Skip to main content

Advertisement

Log in

Colitis-associated neoplasia: molecular basis and clinical translation

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Crohn’s disease and ulcerative colitis are both associated with an increased risk of inflammation-associated colorectal carcinoma. Colitis-associated cancer (CAC) is one of the most important causes for morbidity and mortality in patients with inflammatory bowel diseases (IBD). Colitis-associated neoplasia distinctly differs from sporadic colorectal cancer in its biology and the underlying mechanisms. This review discusses the molecular mechanisms of CAC and summarizes the most important genetic alterations and signaling pathways involved in inflammatory carcinogenesis. Then, clinical translation is evaluated by discussing new endoscopic techniques and their contribution to surveillance and early detection of CAC. Last, we briefly address different types of concepts for prevention (i.e., anti-inflammatory therapeutics) and treatment (i.e., surgical intervention) of CAC and give an outlook on this important aspect of IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Crohn B, Rosenberg H (1925) The sigmoidoscopic picture of chronic ulcerative colitis (non-specific). Am J Med Sci 170:220–228

    Google Scholar 

  2. Ekbom A, Helmick C, Zack M, Adami HO (1990) Ulcerative colitis and colorectal cancer. A population-based study. N Engl J Med 323:1228–1233

    CAS  PubMed  Google Scholar 

  3. Jess T, Gamborg M, Matzen P et al (2005) Increased risk of intestinal cancer in Crohn’s disease: a meta-analysis of population-based cohort studies. Am J Gastroenterol 100:2724–2729

    PubMed  Google Scholar 

  4. Eaden JA, Abrams KR, Mayberry JF (2001) The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut 48:526–535

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Rutter MD, Saunders BP, Wilkinson KH et al (2006) Thirty-year analysis of a colonoscopic surveillance program for neoplasia in ulcerative colitis. YGAST 130:1030–1038

    Google Scholar 

  6. Soetikno RM, Lin OS, Heidenreich PA et al (2002) Increased risk of colorectal neoplasia in patients with primary sclerosing cholangitis and ulcerative colitis: a meta-analysis. Gastrointest Endosc 56:48–54

    PubMed  Google Scholar 

  7. Velayos FS, Loftus EV, Jess T et al (2006) Predictive and protective factors associated with colorectal cancer in ulcerative colitis: a case-control study. YGAST 130:1941–1949

    Google Scholar 

  8. Lashner BA, Turner BC, Bostwick DG et al (1990) Dysplasia and cancer complicating strictures in ulcerative colitis. Dig Dis Sci 35:349–352

    CAS  PubMed  Google Scholar 

  9. Lukas M (2010) Inflammatory bowel disease as a risk factor for colorectal cancer. Dig Dis 28:619–624

    PubMed  Google Scholar 

  10. Cho KR, Vogelstein B (1992) Genetic alterations in the adenoma–carcinoma sequence. Cancer 70:1727–1731

    CAS  PubMed  Google Scholar 

  11. Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799

    CAS  PubMed  Google Scholar 

  12. Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87(2):159–170

  13. Su LK, Kinzler KW, Vogelstein B et al (1992) Multiple intestinal neoplasia caused by a mutation in the murine homolog of the APC gene. Science (New York, NY) 256:668–670

    CAS  Google Scholar 

  14. Powell SM, Zilz N, Beazer-Barclay Y et al (1992) APC mutations occur early during colorectal tumorigenesis. Nature 359:235–237. doi:10.1038/359235a0

    CAS  PubMed  Google Scholar 

  15. Foersch S, Waldner MJ, Neurath MF (2012) Colitis and colorectal cancer. Dig Dis 30:469–476

    PubMed  Google Scholar 

  16. Kern SE, Redston M, Seymour AB et al (1994) Molecular genetic profiles of colitis-associated neoplasms. YGAST 107:420–428

    CAS  Google Scholar 

  17. Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358:15–16. doi:10.1038/358015a0

    CAS  PubMed  Google Scholar 

  18. Gondek LP, Tiu R, O’Keefe CL et al (2008) Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML. Blood 111:1534–1542. doi:10.1182/blood-2007-05-092304

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Burmer GC, Rabinovitch PS, Haggitt RC et al (1992) Neoplastic progression in ulcerative colitis: histology, DNA content, and loss of a p53 allele. YGAST 103:1602–1610

    CAS  Google Scholar 

  20. Hussain SP, Amstad P, Raja K et al (2000) Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory disease. Cancer Res 60:3333–3337

    CAS  PubMed  Google Scholar 

  21. Brentnall TA, Crispin DA, Rabinovitch PS et al (1994) Mutations in the p53 gene: an early marker of neoplastic progression in ulcerative colitis. YGAST 107:369–378

