Skip to main content
Log in

Pro-apoptotic cell death genes, hid and reaper, from the tephritid pest species, Anastrepha suspensa

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Pro-apoptotic proteins from the reaper, hid, grim (RHG) family are primary regulators of programmed cell death in Drosophila due to their antagonistic effect on inhibitor of apoptosis (IAP) proteins, thereby releasing IAP-inhibition of caspases that effect apoptosis. Using a degenerate PCR approach to conserved domains from the 12 Drosophila species, we have identified the first reaper and hid orthologs from a tephritid, the Caribfly Anastrepha suspensa. As-hid is the first identified non-drosophilid homolog of hid, and As-rpr is the second non-drosophilid rpr homolog. Both genes share more than 50% amino acid sequence identity with their Drosophila homologs, suggesting that insect pro-apoptotic peptides may be more conserved than previously anticipated. Importantly, both genes encode the conserved IBM and GH3 motifs that are key for IAP-inhibition and mitochondrial localization. Functional verification of both genes as cell death effectors was demonstrated by cell death assays in A. suspensa embryonic cell culture, as well as in heterologous Drosophila melanogaster S2 cells. Notably, heterologous cell death activity was found to be higher for Anastrepha genes than their Drosophila counterparts. In common with the Drosophila cognates, As-hid and As-rpr negatively regulated the Drosophila inhibitor of apoptosis (DIAP1) gene to promote apoptosis, and both genes when used together effected increased cell death activity, indicating a co-operative function for As-hid and As-rpr. We show that these tephritid cell death genes are functional and potent as cell death effectors, and could be used to design improved transgenic lethality systems for insect population control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5:897–907

    Article  PubMed  CAS  Google Scholar 

  2. Freel CD, Richardson DA, Thomenius MJ et al (2008) Mitochondrial localization of reaper to promote inhibitors of apoptosis protein degradation conferred by GH3 domain-lipid interactions. J Biol Chem 283:367–379

    Article  PubMed  CAS  Google Scholar 

  3. Sandu C, Ryoo HD, Steller H (2010) Drosophila IAP antagonists form multimeric complexes to promote cell death. J Cell Biol 190:1039–1052

    Article  PubMed  CAS  Google Scholar 

  4. Conradt B (2009) Genetic control of programmed cell death during animal development. Annu Rev Genet 43:493–523

    Article  PubMed  CAS  Google Scholar 

  5. Heinrich JC, Scott MJ (2000) A repressible female-specific lethal genetic system for making transgenic insect strains suitable for a sterile-release program. Proc Natl Acad Sci USA 97:8229–8232

    Article  PubMed  CAS  Google Scholar 

  6. Horn C, Wimmer EA (2003) A transgene-based, embryo-specific lethality system for insect pest management. Nat Biotechnol 21:64–70

    Article  PubMed  CAS  Google Scholar 

  7. Schetelig MF, Caceres C, Zacharopoulou A, Franz G, Wimmer EA (2009) Conditional embryonic lethality to improve the sterile insect technique in Ceratitis capitata (Diptera: Tephritidae). BMC Biol 7:4

    Article  PubMed  Google Scholar 

  8. Zhou L, Jiang G, Chan G, Santos CP, Severson DW, Xiao L (2005) Michelob_x is the missing inhibitor of apoptosis protein antagonist in mosquito genomes. EMBO Rep 6:769–774

    Article  PubMed  CAS  Google Scholar 

  9. Bryant B, Blair CD, Olson KE, Clem RJ (2008) Annotation and expression profiling of apoptosis-related genes in the yellow fever mosquito, Aedes aegypti. Insect Biochem Mol Biol 38:331–345

    PubMed  CAS  Google Scholar 

  10. Bryant B, Zhang Y, Zhang C, Santos C, Clem R, Zhou L (2009) A lepidopteran orthologue of reaper reveals functional conservation and evolution of IAP antagonists. Insect Mol Biol 18:341–351

    Article  PubMed  CAS  Google Scholar 

  11. Chen P, Ho SI, Shi Z, Abrams JM (2004) Bifunctional killing activity encoded by conserved reaper proteins. Cell Death Differ 11:704–713

    Article  PubMed  CAS  Google Scholar 

  12. Metcalf R (1995) The need for research on exotic pests in California. In: Morse JG, Metcalf L, Carey JR, Dowell RV (eds) The mediterranean fruit fly in California: defining critical research. University of California, Riverside, pp 5–40

    Google Scholar 

  13. Handler AM, Harrell RA (2001) Transformation of the Caribbean fruit fly, Anastrepha suspensa, with a piggyBac vector marked with polyubiquitin-regulated GFP. Insect Biochem Mol Biol 31:199–205

    Article  PubMed  CAS  Google Scholar 

  14. Grether ME, Abrams JM, Agapite J, White K, Steller H (1995) The head involution defective gene of Drosophila melanogaster functions in programmed cell death. Genes Dev 9:1694–1708

