Skip to main content
Log in

Functional characterization of the Drosophila suzukii pro-apoptotic genes reaper, head involution defective and grim

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Apoptosis is a fundamental process for the elimination of damaged or unwanted cells, and is a key aspect of development. It is triggered by pro-apoptotic genes responding to the intrinsic pathway that senses cell stress or the extrinsic pathway that responds to signals from other cells. The disruption of these genes can therefore lead to developmental defects and disease. Pro-apoptotic genes have been studied in detail in the fruit fly Drosophila melanogaster, a widely-used developmental model. However, little is known about the corresponding genes in its relative D. suzukii, a pest of soft fruit crops that originates from Asia but is now an invasive species in many other regions. The characterization of D. suzukii pro-apoptotic genes could lead to the development of transgenic sexing strains for pest management. Here, we describe the isolation and characterization of the pro-apoptotic genes reaper (Dsrpr), head involution defective (Dshid) and grim (Dsgrim) from a laboratory strain of D. suzukii. We determined their expression profiles during development, revealing that all three genes are expressed throughout development but Dsrpr is expressed most strongly, especially at the pupal stage. Functional analysis was carried out by expressing single genes or pairs (linked by a 2A peptide) in S2 cell death assays, indicating that Dsgrim and Dshid are more potent pro-apoptotic genes than Dsrpr, and the lethality can be significantly enhanced by co-expression of two genes. Therefore, the binary or multiple expression of different pro-apoptotic genes can be considered to build an efficient transgenic sexing system in D. suzukii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Goyal L, McCall K, Agapite J, Hartwieg E, Steller H (2000) Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J 19:589–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen P, Nordstrom W, Gish B, Abrams JM (1996) Grim, a novel cell death gene in Drosophila. Genes Dev 10:1773–1782

    Article  CAS  PubMed  Google Scholar 

  3. White K, Grether ME, Abrams JM, Young L, Farrell K, Steller H (1994) Genetic control of programmed cell death in Drosophila. Science 264:677–683

    Article  CAS  PubMed  Google Scholar 

  4. Claveria C, Caminero E, Martinez AC, Campuzano S, Torres M (2002) GH3, a novel proapoptotic domain in Drosophila Grim, promotes a mitochondrial death pathway. EMBO J 21:3327–3336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Song Z, McCall K, Steller H (1997) DCP-1, a Drosophila cell death protease essential for development. Science 275:536–540

    Article  CAS  PubMed  Google Scholar 

  6. Freel CD, Richardson DA, Thomenius MJ, Gan EC, Horn SR, Olson MR, Kornbluth S (2008) Mitochondrial localization of Reaper to promote inhibitors of apoptosis protein degradation conferred by GH3 domain-lipid interactions. J Biol Chem 283:367–379

    Article  CAS  PubMed  Google Scholar 

  7. Olson MR, Holley CL, Gan EC, Colón-Ramos DA, Kaplan B, Kornbluth S, Colon-Ramos DA, Kaplan B, Kornbluth S (2003) A GH3-like domain in Reaper is required for mitochondrial localization and induction of IAP degradation. J Biol Chem 278:44758–44768

    Article  CAS  PubMed  Google Scholar 

  8. Calabria G, Maca J, Bachli G, Serra L, Pascual M (2012) First records of the potential pest species Drosophila suzukii (Diptera: Drosophilidae) in Europe. J Appl Entomol 136:139–147

    Article  Google Scholar 

  9. Deprá M, Poppe JL, Schmitz HJ, De Toni DC, Valente VLS (2014) The first records of the invasive pest Drosophila suzukii in the South American continent. J Pest Sci 87:379–383

    Article  Google Scholar 

  10. Hauser M (2011) A historic account of the invasion of Drosophila suzukii (Matsumura) (Diptera: Drosophilidae) in the continental United States, with remarks on their identification. Pest Manag Sci 67:1352–1357

    Article  CAS  PubMed  Google Scholar 

  11. Schwirz J, Fischbach M, Vilcinskas A, Fischer R, Schetelig MF (2016) Monitoring data and future control possibilities for Drosophila suzukii in Germany. Proceedings of the 9th international symposium on fruit flies of economic importance, pp 310–322

