Skip to main content
Log in

Regulation of the CB1R/AMPK/PGC-1α signaling pathway in mitochondria of mouse hearts and cardiomyocytes with chronic intermittent hypoxia

  • Sleep Breathing Physiology and Disorders • Original Article
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

Purpose

This study evaluated the effects of chronic intermittent hypoxia (CIH) at different times on the mitochondria of mouse hearts and H9C2 cardiomyocytes to determine the role of the cannabinoid receptor 1 (CB1R)/adenosine 5'-monophosphate–activated protein kinase (AMPK)/peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) signaling pathway.

Methods

Animal and cellular CIH models were prepared in an intermittent hypoxia chamber at different times. The cardiac function of mice was determined, and heart tissue and ultrastructural changes were observed. Apoptosis, reactive oxygen species (ROS), and mitochondrial membrane potential were detected, and MitoTracker™ staining was performed to observe cardiomyocyte mitochondria. Western blot, immunohistochemistry, and cellular immunofluorescence were also performed.

Results

In the short-term CIH group, increases in mouse ejection fraction (EF) and heart rate (HR); mitochondrial division; ROS and mitochondrial membrane potential; and the expression levels of CB1R, AMPK, and PGC-1α were observed in vivo and in vitro. In the long-term CIH group, the EF and HR increased, the myocardial injury and mitochondrial damage were more severe, mitochondrial synthesis decreased, the apoptosis percentage and ROS increased, mitochondrial fragmentation increased, membrane potential decreased, CB1R expression increased, and AMPK and PGC-1α expression levels decreased. Targeted blocking of CB1R can increase AMPK and PGC-1α, reduce damage attributed to long-term CIH in mouse hearts and H9C2 cells, and promote mitochondrial synthesis.

Conclusion

Short-term CIH can directly activate the AMPK/PGC-1α pathway, promote mitochondrial synthesis in cardiomyocytes, and protect cardiac structure and function. Long-term CIH can increase CB1R expression and inhibit the AMPK/PGC-1α pathway, resulting in structural damage, the disturbance of myocardial mitochondria synthesis, and further alterations in the cardiac structure. After targeted blocking of CB1R, levels of AMPK and PGC-1α increased, alleviating damage to the heart and cardiomyocytes caused by long-term CIH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Strausz S, Ruotsalainen S, Ollila HM et al (2021) Genetic analysis of obstructive sleep apnoea discovers a strong association with cardiometabolic health. Eur Respir J 57:2003091. https://doi.org/10.1007/10.1183/13993003.03091-2020

    Article  CAS  PubMed  Google Scholar 

  2. Gottlieb DJ, Punjabi NM (2020) Diagnosis and management of obstructive sleep apnea: a review. JAMA 323:1389–1400. https://doi.org/10.1007/10.1001/jama.2020.3514

    Article  PubMed  Google Scholar 

  3. Benjafield AV, Ayas NT, Eastwood PR et al (2019) Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med 7:687–698. https://doi.org/10.1007/10.1016/S2213-2600(19)30198-5

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bock JM, Vungarala S, Karim S et al (2021) Obstructive sleep apnea as a cardiovascular risk factor—beyond CPAP. Can J Cardiol 37:756–765. https://doi.org/10.1007/10.1016/j.cjca.2021.01.027

    Article  PubMed  Google Scholar 

  5. Lebkuchen A, Freitas LS, Cardozo KHM et al (2021) Advances and challenges in pursuing biomarkers for obstructive sleep apnea: implications for the cardiovascular risk. Trends Cardiovasc Med 31:242–249. https://doi.org/10.1007/10.1016/j.tcm.2020.04.003

    Article  CAS  PubMed  Google Scholar 

  6. Fletcher EC, Lesske J, Behm R, Miller CC, Stauss H, Unger T (1992) Carotid chemoreceptors, systemic blood pressure, and chronic episodic hypoxia mimicking sleep apnea. J Appl Phys 72:1978–1984. https://doi.org/10.1152/jappl.1992.72.5.1978

    Article  CAS  Google Scholar 

  7. Phillips SA, Olson EB, Morgan BJ, Lombard JH (2004) Chronic intermittent hypoxia impairs endothelium-dependent dilation in rat cerebral and skeletal muscle resistance arteries. Am J Physiol Heart Circ Physiol 286:H388–H393. https://doi.org/10.1152/ajpheart.00683.2003

    Article  CAS  PubMed  Google Scholar 

  8. Barnes Laura A, Mesarwi Omar A, Sanchez-Azofra A (2022) The Cardiovascular and Metabolic Effects of Chronic Hypoxia in Animal Models: A Mini-Review. Front Physiol 13(undefined):873522. https://doi.org/10.3389/fphys.2022.873522

  9. Ma K, Chen G, Li W et al (2020) Mitophagy, mitochondrial homeostasis, and cell fate. Front Cell Dev Biol 8:467. https://doi.org/10.1007/10.3389/fcell.2020.00467