    Article  PubMed  CAS  Google Scholar 

  15. Bergmann A, Agapite J, McCall K, Steller H (1998) The Drosophila gene hid is a direct molecular target of Ras-dependent survival signaling. Cell 95:331–341

    Article  PubMed  CAS  Google Scholar 

  16. Shi X, Lawrence PO (1999) An embryonic cell line from the Caribbean fruit fly, Anastrepha suspensa (Diptera: Tephritidae). In Vitro Cell Dev Biol Anim 35:12–14

    Article  PubMed  CAS  Google Scholar 

  17. Schneider I (1972) Cell lines derived from late embryonic stages of Drosophila melanogaster. J Embryol Exp Morphol 27:353–365

    PubMed  CAS  Google Scholar 

  18. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  19. Zachariou A, Tenev T, Goyal L, Agapite J, Steller H, Meier P (2003) IAP-antagonists exhibit non-redundant modes of action through differential DIAP1 binding. EMBO J 22:6642–6652

    Article  PubMed  CAS  Google Scholar 

  20. Zhou L (2005) The ‘unique key’ feature of the Iap-binding motifs in RHG proteins. Cell Death Differ 12:1148–1151

    Article  PubMed  CAS  Google Scholar 

  21. Jarvis DL, Weinkauf C, Guarino LA (1996) Immediate-early baculovirus vectors for foreign gene expression in transformed or infected insect cells. Protein Expr Purif 8:191–203

    Article  PubMed  CAS  Google Scholar 

  22. Jones G, Jones D, Zhou L, Steller H, Chu Y (2000) Deterin, a new inhibitor of apoptosis from Drosophila melanogaster. J Biol Chem 275:22157–22165

    Article  PubMed  CAS  Google Scholar 

  23. Zhou L, Schnitzler A, Agapite J, Schwartz LM, Steller H, Nambu JR (1997) Cooperative functions of the reaper and head involution defective genes in the programmed cell death of Drosophila central nervous system midline cells. Proc Natl Acad Sci USA 94:5131–5136

    Article  PubMed  CAS  Google Scholar 

  24. Yoo SJ, Huh JR, Muro I et al (2002) Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nat Cell Biol 4:416–424

    Article  PubMed  CAS  Google Scholar 

  25. Christophides GK, Zdobnov E, Barillas-Mury C et al (2002) Immunity-related genes and gene families in Anopheles gambiae. Science 298:159–165

    Article  PubMed  CAS  Google Scholar 

  26. Beverley SM, Wilson AC (1984) Molecular evolution in Drosophila and the higher Diptera II. A time scale for fly evolution. J Mol Evol 21:1–13

    Article  PubMed  CAS  Google Scholar 

  27. Jiang C, Baehrecke EH, Thummel CS (1997) Steroid regulated programmed cell death during Drosophila metamorphosis. Development 124:4673–4683

    PubMed  CAS  Google Scholar 

  28. Kipp RA, Case MA, Wist AD et al (2002) Molecular targeting of inhibitor of apoptosis proteins based on small molecule mimics of natural binding partners. Biochemistry 41:7344–7349

    Article  PubMed  CAS  Google Scholar 

  29. Vucic D, Seshagiri S, Miller LK (1997) Characterization of reaper- and FADD-induced apoptosis in a lepidopteran cell line. Mol Cell Biol 17:667–676

    PubMed  CAS  Google Scholar 

  30. Abrams JM (1999) An emerging blueprint for apoptosis in Drosophila. Trends Cell Biol 9:435–440

    Article  PubMed  CAS  Google Scholar 

  31. Thress K, Evans EK, Kornbluth S (1999) Reaper-induced dissociation of a Scythe-sequestered cytochrome c-releasing activity. EMBO J 18:5486–5493

    Article  PubMed  CAS  Google Scholar 

  32. Brennecke J, Hipfner DR, Stark A, Russell RB, Cohen SM (2003) Bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113:25–36

    Article  PubMed  CAS  Google Scholar 

  33. Tanaka-Matakatsu M, Xu J, Cheng L, Du W (2009) Regulation of apoptosis of rbf mutant cells during Drosophila development. Dev Biol 326:347–356

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Grateful appreciation is extended to Dr. Lei Zhou for providing the Drosophila-derived cell culture vectors, the AsE01 cells and for helpful comments on the manuscript, Mr. Bo Liu for demonstrating the cell death assays, and Dr. Pauline Lawrence who originally provided the UFENY-AsE01 cell line. We also thank Dr. Paul Shirk for providing S2 cell cultures. Funding was provided by the USDA–NIFA-Agriculture and Food Research Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc F. Schetelig.

Additional information

Marc F. Schetelig and Xavier Nirmala contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1378 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schetelig, M.F., Nirmala, X. & Handler, A.M. Pro-apoptotic cell death genes, hid and reaper, from the tephritid pest species, Anastrepha suspensa . Apoptosis 16, 759–768 (2011). https://doi.org/10.1007/s10495-011-0610-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0610-4

Keywords

Navigation