    CAS  Google Scholar 

  22. Cooks T, Pateras IS, Tarcic O et al (2013) Mutant p53 prolongs NF-κB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell 23:634–646. doi:10.1016/j.ccr.2013.03.022

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Tarmin L, Yin J, Harpaz N et al (1995) Adenomatous polyposis coli gene mutations in ulcerative colitis-associated dysplasias and cancers versus sporadic colon neoplasms. Cancer Res 55:2035–2038

    CAS  PubMed  Google Scholar 

  24. Fogt F, Vortmeyer AO, Goldman H et al (1998) Comparison of genetic alterations in colonic adenoma and ulcerative colitis-associated dysplasia and carcinoma. Hum Pathol 29:131–136

    CAS  PubMed  Google Scholar 

  25. Cooper HS, Everley L, Chang W et al (2001) The role of mutant Apc in the development of dysplasia and cancer in the mouse model of dextran sulfate sodium–induced colitis. Gastroenterology 121:1407–1416. doi:10.1053/gast.2001.29609

    CAS  PubMed  Google Scholar 

  26. Leedham S, Graham T, Oukrif D (2009) Clonality, founder mutations, and field cancerization in human ulcerative colitis-associated neoplasia. Gastroenterology 136(542):550.e6. doi:10.1053/j.gastro.2008.10.086

    Google Scholar 

  27. Brown JB, Lee G, Managlia E et al (2010) Mesalamine inhibits epithelial beta-catenin activation in chronic ulcerative colitis. Gastroenterology 138:595–605, 605.e1–3. doi:10.1053/j.gastro.2009.10.038

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Lee G, Goretsky T, Managlia E et al (2010) Phosphoinositide 3-kinase signaling mediates beta-catenin activation in intestinal epithelial stem and progenitor cells in colitis. Gastroenterology 139:869. doi:10.1053/j.gastro.2010.05.037

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Pozzi A, Yan X, Macias-Perez I et al (2004) Colon carcinoma cell growth is associated with prostaglandin E2/EP4 receptor-evoked ERK activation. J Biol Chem 279:29797–29804. doi:10.1074/jbc.M313989200

    CAS  PubMed  Google Scholar 

  30. Tessner TG, Muhale F, Riehl TE et al (2004) Prostaglandin E2 reduces radiation-induced epithelial apoptosis through a mechanism involving AKT activation and bax translocation. J Clin Invest 114:1676–1685. doi:10.1172/JCI22218

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Rapozo DCM, Grinmann AB, Carvalho ATP et al (2009) Analysis of mutations in TP53, APC, K-ras, and DCC genes in the non-dysplastic mucosa of patients with inflammatory bowel disease. Int J Colorectal Dis 24:1141–1148. doi:10.1007/s00384-009-0748-5

    PubMed  Google Scholar 

  32. Lang SM, Stratakis DF, Heinzlmann M et al (1999) Molecular screening of patients with long standing extensive ulcerative colitis: detection of p53 and Ki-ras mutations by single strand conformation polymorphism analysis and differential hybridisation in colonic lavage fluid. Gut 44:822–825

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Umetani N, Sasaki S, Masaki T et al (2000) Involvement of APC and K-ras mutation in non-polypoid colorectal tumorigenesis. Br J Cancer 82:9–15. doi:10.1054/bjoc.1999.0868

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Itzkowitz SH (2006) Molecular biology of dysplasia and cancer in inflammatory bowel disease. Gastroenterol Clin North Am 35:553–571

    PubMed  Google Scholar 

  35. Rashid A, Hamilton SR (1997) Genetic alterations in sporadic and Crohn’s-associated adenocarcinomas of the small intestine. Gastroenterology 113:127–135

    CAS  PubMed  Google Scholar 

  36. Hofseth LJ, Saito S, Hussain SP et al (2003) Nitric oxide-induced cellular stress and p53 activation in chronic inflammation. Proc Natl Acad Sci USA 100:143–148

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Hussain SP, Hofseth LJ, Harris CC (2003) Radical causes of cancer. Nat Rev Cancer 3:276–285. doi:10.1038/nrc1046

    CAS  PubMed  Google Scholar 

  38. Westbrook AM, Wei B, Braun J, Schiestl RH (2009) Intestinal mucosal inflammation leads to systemic genotoxicity in mice. Cancer Res 69:4827–4834. doi:10.1158/0008-5472.CAN-08-4416

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Ferguson LR (2010) Chronic inflammation and mutagenesis. Mutat Res 690:3–11. doi:10.1016/j.mrfmmm.2010.03.007

    CAS  PubMed  Google Scholar 

  40. Cook PJ, Ju BG, Telese F et al (2009) Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature 458:591–596. doi:10.1038/nature07849

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Shaked H, Hofseth LJ, Chumanevich A et al (2012) Chronic epithelial NF-κB activation accelerates APC loss and intestinal tumor initiation through iNOS up-regulation. Proc Natl Acad Sci USA 109:14007–14012. doi:10.1073/pnas.1211509109