    Article  PubMed  PubMed Central  Google Scholar 

  10. Liu J, Song X, Yan Y et al (2021) Role of GTPase-dependent mitochondrial dynamins in heart diseases. Front Cardiovasc Med 8:720085. https://doi.org/10.1007/10.3389/fcvm.2021.720085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shi C, Guo H, Liu X (2021) Platelet mitochondria transplantation rescues hypoxia/reoxygenation-induced mitochondrial dysfunction and neuronal cell death involving the FUNDC2/PIP3/Akt/FOXO3a axis. Cell Transplant 30:9636897211024210. https://doi.org/10.1007/10.1177/09636897211024210

    Article  PubMed  Google Scholar 

  12. Cui X, Qian DW, Jiang S et al (2018) Scutellariae radix and Coptidis rhizoma improve glucose and lipid metabolism in T2DM rats via regulation of the metabolic profiling and MAPK/PI3K/Akt signaling pathway. Int J Mol Sci 19:3634. https://doi.org/10.1007/10.3390/ijms19113634

    Article  PubMed  PubMed Central  Google Scholar 

  13. Park S-J, Gavrilova O, Brown AL et al (2017) DNA-PK promotes the mitochondrial, metabolic, and physical decline that occurs during aging. Cell Metab 25:1135-1146.e7. https://doi.org/10.1007/10.1016/j.cmet.2017.07.005

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang X-J, Liu X, Hu M et al (2021) Pharmacological inhibition of arachidonate 12-lipoxygenase ameliorates myocardial ischemia-reperfusion injury in multiple species. Cell Metab 33:2059–75.e10. https://doi.org/10.1007/10.1016/j.cmet.2021.08.014

    Article  CAS  PubMed  Google Scholar 

  15. Ding R, Wu W, Sun Z et al (2020) AMP-activated protein kinase: an attractive therapeutic target for ischemia-reperfusion injury. Eur J Pharmacol 888:173484. https://doi.org/10.1007/10.1016/j.ejphar.2020.173484

    Article  CAS  PubMed  Google Scholar 

  16. Di W, Lv J, Jiang S, Lu C, Yang Z, Ma Z, Hu W, Yang Y, Xu B (2018) The energetic regulator in cardiac metabolism. Curr Issues Mol Biol 28:29–46. https://doi.org/10.21775/cimb.028.029

  17. Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361–370. https://doi.org/10.1007/10.1016/j.cmet.2005.05.004

    Article  PubMed  Google Scholar 

  18. Papatheodorou I, Galatou E, Panagiotidis G-D et al (2021) Cardioprotective effects of PPARβ/δ activation against ischemia/reperfusion injury in rat heart are associated with ALDH2 upregulation, amelioration of oxidative stress and preservation of mitochondrial energy production. Int J Mol Sci 22:6399. https://doi.org/10.1007/10.3390/ijms22126399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tao L, Wang L, Yang X et al (2019) Recombinant human glucagon-like peptide-1 protects against chronic intermittent hypoxia by improving myocardial energy metabolism and mitochondrial biogenesis. Mol Cell Endocrinol 481:95–103. https://doi.org/10.1007/10.1016/j.mce.2018.11.015

    Article  CAS  PubMed  Google Scholar 

  20. Rabinovich-Nikitin I, Rasouli M, Reitz CJ, Posen I, Margulets V, Dhingra R, Khatua TN, Thliveris JA, Martino TA, Kirshenbaum LA (2021) ClockMitochondrial autophagy and cell survival is regulated by the circadian gene in cardiac myocytes during ischemic stress. Autophagy 17(11):3794–3812. https://doi.org/10.1007/10.1080/15548627.2021.1938913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rahman SMK, Uyama T, Hussain Z et al (2021) Roles of endocannabinoids and endocannabinoid-like molecules in energy homeostasis and metabolic regulation: a nutritional perspective. Annu Rev Nutr 41:177–202. https://doi.org/10.1007/10.1146/annurev-nutr-043020-090216

    Article  CAS  PubMed  Google Scholar 

  22. Pacher P, Steffens S, Haskó G et al (2018) Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly. Nat Rev Cardiol 15:151–166. https://doi.org/10.1007/10.1038/nrcardio.2017.130

    Article  CAS  PubMed  Google Scholar 

  23. Zhao L, Liu T, Dou Z-J et al (2021) CB1 receptor antagonist rimonabant protects against chronic intermittent hypoxia-induced renal injury in rats. BMC Nephrol 22:153. https://doi.org/10.1007/10.1186/s12882-021-02362-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Maclean A, Bunni E, Makrydima S et al (2020) Fallopian tube epithelial cells express androgen receptor and have a distinct hormonal responsiveness when compared with endometrial epithelium. Hum Reprod 9:2097–2106. https://doi.org/10.1007/10.1093/humrep/deaa177

    Article  Google Scholar 

  25. Flameng W, Borgers M, Daenen W et al (1980) Ultrastructural and cytochemical correlates of myocardial protection by cardiac hypothermia in man. J Thorac Cardiovasc Surg 79:413–424

