Skip to main content
Log in

SIRT1 regulates mitochondrial fission to alleviate high altitude hypoxia inducedcardiac dysfunction in rats via the PGC-1α-DRP1/FIS1/MFF pathway

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

High-altitude exposure has been linked to cardiac dysfunction. Silent information regulator factor 2-related enzyme 1 (sirtuin 1, SIRT1), a nicotinamide adenine dinucleotide-dependent deacetylase, plays a crucial role in regulating numerous cardiovascular diseases. However, the relationship between SIRT1 and cardiac dysfunction induced by hypobaric hypoxia (HH) remains unexplored. This study aims to assess the impact of SIRT1 on HH-induced cardiac dysfunction and delve into the underlying mechanisms, both in vivo and in vitro. In this study, we have demonstrated that exposure to HH results in cardiomyocyte injury, along with the downregulation of SIRT1 and mitochondrial dysfunction. Upregulating SIRT1 significantly inhibits mitochondrial fission, improves mitochondrial function, reduces cardiomyocyte injury, and consequently enhances cardiac function in HH-exposed rats. Additionally, HH exposure triggers aberrant expression of mitochondrial fission-regulated proteins, with a decrease in PPARγ coactivator 1 alpha (PGC-1α) and mitochondrial fission factor (MFF) and an increase in mitochondrial fission 1 (FIS1) and dynamin-related protein 1 (DRP1), all of which are mitigated by SIRT1 upregulation. Furthermore, inhibiting PGC-1α diminishes the positive effects of SIRT1 regulation on the expression of DRP1, MFF, and FIS1, as well as mitochondrial fission. These findings demonstrate that SIRT1 alleviates HHinduced cardiac dysfunction by preventing mitochondrial fission through the PGC-1α-DRP1/FIS1/MFF pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Wright AD (2006) Medicine at high altitude. Clin Med (Lond) 6:604–608

    Article  PubMed  Google Scholar 

  2. Murray AJ, Montgomery HE, Feelisch M, Grocott M, Martin DS (2018) Metabolic adjustment to high-altitude hypoxia: from genetic signals to physiological implications. Biochem Soc Trans 46:599–607

    Article  CAS  PubMed  Google Scholar 

  3. Wang Y, Xu P, Wang Y, Liu H, Zhou Y, Cao X (2013) The protection of salidroside of the heart against acute exhaustive injury and molecular mechanism in rat. Oxid Med Cell Longev 2013:507832

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lo MY, Daniels JD, Levine BD, Burtscher M (2013) Sleeping altitude and sudden cardiac death. Am Heart J 166:71–75

    Article  PubMed  Google Scholar 

  5. Vonk Noordegraaf A, Westerhof BE, Westerhof N (2017) The Relationship between the right ventricle and its load in Pulmonary Hypertension. J Am Coll Cardiol 69:236–243

    Article  PubMed  Google Scholar 

  6. Shah AK, Bhullar SK, Elimban V, Dhalla NS (2021) Oxidative stress as a mechanism for functional alterations in Cardiac Hypertrophy and Heart failure. Antioxid (Basel) 10:931

    Article  CAS  Google Scholar 

  7. Lorell BH, Apstein CS, Weinberg EO, Cunningham MJ (1990) Diastolic function in left ventricular hypertrophy: clinical and experimental relationships. Eur Heart J 11(Suppl G):54–64

    Article  PubMed  Google Scholar 

  8. Nehra S, Bhardwaj V, Kar S, Saraswat D (2016) Chronic hypobaric hypoxia induces right ventricular hypertrophy and apoptosis in rats: therapeutic potential of Nanocurcumin in improving adaptation. High Alt Med Biol 17:342–352

    Article  CAS  PubMed  Google Scholar 

  9. Jurcut R, Haugaa K, La Gerche A (2018) The right ventricle: from bench to Bedside. Biomed Res Int 2018:2868437

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pena E, Brito J, El Alam S, Siques P (2020) Oxidative stress, kinase activity and inflammatory implications in right ventricular hypertrophy and heart failure under hypobaric hypoxia. Int J Mol Sci. ;21

  11. Rode B, Bailey MA, Marthan R, Beech DJ, Guibert C (2018) ORAI Channels as potential therapeutic targets in Pulmonary Hypertension. Physiol (Bethesda) 33:261–268