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Erdman SE, Rao VP, Poutahidis T et al (2009) Nitric oxide and TNF-alpha trigger colonic inflammation and carcinogenesis in Helicobacter hepaticus-infected, Rag2-deficient mice. Proc Natl Acad Sci USA 106:1027–1032. doi:10.1073/pnas.0812347106

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Goodman JE, Hofseth LJ, Hussain SP, Harris CC (2004) Nitric oxide and p53 in cancer-prone chronic inflammation and oxyradical overload disease. Environ Mol Mutagen 44:3–9. doi:10.1002/em.20024

    CAS  PubMed  Google Scholar 

  44. Bonner WM, Redon CE, Dickey JS et al (2008) GammaH2AX and cancer. Nat Rev Cancer 8:957–967. doi:10.1038/nrc2523

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Risques RA, Lai La, Brentnall Ta et al (2008) Ulcerative colitis is a disease of accelerated colon aging: evidence from telomere attrition and DNA damage. Gastroenterology 135:410–418. doi:10.1053/j.gastro.2008.04.008

    CAS  PubMed Central  PubMed  Google Scholar 

  46. O’Sullivan JN, Bronner MP, Brentnall Ta et al (2002) Chromosomal instability in ulcerative colitis is related to telomere shortening. Nat Genet 32:280–284. doi:10.1038/ng989

    PubMed  Google Scholar 

  47. O’Sullivan J, Risques RA, Mandelson MT et al (2006) Telomere length in the colon declines with age: a relation to colorectal cancer? Cancer Epidemiol Biomarkers Prev 15:573–577. doi:10.1158/1055-9965.EPI-05-0542

    PubMed  Google Scholar 

  48. Wirtz S, Neufert C, Weigmann B, Neurath MF (2007) Chemically induced mouse models of intestinal inflammation. Nat Protoc 2:541–546

    CAS  PubMed  Google Scholar 

  49. Neurath MF, Finotto S (2009) Translating inflammatory bowel disease research into clinical medicine. Immunity 31:357–361. doi:10.1016/j.immuni.2009.08.016

    CAS  PubMed  Google Scholar 

  50. Amit S, Ben-Neriah Y (2003) NF-kappaB activation in cancer: a challenge for ubiquitination- and proteasome-based therapeutic approach. Semin Cancer Biol 13:15–28

    CAS  PubMed  Google Scholar 

  51. Greten FR, Eckmann L, Greten TF et al (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118:285–296. doi:10.1016/j.cell.2004.07.013

    CAS  PubMed  Google Scholar 

  52. Greten FR, Arkan MC, Bollrath J et al (2007) NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell 130:918–931

    CAS  PubMed Central  PubMed  Google Scholar 

  53. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F et al (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229–241

    CAS  PubMed  Google Scholar 

  54. Waldner MJ, Foersch S, Neurath MF (2012) Interleukin-6—a key regulator of colorectal cancer development. Int J Biol Sci 8:1248–1253

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Yamamoto K, Rose-John S (2012) Therapeutic blockade of interleukin-6 in chronic inflammatory disease. Clin Pharmacol Ther 91:574–576. doi:10.1038/clpt.2012.11

    CAS  PubMed  Google Scholar 

  56. Neurath MF, Finotto S (2011) IL-6 signaling in autoimmunity, chronic inflammation and inflammation-associated cancer. Cytokine Growth Factor Rev 22:83–89. doi:10.1016/j.cytogfr.2011.02.003

    CAS  PubMed  Google Scholar 

  57. Jarnicki A, Putoczki T, Ernst M (2010) Stat3: linking inflammation to epithelial cancer—more than a “gut” feeling? Cell Div 5:14. doi:10.1186/1747-1028-5-14

    PubMed Central  PubMed  Google Scholar 

  58. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9:798–809. doi:10.1038/nrc2734

    CAS  PubMed  Google Scholar 

  59. Waldner MJ, Wirtz S, Jefremow A et al (2010) VEGF receptor signaling links inflammation and tumorigenesis in colitis-associated cancer. J Exp Med 207:2855–2868

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Grivennikov S, Karin E, Terzic J et al (2009) IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15:103–113. doi:10.1016/j.ccr.2009.01.001

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Grivennikov S, Karin M (2008) Autocrine IL-6 signaling: a key event in tumorigenesis? Cancer Cell 13:7–9. doi:10.1016/j.ccr.2007.12.020

    CAS  PubMed  Google Scholar 

  62. Putoczki TL, Thiem S, Loving A et al (2013) Interleukin-11 is the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell 24:257–271. doi:10.1016/j.ccr.2013.06.017