  12. Bolda MP, Goodhue R, Zalom F (2010) Spotted wing drosophila: potential economic impact of a newly established pest. Giannini Found Agric Econ 13:5–8

    Google Scholar 

  13. Farnsworth D, Hamby KA, Bolda M, Goodhue RE, Williams JC, Zalom FG (2017) Economic analysis of revenue losses and control costs associated with the spotted wing drosophila, Drosophila suzukii (Matsumura), in the California raspberry industry. Pest Manag Sci 73:1083–1090

    Article  CAS  PubMed  Google Scholar 

  14. Asplen M, Anfora G, Biondi A, Choi D-S, Chu D, Daane K, Gibert P, Gutierrez AP, Hoelmer K, Hutchison W, Isaacs R, Jiang Z-L, Kárpáti Z, Kimura M, Pascual M, Philips C, Plantamp C, Ponti L, Vétek G, Desneux N (2015) Invasion biology of spotted wing drosophila (Drosophila suzukii): a global perspective and future priorities. J Pest Sci 88:469–494

    Article  Google Scholar 

  15. Beers EH, Van Steenwyk RA, Shearer PW, Coates WW, Grant JA (2011) Developing Drosophila suzukii management programs for sweet cherry in the western United States. Pest Manag Sci 67:1386–1395

    Article  CAS  PubMed  Google Scholar 

  16. Cini A, Ioriatti C, Anfora G (2012) A review of the invasion of Drosophila suzukii in Europe and a draft research agenda for integrated pest management. Bull Insectol 65:149–160

    Google Scholar 

  17. Knipling EF (1955) Possibilities of insect control or eradication through the use of sexually sterile males. J Econ Entomol 48:459–462

    Article  Google Scholar 

  18. Lanouette G, Brodeur J, Fournier F, Martel V, Vreysen M, Cáceres C, Firlej A, Caceres C, Firlej A (2017) The sterile insect technique for the management of the spotted wing drosophila, Drosophila suzukii: Establishing the optimum irradiation dose. PLoS ONE 12:1–14

    Article  CAS  Google Scholar 

  19. Robinson A (2002a) Genetic sexing strains in medfly, Ceratitis capitata, sterile insect technique programmes. Genetica 116:5–13

    Article  CAS  PubMed  Google Scholar 

  20. Robinson AS (2002b) Mutations and their use in insect control. Mutat Res 511:113–132

    Article  CAS  PubMed  Google Scholar 

  21. Scott MJ, Concha C, Phillips PL, Skoda SR, Welch JB (2017) Review of research advances in the screwworm eradication program over the past 25 years. Entomol Exp Appl 164(3):226–236

    Article  Google Scholar 

  22. Klassen W, Curtis F (2005) History of the sterile insect technique. In: Dyck VA, Hendrichs J, Robinson AS (eds) Sterile insect technique principles and practice in area-wide integrated pest management. Springer, Dordrecht, pp 3–36

    Google Scholar 

  23. Foster G (1991) Chromosomal inversions and genetic control revisited: the use of inversions in sexing systems for higher Diptera. Theor Appl Genet 81:619–623

    Article  CAS  PubMed  Google Scholar 

  24. Franz G (2005) Genetic sexing strains in Mediterranean fruit fly, an example for other species amenable to large-scale rearing for the sterile insect technique. In: Sterile insect technique: principles and practice in area-wide integrated pest management. Springer, Dordrecht, pp 427-451

  25. Yan Y, Scott MJ (2015) A transgenic embryonic sexing system for the Australian sheep blow fly Lucilia cuprina. Sci Rep 5:1–12

    Google Scholar 

  26. Schetelig MF, Handler AM (2012a) A transgenic embryonic sexing system for Anastrepha suspensa (Diptera: Tephritidae). Insect Biochem Mol Biol 42:790–795