    CAS  Google Scholar 

  12. Cong L, Lei MY, Liu ZQ et al (2021) Resveratrol attenuates manganese-induced oxidative stress and neuroinflammation through SIRT1 signaling in mice. Food Chem Toxicol 153:112283

    Article  CAS  PubMed  Google Scholar 

  13. Zhao Y, Zhang J, Zheng Y et al (2021) NAD(+) improves cognitive function and reduces neuroinflammation by ameliorating mitochondrial damage and decreasing ROS production in chronic cerebral hypoperfusion models through Sirt1/PGC-1α pathway. J Neuroinflammation 18:207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aguilar M, González-Candia A, Rodríguez J et al (2018) Mechanisms of Cardiovascular Protection Associated with Intermittent Hypobaric Hypoxia exposure in a rat model: role of oxidative stress. Int J Mol Sci. ;19

  15. Karbasforooshan H, Karimi G (2017) The role of SIRT1 in diabetic cardiomyopathy. Biomed Pharmacother 90:386–392

    Article  CAS  PubMed  Google Scholar 

  16. Prola A, Pires Da Silva J, Guilbert A et al (2017) SIRT1 protects the heart from ER stress-induced cell death through eIF2α deacetylation. Cell Death Differ 24:343–356

    Article  CAS  PubMed  Google Scholar 

  17. Luo G, Jian Z, Zhu Y et al (2019) Sirt1 promotes autophagy and inhibits apoptosis to protect cardiomyocytes from hypoxic stress. Int J Mol Med 43:2033–2043

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang Q, Su H, Qi B et al (2021) A SIRT1 activator, Ginsenoside Rc, promotes Energy metabolism in Cardiomyocytes and neurons. J Am Chem Soc 143:1416–1427

    Article  CAS  PubMed  Google Scholar 

  19. Hu L, Ding M, Tang D et al (2019) Targeting mitochondrial dynamics by regulating Mfn2 for therapeutic intervention in diabetic cardiomyopathy. Theranostics 9:3687–3706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dong Q, Wu Z, Li X et al (2014) Resveratrol ameliorates cardiac dysfunction induced by pressure overload in rats via structural protection and modulation of ca(2+) cycling proteins. J Transl Med 12:323

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ding M, Ning J, Feng N et al (2018) Dynamin-related protein 1-mediated mitochondrial fission contributes to post-traumatic cardiac dysfunction in rats and the protective effect of melatonin. J Pineal Res. ;64

  22. Xu X, Zhang Q, Hu JY et al (2013) Phosphorylation of DYNLT1 at serine 82 regulates microtubule stability and mitochondrial permeabilization in hypoxia. Mol Cells 36:322–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P (2005) Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113–118

    Article  CAS  PubMed  Google Scholar 

  24. Abate M, Festa A, Falco M et al (2020) Mitochondria as playmakers of apoptosis, autophagy and senescence. Semin Cell Dev Biol 98:139–153

    Article  CAS  PubMed  Google Scholar 

  25. van der Bliek AM, Shen Q, Kawajiri S (2013) Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol. ;5

  26. Xia P, Liu Y, Cheng Z (2016) Signaling pathways in Cardiac Myocyte apoptosis. Biomed Res Int 2016:9583268

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ooi JY, Bernardo BC, McMullen JR (2014) The therapeutic potential of miRNAs regulated in settings of physiological cardiac hypertrophy. Future Med Chem 6:205–222

    Article  CAS  PubMed  Google Scholar 

  28. Dorn GW 2nd (2007) The fuzzy logic of physiological cardiac hypertrophy. Hypertension 49:962–970

    Article  CAS  PubMed  Google Scholar 

  29. Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling–concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. Behalf of an International Forum on Cardiac Remodeling. J Am Coll Cardiol 35:569–582

    Article  CAS  PubMed  Google Scholar 

  30. Manabe I, Shindo T, Nagai R (2002) Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circ Res 91:1103–1113

    Article  CAS  PubMed  Google Scholar 

  31. González-Candia A, Candia AA, Paz A et al (2022) Cardioprotective antioxidant and anti-inflammatory mechanisms Induced by Intermittent Hypobaric Hypoxia. Antioxid (Basel). ;11