    CAS  PubMed  Google Scholar 

  63. Chung Y-C, Chang Y-F (2003) Significance of inflammatory cytokines in the progression of colorectal cancer. Hepatogastroenterology 50:1910–1913

    CAS  PubMed  Google Scholar 

  64. Tanaka T, Narazaki M, Kishimoto T (2012) Therapeutic targeting of the interleukin-6 receptor. Annu Rev Pharmacol Toxicol 52:199–219. doi:10.1146/annurev-pharmtox-010611-134715

    CAS  PubMed  Google Scholar 

  65. Rutgeerts P, Sandborn WJ, Feagan BG et al (2005) Infliximab for induction and maintenance therapy for ulcerative colitis. N Engl J Med 353:2462–2476. doi:10.1056/NEJMoa050516

    CAS  PubMed  Google Scholar 

  66. Popivanova BK, Kitamura K, Wu Y et al (2008) Blocking TNF-alpha in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest 118:560–570

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Kim YJ, Hong KS, Chung JW et al (2010) Prevention of colitis-associated carcinogenesis with infliximab. Cancer Prev Res (Phila) 3:1314–1333. doi:10.1158/1940-6207.CAPR-09-0272

    CAS  Google Scholar 

  68. Berg DJ, Davidson N, Kühn R et al (1996) Enterocolitis and colon cancer in interleukin-10-deficient mice are associated with aberrant cytokine production and CD4(+) TH1-like responses. J Clin Invest 98:1010–1020. doi:10.1172/JCI118861

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Rennick DM, Fort MM, Davidson NJ (1997) Studies with IL-10-/- mice: an overview. J Leukoc Biol 61:389–396

    CAS  PubMed  Google Scholar 

  70. Kühn R, Löhler J, Rennick D et al (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75:263–274

    PubMed  Google Scholar 

  71. Grütz G (2005) New insights into the molecular mechanism of interleukin-10-mediated immunosuppression. J Leukoc Biol 77:3–15. doi:10.1189/jlb.0904484

    PubMed  Google Scholar 

  72. Franke A, Balschun T, Karlsen TH et al (2008) Sequence variants in IL10, ARPC2 and multiple other loci contribute to ulcerative colitis susceptibility. Nat Genet 40:1319–1323. doi:10.1038/ng.221

    CAS  PubMed  Google Scholar 

  73. Danese S (2012) New therapies for inflammatory bowel disease: from the bench to the bedside. Gut 61:918–932. doi:10.1136/gutjnl-2011-300904

    CAS  PubMed  Google Scholar 

  74. Sturlan S, Oberhuber G, Beinhauer BG et al (2001) Interleukin-10-deficient mice and inflammatory bowel disease associated cancer development. Carcinogenesis 22:665–671

    CAS  PubMed  Google Scholar 

  75. Buonocore S, Ahern PP, Uhlig HH et al (2010) Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 464:1371–1375. doi:10.1038/nature08949

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Yen D, Cheung J, Scheerens H et al (2006) IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 116:1310–1316. doi:10.1172/JCI21404

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Grivennikov SI, Wang K, Mucida D et al (2012) Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491:254–258. doi:10.1038/nature11465

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Langowski JL, Zhang X, Wu L et al (2006) IL-23 promotes tumour incidence and growth. Nature 442:461–465. doi:10.1038/nature04808

    CAS  PubMed  Google Scholar 

  79. Hinoi T, Akyol A, Theisen BK et al (2007) Mouse model of colonic adenoma-carcinoma progression based on somatic Apc inactivation. Cancer Res 67:9721–9730. doi:10.1158/0008-5472.CAN-07-2735

    CAS  PubMed  Google Scholar 

  80. Hurwitz HI, Yi J, Ince W et al (2009) The clinical benefit of bevacizumab in metastatic colorectal cancer is independent of K-ras mutation status: analysis of a phase III study of bevacizumab with chemotherapy in previously untreated metastatic colorectal cancer. Oncologist 14:22–28

    CAS  PubMed  Google Scholar 

  81. Costa C, Incio J, Soares R (2007) Angiogenesis and chronic inflammation: cause or consequence? Angiogenesis 10:149–166

    PubMed  Google Scholar 

  82. Yoo S-A, Kwok S-K, Kim W-U (2008) Proinflammatory role of vascular endothelial growth factor in the pathogenesis of rheumatoid arthritis: prospects for therapeutic intervention. Mediators Inflamm 2008:129873

    PubMed Central  PubMed  Google Scholar 

  83. Scaldaferri F, Vetrano S, Sans M et al (2009) VEGF-A links angiogenesis and inflammation in inflammatory bowel disease pathogenesis. Gastroenterology 136(585):595.e5

    Google Scholar 

  84. Jänne PA, Mayer RJ (2000) Chemoprevention of colorectal cancer. N Engl J Med 342:1960–1968

    PubMed  Google Scholar 

  85. Gupta RA, Dubois RN (2001) Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nat Rev Cancer 1:11–21. doi:10.1038/35094017