    Article  CAS  PubMed  Google Scholar 

  26. Xie S, Deng Y, Pan Y-Y et al (2016) Chronic intermittent hypoxia induces cardiac hypertrophy by impairing autophagy through the adenosine 5’-monophosphate-activated protein kinase pathway. Arch Biochem Biophys 606:41–52. https://doi.org/10.1007/10.1016/j.abb.2016.07.006

    Article  CAS  PubMed  Google Scholar 

  27. Costa LE, Uchôa CHG, Harmon RR et al (2015) Potential underdiagnosis of obstructive sleep apnoea in the cardiology outpatient setting. Heart 101:1288–1292. https://doi.org/10.1007/10.1136/heartjnl-2014-307276

    Article  CAS  PubMed  Google Scholar 

  28. Oh MS, Bliwise DL, Smith AL et al (2020) Obstructive sleep apnea, sleep symptoms, and their association with cardiovascular disease. Laryngoscope 130:1595–1602. https://doi.org/10.1007/10.1002/lary.28293

    Article  PubMed  Google Scholar 

  29. Dou Z-J, Gao X-L, Jia Y-L et al (2020) CB1 receptor antagonist rimonabant protects against chronic intermittent hypoxia-induced bone metabolism disorder and destruction in rats. Sleep Breath 24:1441–1449. https://doi.org/10.1007/[25]10.1007/s11325-019-02009-9

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gao X, Wu S, Dong Y et al (2018) Role of the endogenous cannabinoid receptor 1 in brain injury induced by chronic intermittent hypoxia in rats. Int J Neurosci 128:797–804. https://doi.org/10.1007/[26]10.1080/00207454.2017.1420069

    Article  CAS  PubMed  Google Scholar 

  31. Wang W, Gu H, Li W et al (2021) SRC-3 knockout attenuates myocardial injury induced by chronic intermittent hypoxia in mice. Oxid Med Cell Longev 2021:6372430. https://doi.org/10.1007/10.1155/2021/6372430

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gu S, Hua H, Guo X et al (2018) PGC-1α participates in the protective effect of chronic intermittent hypobaric hypoxia on cardiomyocytes. Cell Physiol Biochem 50:1891–1902. https://doi.org/10.1007/10.1159/000494869

    Article  CAS  PubMed  Google Scholar 

  33. Zheng B, Meng J, Zhu Y et al (2021) Melatonin enhances SIRT1 to ameliorate mitochondrial membrane damage by activating PDK1/Akt in granulosa cells of PCOS. J Ovarian Res 14:152. https://doi.org/10.1007/10.1186/s13048-021-00912-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. He Z, Xu Q, Newland B et al (2021) Reactive oxygen species (ROS): utilizing injectable antioxidative hydrogels and ROS-producing therapies to manage the double-edged sword. J Mater Chem B 9:6326–6346. https://doi.org/10.1007/10.1039/d1tb00728a

    Article  CAS  PubMed  Google Scholar 

  35. Shan D, Guo S, Wu H-K et al (2020) Cardiac ischemic preconditioning promotes MG53 secretion through HO-activated protein kinase C-δ signaling. Circulation 142:1077–1091. https://doi.org/10.1007/10.1161/CIRCULATIONAHA.119.044998

    Article  CAS  PubMed  Google Scholar 

  36. Lv J, Deng C, Jiang S et al (2019) Blossoming 20: the energetic regulator’s birthday unveils its versatility in cardiac diseases. Theranostics 9:466–476. https://doi.org/10.1007/10.7150/thno.29130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kolar D, Gresikova M, Waskova-Arnostova P et al (2017) Adaptation to chronic continuous hypoxia potentiates Akt/HK2 anti-apoptotic pathway during brief myocardial ischemia/reperfusion insult. Mol Cell Biochem 432:99–108. https://doi.org/10.1007/10.1007/s11010-017-3001-5

    Article  CAS  PubMed  Google Scholar 

  38. Navarrete-Opazo A, Mitchell GS (2014) Therapeutic potential of intermittent hypoxia: a matter of dose. Am J Physiol Regul Integr Comp Physiol 307:R1181–R1197. https://doi.org/10.1007/10.1152/ajpregu.00208.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to thank the Sleep Center of the Second Hospital of Shanxi Medical University and the Shanxi Key Laboratory of Birth Defects and Cell Regeneration for their support of this study.

Funding

Bei Wang provided financial support in the form of the key research and development plan of Shanxi Province Funding (no. 201903D321137) and Shanxi medical key research project (no.2022XM29). Dai Liu provided financial support in the form of the scientific research project of the Shanxi Health and Family Planning Commission Fund (no. 201904). The sponsor had no role in the design or conduct of this research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Bei Wang.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants performed by any of the authors. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of Shanxi Medical University, Shanxi, China.

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest (such as honoraria; educational grants; participation in speakers' bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Mu, S., Zhao, L. et al. Regulation of the CB1R/AMPK/PGC-1α signaling pathway in mitochondria of mouse hearts and cardiomyocytes with chronic intermittent hypoxia. Sleep Breath 28, 133–149 (2024). https://doi.org/10.1007/s11325-023-02863-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-023-02863-8

Keywords

Navigation