    Article  CAS  PubMed  Google Scholar 

  27. Eckermann KN, Dippel S, KaramiNejadRanjbar M, Ahmed HM, Curril IM, Wimmer EA (2014) Perspective on the combined use of an independent transgenic sexing and a multifactorial reproductive sterility system to avoid resistance development against transgenic Sterile Insect Technique approaches. BMC Genet 15(Suppl 2):S17

    Article  PubMed  PubMed Central  Google Scholar 

  28. Handler AM (2016) Enhancing the stability and ecological safety of mass-reared transgenic strains for field release by redundant conditional lethality systems. Insect Sci 23:225–234

    Article  CAS  PubMed  Google Scholar 

  29. Li F, Wantuch HA, Linger RJ, Belikoff EJ, Scott MJ (2014) Transgenic sexing system for genetic control of the Australian sheep blow fly Lucilia cuprina. Insect Biochem Mol Biol 51:80–88

    Article  CAS  PubMed  Google Scholar 

  30. Schetelig MF, Nirmala X, Handler AM (2011) Pro-apoptotic cell death genes, hid and reaper, from the tephritid pest species, Anastrepha suspensa. Apoptosis 16:759–768

    Article  CAS  PubMed  Google Scholar 

  31. Srinivasula SM, Datta P, Kobayashi M, Wu JW, Fujioka M, Hegde R, Zhang Z, Mukattash R, Fernandes-Alnemri T, Shi Y, Jaynes JB, Alnemri ES (2002) sickle, a novel Drosophila death gene in the reaper/hid/grim region, encodes an IAP-inhibitory protein. Curr Biol 12:125–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Christich A, Kauppila S, Chen P, Sogame N, Ho SI, Abrams JM (2002) The damage-responsive Drosophila gene sickle encodes a novel IAP binding protein similar to but distinct from reaper, grim, and hid. Curr Biol 12:137–140

    Article  CAS  PubMed  Google Scholar 

  33. Schwirz J, Yan Y, Franta Z, Schetelig MF (2020) Bicistronic expression and differential localization of proteins in insect cells and Drosophila suzukii using picornaviral 2A peptides. Insect Biochem Mol Biol 119:103324

    Article  CAS  PubMed  Google Scholar 

  34. Schetelig MF, Handler AM (2013) Germline transformation of the spotted wing drosophilid, Drosophila suzukii, with a piggyBac transposon vector. Genetica 141:189–193

    Article  CAS  PubMed  Google Scholar 

  35. Chiu JC, Jiang X, Zhao L, Hamm CA, Cridland JM, Saelao P, Hamby KA, Lee EK, Kwok RS, Zhang G, Zalom FG, Walton VM, Begun DJ (2013) Genome of Drosophila suzukii, the spotted wing drosophila. G3 (Bethesda) 3:2257–2271

    Article  CAS  Google Scholar 

  36. Bergmann A, Agapite J, McCall K, Steller H (1998) The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell 95:331–341

    Article  CAS  PubMed  Google Scholar 

  37. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  38. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25–36

    Article  CAS  PubMed  Google Scholar 

  39. Schetelig MF, Yan Y, Zhao Y, Handler AM (2018) Genomic targeting by recombinase-mediated cassette exchange in the spotted wing drosophila, Drosophila suzukii. Insect Mol Biol 28(2):187–159

    Article  PubMed  CAS  Google Scholar 

  40. Zhai Y, Lin Q, Zhou X, Zhang X, Liu T, Yu Y (2014) Identification and validation of reference genes for quantitative real-time PCR in Drosophila suzukii (Diptera: Drosophilidae). PLoS ONE 9:e106800

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Schneider I (1972) Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol 27:353–365

    CAS  PubMed  Google Scholar 

  42. Xu D, Woodfield SE, Lee TV, Fan Y, Antonio C, Bergmann A (2009) Genetic control of programmed cell death (apoptosis) in Drosophila. Fly 3:78–90

    Article  CAS  PubMed  Google Scholar 

  43. Thomas JL, Da Rocha M, Besse A, Mauchamp B, Chavancy G (2002) 3xP3-EGFP marker facilitates screening for transgenic silkworm Bombyx mori L. from the embryonic stage onwards. Insect Biochem Mol Biol 32:247–253