    CAS  PubMed  Google Scholar 

  86. Raju R, Cruz-Correa M (2006) Chemoprevention of colorectal cancer. Dis Colon Rectum 49:113–115

    PubMed  Google Scholar 

  87. Velayos FS, Terdiman JP, Walsh JM (2005) Effect of 5-aminosalicylate use on colorectal cancer and dysplasia risk: a systematic review and metaanalysis of observational studies. Am J Gastroenterol 100(6):1345–1353 (Division of Gastroenterology and UCSF Center for Colitis and Crohn’s Disease, University of California, San Francisco, California 94143, USA)

    CAS  PubMed  Google Scholar 

  88. Rubin DT, Cruz-Correa MR, Gasche C et al (2008) Colorectal cancer prevention in inflammatory bowel disease and the role of 5-aminosalicylic acid: a clinical review and update. Inflamm Bowel Dis 14:265–274. doi:10.1002/ibd.20297

    PubMed  Google Scholar 

  89. Ishikawa T-O, Herschman HR (2010) Tumor formation in a mouse model of colitis-associated colon cancer does not require COX-1 or COX-2 expression. Carcinogenesis 31:729–736. doi:10.1093/carcin/bgq002

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Waldner MJ, Neurath MF (2009) Colitis-associated cancer: the role of T cells in tumor development. Semin Immunopathol 31:249–256. doi:10.1007/s00281-009-0161-8

    CAS  PubMed  Google Scholar 

  91. Mangerich A, Knutson CG, Parry NM, et al. (2012) Infection-induced colitis in mice causes dynamic and tissue-specific changes in stress response and DNA damage leading to colon cancer. http://www.pnas.org/cgi/doi/10.1073/pnas.1207829109

  92. Podolsky DK (2002) Inflammatory bowel disease. N Engl J Med 347:417–429. doi:10.1056/NEJMra020831

    CAS  PubMed  Google Scholar 

  93. Shibata M, Nezu T, Kanou H et al (2002) Decreased production of interleukin-12 and type 2 immune responses are marked in cachectic patients with colorectal and gastric cancer. J Clin Gastroenterol 34:416–420

    CAS  PubMed  Google Scholar 

  94. Pagès F, Berger A, Camus M et al (2005) Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 353:2654–2666. doi:10.1056/NEJMoa051424

    PubMed  Google Scholar 

  95. Kettunen HL, Kettunen ASL, Rautonen NE (2003) Intestinal immune responses in wild-type and Apcmin/+ mouse, a model for colon cancer. Cancer Res 63:5136–5142

    CAS  PubMed  Google Scholar 

  96. Wolf D, Wolf AM, Rumpold H et al (2005) The expression of the regulatory T cell-specific forkhead box transcription factor FoxP3 is associated with poor prognosis in ovarian cancer. Clin Cancer Res 11:8326–8331. doi:10.1158/1078-0432.CCR-05-1244

    CAS  PubMed  Google Scholar 

  97. Erdman SE, Sohn JJ, Rao VP et al (2005) CD4+ CD25+ regulatory lymphocytes induce regression of intestinal tumors in ApcMin/+ mice. Cancer Res 65:3998–4004. doi:10.1158/0008-5472.CAN-04-3104

    CAS  PubMed  Google Scholar 

  98. Erdman SE, Poutahidis T (2010) Roles for inflammation and regulatory T cells in colon cancer. Toxicol Pathol 38:76–87. doi:10.1177/0192623309354110

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Műzes G, Molnár B, Sipos F (2012) Regulatory T cells in inflammatory bowel diseases and colorectal cancer. World J Gastroenterol 18:5688–5694. doi:10.3748/wjg.v18.i40.5688

    PubMed Central  PubMed  Google Scholar 

  100. Clevers H (2004) At the crossroads of inflammation and cancer. Cell 118:671–674

    CAS  PubMed  Google Scholar 

  101. Barker N, van Es JH, Kuipers J et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007

    CAS  PubMed  Google Scholar 

  102. Sato T, Vries RG, Snippert HJ et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265

    CAS  PubMed  Google Scholar 

  103. Barker N, Ridgway RA, van Es JH et al (2009) Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457:608–611

    CAS  PubMed  Google Scholar 

  104. Schwitalla S, Fingerle Aa, Cammareri P et al (2013) Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152:25–38. doi:10.1016/j.cell.2012.12.012

    CAS  PubMed  Google Scholar 

  105. Neufert C, Becker C, Türeci Ö et al (2013) Tumor fibroblast-derived epiregulin promotes growth of colitis-associated neoplasms through ERK. J Clin Invest 123:1428–1443. doi:10.1172/JCI63748

