetin in dextran sulphate sodium-induced murine ulcerative colitis. Mol Med Rep 7(2):565–570

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Department of Science and Technology, Government of India under the INSPIRE Faculty scheme (IFA17-LSPA79). The authors express their gratitude to Dr. Anamika Sharma for her guidance in colitis experiments.

Author information

Authors and Affiliations

Authors

Contributions

BD investigation; RS funding acquisition, conceptualization, methodology, analyses, wrote/edited manuscript; supervision.

Corresponding author

Correspondence to Rohit Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diwan, B., Sharma, R. Green tea EGCG effectively alleviates experimental colitis in middle-aged male mice by attenuating multiple aspects of oxi-inflammatory stress and cell cycle deregulation. Biogerontology 23, 789–807 (2022). https://doi.org/10.1007/s10522-022-09976-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-022-09976-9

Keywords

Navigation