    Article  CAS  PubMed  Google Scholar 

  44. Berghammer AJ, Klingler M, Wimmer EA (1999) A universal marker for transgenic insects. Nature 402:370–371

    Article  CAS  PubMed  Google Scholar 

  45. Yoo S, Lam H, Lee C, Lee G, Park JH (2017) Cloning and functional characterizations of an apoptogenic Hid gene in the Scuttle Fly, Megaselia scalaris (Diptera; Phoridae). Gene 604:9–21

    Article  CAS  PubMed  Google Scholar 

  46. Zhou L, Jiang G, Chan G, Santos CP, Severson DW, Xiao L (2005) Michelob_x is the missing inhibitor of apoptosis protein antagonist in mosquito genomes. EMBO Rep 6:769–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bryant B, Zhang Y, Zhang C, Santos CP, Clem RJ, Zhou L (2009) A lepidopteran orthologue of reaper reveals functional conservation and evolution of IAP antagonists. Insect Mol Biol 18:341–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sandu C, Ryoo HD, Steller H (2010) Drosophila IAP antagonists form multimeric complexes to promote cell death. J Cell Biol 190:1039–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wang H, Clem RJ (2011) The role of IAP antagonist proteins in the core apoptosis pathway of the mosquito disease vector Aedes aegypti. Apoptosis 16:235–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Edman RM, Linger RJ, Belikoff EJ, Li F, Sze SH, Tarone AM, Scott MJ (2015) Functional characterization of calliphorid cell death genes and cellularization gene promoters for controlling gene expression and cell viability in early embryos. Insect Mol Biol 24:58–70

    Article  CAS  PubMed  Google Scholar 

  51. Atallah J, Teixeira L, Salazar R, Zaragoza G, Kopp A (2014) The making of a pest: the evolution of a fruit-penetrating ovipositor in Drosophila suzukii and related species. Proc Biol Sci 281:20132840

    PubMed  PubMed Central  Google Scholar 

  52. Ometto L, Cestaro A, Ramasamy S, Grassi A, Revadi S, Siozios S, Moretto M, Fontana P, Varotto C, Pisani D, Dekker T, Wrobel N, Viola R, Pertot I, Cavalieri D, Blaxter M, Anfora G, Rota-Stabelli O (2013) Linking genomics and ecology to investigate the complex evolution of an invasive Drosophila pest. Genome Biol Evol 5:745–757

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Graveley BR, Brooks AN, Carlson JW, Duff MO, Landolin JM, Yang L, Artieri CG, van Baren MJ, Boley N, Booth BW, Brown JB, Cherbas L, Davis CA, Dobin A, Li R, Lin W, Malone JH, Mattiuzzo NR, Miller D, Sturgill D, Tuch BB, Zaleski C, Zhang D, Blanchette M, Dudoit S, Eads B, Green RE, Hammonds A, Jiang L, Kapranov P, Langton L, Perrimon N, Sandler JE, Wan KH, Willingham A, Zhang Y, Zou Y, Andrews J, Bickel PJ, Brenner SE, Brent MR, Cherbas P, Gingeras TR, Hoskins RA, Kaufman TC, Oliver B, Celniker SE (2011) The developmental transcriptome of Drosophila melanogaster. Nature 471:473–479

    Article  CAS  PubMed  Google Scholar 

  54. Schetelig MF, Handler AM (2012b) Strategy for enhanced transgenic strain development for embryonic conditional lethality in Anastrepha suspensa. Proc Natl Acad Sci USA 109:9348–9353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Tait SW, Werner AB, de Vries E, Borst J (2004) Mechanism of action of Drosophila Reaper in mammalian cells: Reaper globally inhibits protein synthesis and induces apoptosis independent of mitochondrial permeability. Cell Death Differ 11:800–811