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Guarner F, Malagelada J-R (2003) Gut flora in health and disease. Lancet 361:512–519. doi:10.1016/S0140-6736(03)12489-0

    PubMed  Google Scholar 

  107. Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260–270. doi:10.1038/nrg3182

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Rous P, Beard JW (1935) The progression to carcinoma of virus-induced rabbit papillomas (SHOPE). J Exp Med 62:523–548

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Schwabe RF, Jobin C (2013) The microbiome and cancer. Nat Rev Cancer 13:800–812. doi:10.1038/nrc3610

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Li Y, Kundu P, Seow SW et al (2012) Gut microbiota accelerate tumor growth via c-jun and STAT3 phosphorylation in APCMin/+ mice. Carcinogenesis 33:1231–1238. doi:10.1093/carcin/bgs137

    CAS  PubMed  Google Scholar 

  111. Strober W, Fuss IJ (2006) Experimental models of mucosal inflammation. Adv Exp Med Biol 579:55–97. doi:10.1007/0-387-33778-4_5

    CAS  PubMed  Google Scholar 

  112. Arthur JC, Perez-Chanona E, Mühlbauer M et al (2012) Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338:120–123. doi:10.1126/science.1224820

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Wu S, Rhee K-J, Albesiano E et al (2009) A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 15:1016–1022. doi:10.1038/nm.2015

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Chichlowski M, Sharp JM, Vanderford DA et al (2008) Helicobacter typhlonius and Helicobacter rodentium differentially affect the severity of colon inflammation and inflammation-associated neoplasia in IL10-deficient mice. Comp Med 58:534–541

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Iliev ID, Funari VA, Taylor KD et al (2012) Interactions between commensal fungi and the C-type lectin receptor dectin-1 influence colitis. Science 336:1314–1317. doi:10.1126/science.1221789

    CAS  PubMed Central  PubMed  Google Scholar 

  116. Relton CL, Smith GD (2010) Epigenetic epidemiology of common complex disease: prospects for prediction, prevention, and treatment. PLoS Med. doi:10.1371/journal.pmed.1000356

    PubMed Central  PubMed  Google Scholar 

  117. Ventham NT, Kennedy Na, Nimmo ER, Satsangi J (2013) Beyond gene discovery in inflammatory bowel disease: the emerging role of epigenetics. Gastroenterology 145:293–308. doi:10.1053/j.gastro.2013.05.050

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Saito S, Kato J, Hiraoka S et al (2011) DNA methylation of colon mucosa in ulcerative colitis patients: correlation with inflammatory status. Inflamm Bowel Dis 17:1955–1965. doi:10.1002/ibd.21573

    PubMed  Google Scholar 

  119. Dhir M, Montgomery EA, Glöckner SC et al (2008) Epigenetic regulation of WNT signaling pathway genes in inflammatory bowel disease (IBD) associated neoplasia. J Gastrointest Surg 12:1745–1753. doi:10.1007/s11605-008-0633-5

    PubMed Central  PubMed  Google Scholar 

  120. Issa JP, Ahuja N, Toyota M et al (2001) Accelerated age-related CpG island methylation in ulcerative colitis. Cancer Res 61:3573–3577

    CAS  PubMed  Google Scholar 

  121. Tao R, de Zoeten EF, Ozkaynak E et al (2007) Deacetylase inhibition promotes the generation and function of regulatory T cells. Nat Med 13:1299–1307. doi:10.1038/nm1652

    CAS  PubMed  Google Scholar 

  122. Rosen MJ, Frey MR, Washington MK et al (2011) STAT6 activation in ulcerative colitis: a new target for prevention of IL-13-induced colon epithelial cell dysfunction. Inflamm Bowel Dis 17:2224–2234. doi:10.1002/ibd.21628

    PubMed Central  PubMed  Google Scholar 

  123. Bian Z, Li L, Cui J et al (2011) Role of miR-150-targeting c-Myb in colonic epithelial disruption during dextran sulphate sodium-induced murine experimental colitis and human ulcerative colitis. J Pathol 225:544–553. doi:10.1002/path.2907

    CAS  PubMed  Google Scholar 

  124. Wu F, Zikusoka M, Trindade A et al (2008) MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2α. Gastroenterology. doi:10.1053/j.gastro.2008.07.068

    Google Scholar 

  125. McKenna LB, Schug J, Vourekas A et al (2010) MicroRNAs control intestinal epithelial differentiation, architecture, and barrier function. Gastroenterology. doi:10.1053/j.gastro.2010.07.040

    PubMed Central  Google Scholar 

  126. Bernstein CN, Shanahan F, Weinstein WM (1994) Are we telling patients the truth about surveillance colonoscopy in ulcerative colitis? Lancet 343:71–74