  32. Parra V, Bravo-Sagua R, Norambuena-Soto I et al (2017) Inhibition of mitochondrial fission prevents hypoxia-induced metabolic shift and cellular proliferation of pulmonary arterial smooth muscle cells. Biochim Biophys Acta Mol Basis Dis 1863:2891–2903

    Article  CAS  PubMed  Google Scholar 

  33. Joo HY, Yun M, Jeong J et al (2015) SIRT1 deacetylates and stabilizes hypoxia-inducible factor-1α (HIF-1α) via direct interactions during hypoxia. Biochem Biophys Res Commun 462:294–300

    Article  CAS  PubMed  Google Scholar 

  34. Jiang W, Zhang P, Yang P et al (2022) Phosphoproteome Analysis identifies a synaptotagmin-1-Associated Complex involved in ischemic Neuron Injury. Mol Cell Proteom 21:100222

    Article  CAS  Google Scholar 

  35. Song M, Franco A, Fleischer JA, Zhang L, Dorn GW 2 (2017) nd. Abrogating mitochondrial dynamics in Mouse hearts accelerates mitochondrial senescence. Cell Metab. ;26:872 – 83.e5.

  36. Twig G, Elorza A, Molina AJ et al (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Burman JL, Pickles S, Wang C et al (2017) Mitochondrial fission facilitates the selective mitophagy of protein aggregates. J Cell Biol 216:3231–3247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kleele T, Rey T, Winter J et al (2021) Distinct fission signatures predict mitochondrial degradation or biogenesis. Nature 593:435–439

    Article  CAS  PubMed  Google Scholar 

  39. Losón OC, Song Z, Chen H, Chan DC (2013) Fis1, Mff, MiD49, and MiD51 mediate Drp1 recruitment in mitochondrial fission. Mol Biol Cell 24:659–667

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ding Q, Qi Y, Tsang SY (2021) Mitochondrial Biogenesis, Mitochondrial Dynamics, and Mitophagy in the maturation of Cardiomyocytes. Cells. ;10

  41. Zou D, Chen K, Liu P, Chang H, Zhu J, Mi M (2014) Dihydromyricetin improves physical performance under simulated high altitude. Med Sci Sports Exerc 46:2077–2084

    Article  CAS  PubMed  Google Scholar 

  42. Friedman JR, Nunnari J (2014) Mitochondrial form and function. Nature 505:335–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang XY, Zhang XJ, Xv J et al (2018) Crocin attenuates acute hypobaric hypoxia-induced cognitive deficits of rats. Eur J Pharmacol 818:300–305

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was partially supported by a grant from the foundation [grant number 2019CXTD01]. The funding bodies played no role in the design of the study, the collection, analysis, or interpretation of data or in writing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: W.L Liu, Z.L Chen and L.L Pu; Acquisition of data: H.B Xu, X.N Song, X.R Zhang, G.R Wang, X.L Cheng, L Zhang; Analysis and interpretation of data including statistical analysis, biostatistics, and computational analysis: W.L Liu, H.B Xu, X.N Song, X.R Zhang, Z.RR Wang, R Li, C.Y Ai, X.X Wang; Writing, review, and/or revision of the manuscript: W.L Liu, H.B Xu, X.N Song and X.R Zhang; Administrative, technical, or material support including reporting or organizing data: W.L Liu, H.B Xu, X.N Song, X.R Zhang, Z.L Chen and L.L Pu; Study supervision: W.L Liu, Z.L Chen and L.L Pu.

Corresponding authors

Correspondence to Lingling Pu, Zhaoli Chen or Weili Liu.

Ethics declarations

Ethical approval

All animal experiments were performed in accordance with the NIH guidelines and were approved by the Institutional Animal Care and Use Committee of Environmental and Operational Medicine Research Department.

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., Song, X., Zhang, X. et al. SIRT1 regulates mitochondrial fission to alleviate high altitude hypoxia inducedcardiac dysfunction in rats via the PGC-1α-DRP1/FIS1/MFF pathway. Apoptosis (2024). https://doi.org/10.1007/s10495-024-01954-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10495-024-01954-5

Keywords

Navigation