    Article  CAS  PubMed  Google Scholar 

  56. Zhao Y, Schetelig MF, Handler AM (2020) Genetic breakdown of a Tet-off conditional lethality system for insect population control. Nat Commun 11:3095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Donnelly MLL, Luke G, Mehrotra A, Li X, Hughes LE, Gani D, Ryan MD (2001) Analysis of the aphthovirus 2A/2B polyprotein “cleavage” mechanism indicates not a proteolytic reaction, but a novel translational effect: A putative ribosomal “skip.” J Gen Virol 82:1013–1025

    Article  CAS  PubMed  Google Scholar 

  58. Horn C, Wimmer EA (2003) A transgene-based, embryo-specific lethality system for insect pest management. Nat Biotechnol 21:64–70

    Article  CAS  PubMed  Google Scholar 

  59. Schetelig MF, Caceres C, Zacharopoulou A, Franz G, Wimmer EA (2009) Conditional embryonic lethality to improve the sterile insect technique in Ceratitis capitata (Diptera: Tephritidae). BMC Biol 7:4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Donnelly MLL, Hughes LE, Luke G, Mendoza H, Ten Dam E, Gani D, Ryan MD (2001) The “cleavage” activities of foot-and-mouth disease virus 2A site-directed mutants and naturally occurring “2A-like” sequences. J Gen Virol 82:1027–1041

    Article  CAS  PubMed  Google Scholar 

  61. Wang Y, Wang F, Xu S, Wang R, Chen W, Hou K, Tian C, Wang F, Zhao P, Xia Q (2019) Optimization of a 2A self-cleaving peptide-based multigene expression system for efficient expression of upstream and downstream genes in silkworm. Mol Genet Genomics 294:849–859

    Article  CAS  PubMed  Google Scholar 

  62. Wang Y, Wang F, Wang R, Zhao P, Xia Q (2015) 2A self-cleaving peptide-based multi-gene expression system in the silkworm Bombyx mori. Sci Rep 5:16273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liu Z, Chen O, Wall JBJ, Zheng M, Zhou Y, Wang L, Vaseghi HR, Qian L, Liu J (2017) Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Sci Rep 7:2193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Schetelig MF, Targovska A, Meza JS, Bourtzis K, Handler AM (2016) Tetracycline-suppressible female lethality and sterility in the Mexican fruit fly, Anastrepha ludens. Insect Mol Biol 25:500–508

    Article  CAS  PubMed  Google Scholar 

  65. Yan Y, Williamson ME, Davis RJ, Andere AA, Picard CJ, Scott MJ (2020) Improved transgenic sexing strains for genetic control of the Australian sheep blow fly Lucilia cuprina using embryo-specific gene promoters. Mol Genet Genomics 295:287–298

    Article  CAS  PubMed  Google Scholar 

  66. Yan Y, Linger RJ, Scott MJ (2017) Building early-larval sexing systems for genetic control of the Australian sheep blow fly Lucilia cuprina using two constitutive promoters. Sci Rep 7:2538

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Bashir Hosseini for technical assistance and Carl Stein for the help with RT-PCR. S2 cells were thankfully received by Dr. Denise Salzig (THM). This work was supported by the Emmy Noether program of the German Research Foundation (SCHE 1833/1-1; to MFS), the Fraunhofer Attract program (‘Applications for population control of D. suzukii’; to MFS), and the LOEWE Center for Insect Biotechnology and Bioresources of the HMWK.

Author information

Authors and Affiliations

Authors

Contributions

SAJ, YY and JS performed the research. YY and MFS conceived the study. SAJ, YY and MFS analyzed data and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ying Yan or Marc F. Schetelig.

Ethics declarations

Conflict of interest

We confirm that no author has any conflict of interest to disclose, all authors have approved the version submitted for publication, the work in this article is original and has not been published previously, and the article is not under consideration by any other journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The GenBank accession numbers are as follows: Dshid mRNA: MN982930; Dsgrim mRNA: MN982931; and Dsrpr mRNA: MN982932.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1815 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaffri, S.A., Yan, Y., Schwirz, J. et al. Functional characterization of the Drosophila suzukii pro-apoptotic genes reaper, head involution defective and grim. Apoptosis 25, 864–874 (2020). https://doi.org/10.1007/s10495-020-01640-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-020-01640-2

Keywords

Navigation