    CAS  PubMed  Google Scholar 

  127. Rutter MD, Saunders BP, Wilkinson KH et al (2004) Cancer surveillance in longstanding ulcerative colitis: endoscopic appearances help predict cancer risk. Gut 53:1813–1816

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Rubin CE, Haggitt RC, Burmer GC et al (1992) DNA aneuploidy in colonic biopsies predicts future development of dysplasia in ulcerative colitis. YGAST 103:1611–1620

    CAS  Google Scholar 

  129. Hoffman A, Kagel C, Goetz M et al (2008) High definition colonoscopy (HD plus) with I-scan function allows to recognize and characterize flat neoplastic changes as precisely as chromoendoscopy. Gastrointest Endosc 67:AB125

    Google Scholar 

  130. Wu L, Li P, Wu J et al (2012) The diagnostic accuracy of chromoendoscopy for dysplasia in ulcerative colitis: meta-analysis of six randomized controlled trials. Colorectal Dis 14:416–420

    CAS  PubMed  Google Scholar 

  131. Neumann H, Mönkemüller K, Günther C et al (2012) Advanced endoscopic imaging for diagnosis of Crohn’s disease. Gastroenterol Res Pract 2012:301541

    PubMed Central  PubMed  Google Scholar 

  132. Kiesslich R, Fritsch J, Holtmann M et al (2003) Methylene blue-aided chromoendoscopy for the detection of intraepithelial neoplasia and colon cancer in ulcerative colitis. Gastroenterology 124:880–888

    PubMed  Google Scholar 

  133. Rutter MD, Saunders BP, Schofield G et al (2004) Pancolonic indigo carmine dye spraying for the detection of dysplasia in ulcerative colitis. Gut 53:256–260

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Kiesslich R, Burg J, Vieth M et al (2004) Confocal laser endoscopy for diagnosing intraepithelial neoplasias and colorectal cancer in vivo. Gastroenterology 127:706–713

    PubMed  Google Scholar 

  135. Kiesslich R, Goetz M, Lammersdorf K et al (2007) Chromoscopy-guided endomicroscopy increases the diagnostic yield of intraepithelial neoplasia in ulcerative colitis. Gastroenterology 132:874–882

    PubMed  Google Scholar 

  136. Hurlstone DP, Thomson M, Brown S et al (2007) Confocal endomicroscopy in ulcerative colitis: differentiating dysplasia-associated lesional mass and adenoma-like mass. Clin Gastroenterol Hepatol 5:1235–1241

    PubMed  Google Scholar 

  137. Hurlstone DP, Kiesslich R, Thomson M et al (2007) Confocal chromoscopic endomicroscopy is superior to chromoscopy alone for the detection and characterisation of intraepithelial neoplasia in chronic ulcerative colitis. Gut 57:196–204

    Google Scholar 

  138. Goetz M, Ziebart A, Foersch S et al (2010) In vivo molecular imaging of colorectal cancer with confocal endomicroscopy by targeting epidermal growth factor receptor. Gastroenterology 138:435–446

    CAS  PubMed  Google Scholar 

  139. Foersch S, Kiesslich R, Waldner MJ et al (2010) Molecular imaging of VEGF in gastrointestinal cancer in vivo using confocal laser endomicroscopy. Gut 59:1046–1055

    PubMed  Google Scholar 

  140. Foersch S, Neufert C, Neurath MF, Waldner MJ (2013) Endomicroscopic imaging of COX-2 activity in murine sporadic and colitis-associated colorectal cancer. Diagn Ther Endosc 2013:250641. doi:10.1155/2013/250641

    PubMed Central  PubMed  Google Scholar 

  141. Atreya R, Neumann H, Neufert C et al (2014) In vivo imaging using fluorescent antibodies to tumor necrosis factor predicts therapeutic response in Crohn’s disease. Nat Med 20:313–318. doi:10.1038/nm.3462

    CAS  PubMed  Google Scholar 

  142. Schürmann S, Foersch S, Atreya R et al (2013) Label-free imaging of inflammatory bowel disease using multiphoton microscopy. Gastroenterology 145:514–516. doi:10.1053/j.gastro.2013.06.054

    PubMed  Google Scholar 

  143. Eaden J, Abrams K, Ekbom A et al (2000) Colorectal cancer prevention in ulcerative colitis: a case-control study. Aliment Pharmacol Ther 14:145–153

    CAS  PubMed  Google Scholar 

  144. Eaden J (2003) Review article: the data supporting a role for aminosalicylates in the chemoprevention of colorectal cancer in patients with inflammatory bowel disease. Aliment Pharmacol Ther 18(Suppl 2):15–21

    CAS  PubMed  Google Scholar 

  145. Bernstein CN, Eaden J, Steinhart AH et al (2002) Cancer prevention in inflammatory bowel disease and the chemoprophylactic potential of 5-aminosalicylic acid. Inflamm Bowel Dis 8:356–361

    PubMed  Google Scholar 

  146. Brown WA, Farmer KC, Skinner SA et al (2000) 5-aminosalicyclic acid and olsalazine inhibit tumor growth in a rodent model of colorectal cancer. Dig Dis Sci 45:1578–1584

    CAS  PubMed  Google Scholar 

  147. MacGregor DJ, Kim YS, Sleisenger MH, Johnson LK (2000) Chemoprevention of colon cancer carcinogenesis by balsalazide: inhibition of azoxymethane-induced aberrant crypt formation in the rat colon and intestinal tumor formation in the B6-Min/+ mouse. Int J Oncol 17:173–179

    CAS  PubMed  Google Scholar 

  148. Lindberg B, Persson B, Veress B et al (1996) Twenty years’ colonoscopic surveillance of patients with ulcerative colitis. Detection of dysplastic and malignant transformation. Scand J Gastroenterol 31:1195–1204

    CAS  PubMed  Google Scholar 

  149. Herfarth H (2012) The role of chemoprevention of colorectal cancer with 5-aminosalicylates in ulcerative colitis. Dig Dis 30(Suppl 2):55–59. doi:10.1159/000341894

    PubMed  Google Scholar 

  150. Tung BY, Emond MJ, Haggitt RC et al (2001) Ursodiol use is associated with lower prevalence of colonic neoplasia in patients with ulcerative colitis and primary sclerosing cholangitis. Ann Intern Med 134:89–95

    CAS  PubMed  Google Scholar 

  151. Pardi DS, Loftus EV, Kremers WK et al (2003) Ursodeoxycholic acid as a chemopreventive agent in patients with ulcerative colitis and primary sclerosing cholangitis. YGAST 124:889–893

    CAS  Google Scholar 

  152. Ikegami T, Matsuzaki Y (2008) Ursodeoxycholic acid: mechanism of action and novel clinical applications. Hepatol Res 38:123–131

    CAS  PubMed  Google Scholar 

  153. Eaton JE, Silveira MG, Pardi DS et al (2011) High-dose ursodeoxycholic acid is associated with the development of colorectal neoplasia in patients with ulcerative colitis and primary sclerosing cholangitis. Am J Gastroenterol 106:1638–1645

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Van Staa TP, Card T, Logan RF, Leufkens HGM (2005) 5-Aminosalicylate use and colorectal cancer risk in inflammatory bowel disease: a large epidemiological study. Gut 54:1573–1578. doi:10.1136/gut.2005.070896

    PubMed Central  PubMed  Google Scholar 

  155. Chan EP, Lichtenstein GR (2006) Chemoprevention: risk reduction with medical therapy of inflammatory bowel disease. Gastroenterol Clin North Am 35:675–712. doi:10.1016/j.gtc.2006.07.003

    PubMed  Google Scholar 

  156. Biancone L, Petruzziello C, Calabrese E et al (2009) Long-term safety of Infliximab for the treatment of inflammatory bowel disease: does blocking TNFalpha reduce colitis-associated colorectal carcinogenesis? Gut 58:1703. doi:10.1136/gut.2008.176461

    CAS  PubMed  Google Scholar 

  157. Fidder H, Schnitzler F, Ferrante M et al (2009) Long-term safety of infliximab for the treatment of inflammatory bowel disease: a single-centre cohort study. Gut 58:501–508. doi:10.1136/gut.2008.163642

    CAS  PubMed  Google Scholar 

  158. Caspersen S, Elkjaer M, Riis L et al (2008) Infliximab for inflammatory bowel disease in Denmark 1999–2005: clinical outcome and follow-up evaluation of malignancy and mortality. Clin Gastroenterol Hepatol 6:1212–1217 (quiz 1176)

    PubMed  Google Scholar 

  159. Ullman TA, Itzkowitz SH (2011) Intestinal inflammation and cancer. Gastroenterology 140:1807–1816

    CAS  PubMed  Google Scholar 

  160. Farraye FA, Odze RD, Eaden J, Itzkowitz SH (2010) AGA technical review on the diagnosis and management of colorectal neoplasia in inflammatory bowel disease. Gastroenterology 138:746–774 (774.e1–4; quiz e12–3)

    PubMed  Google Scholar 

Download references

Acknowledgments

SF was supported by the clinical research group KFO257 of the Deutsche Forschungsgemeinschaft (DFG), the Johannes and Frieda Marohn-Stiftung and the Endoscopy Research Award by the Olympus Europe Foundation.

Conflict of interest

Authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus F. Neurath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foersch, S., Neurath, M.F. Colitis-associated neoplasia: molecular basis and clinical translation. Cell. Mol. Life Sci. 71, 3523–3535 (2014). https://doi.org/10.1007/s00018-014-1636-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1636-x

Keywords

Navigation