Skip to main content
Log in

An Algebraic LCTM Model for Laminar–Turbulent Transition Prediction

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

A new algebraic RANS model for laminar–turbulent transition will be presented. The model follows the Local-Correlation-based Transition Modeling concept, is Galilean invariant and can handle natural, bypass and separation-induced transition. The model formulation is discussed in detail. A substantial number of test cases have been computed to evaluate the different transition mechanisms of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  • Abu-Ghannam, B.J., Shaw, R.: Natural transition of boundary layers—the effects of turbulence, pressure gradient, and flow history. J. Mech. Eng. Sci. 22, 213–228 (1980). https://doi.org/10.1243/JMES_JOUR_1980_022_043_02

    Article  Google Scholar 

  • Barrouillet, B., Laurendeau, E., Yang, H.: On the calibration of the transitional k-ω-γ-Reθ turbulence model. AIAA 2021–0629. In: AIAA Scitech 2021 Forum. American Institute of Aeronautics and Astronautics, virtual event (2021)

  • Bouchard, M., Marty, J., Deck, S., Costes, M.: Validation of correlations-based transition modeling strategies applied to the Spalart-Allmaras turbulence model for the computation of separation-induced transition. Aerosp. Sci. Technol. 119, 107045 (2021). https://doi.org/10.1016/j.ast.2021.107045

    Article  Google Scholar 

  • Cakmakcioglu, S.C., Bas, O., Kaynak, U.: A correlation-based algebraic transition model. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 232, 3915–3929 (2018). https://doi.org/10.1177/0954406217743537

    Article  Google Scholar 

  • Choi, J.H., Kwon, O.J.: Enhancement of a correlation-based transition turbulence model for simulating crossflow instability. AIAA J. (2015). https://doi.org/10.2514/1.J053887

    Article  Google Scholar 

  • Coder, J.G.: Further Development of the Amplification Factor Transport Transition Model for Aerodynamic Flows. AIAA 2019–0039. In: AIAA Scitech 2019 Forum. American Institute of Aeronautics and Astronautics, San Diego, California (2019)

  • Coder, J.G., Maughmer, M.D.: Computational fluid dynamics compatible transition modeling using an amplification factor transport equation. AIAA J. 52, 2506–2512 (2014). https://doi.org/10.2514/1.J052905

    Article  Google Scholar 

  • D’Alessandro, V., Garbuglia, F., Montelpare, S., Zoppi, A.: A spalart-allmaras local correlation–based transition model for thermo–fuid dynamics. J. Phys. Conf. Ser. 923, 012029 (2017). https://doi.org/10.1088/1742-6596/923/1/012029

    Article  Google Scholar 

  • Daniele, S., Dario, B., Matteo, D., Davide, L., Vianney, Y.: Modified formulation of laminar kinetic energy transition models by means of elastic-net of a big experimental database of separated flows. Flow Turbul. Combust. 105, 671–697 (2020). https://doi.org/10.1007/s10494-020-00124-2

    Article  Google Scholar 

  • Dassler, P., Kožulović, D., Fiala, A.: Modelling of roughness-induced transition using local variables. In: 5th European Conference on Computational Fluid Dynamics (2010)

  • Dassler, P., Kožulović, D., Fiala, A: Transport equation for roughness effects on laminar- turbulent transition. In: The 15th International Conference on Fluid Flow Technologies. p. 8. , Budapest, Hungary (2012)

  • Dick, E., Kubacki, S.: Transition models for turbomachinery boundary layer flows: a review. IJTPP. 2, 4 (2017). https://doi.org/10.3390/ijtpp2020004

    Article  Google Scholar 

  • Drela, M., Giles, M.B.: Viscous-inviscid analysis of transonic and low Reynolds number airfoils. AIAA J. 25(10), 1347–1355 (1987). https://doi.org/10.2514/3.9789

    Article  MATH  Google Scholar 

  • Duraisamy, K., Durbin, P.A.: Transition modeling using data driven approaches. In: Proceedings of the Summer Program. p. 8. , Center for Turbulence Research (2014)

  • Durbin, P.A.: Perspectives on the phenomenology and modeling of boundary layer transition. Flow Turbul. Combust. 99, 1–23 (2017). https://doi.org/10.1007/s10494-017-9819-9

    Article  Google Scholar 

  • Durbin, P.A.: Some recent developments in turbulence closure modeling. Annu. Rev. Fluid Mech. 50, 77–103 (2018). https://doi.org/10.1146/annurev-fluid-122316-045020

    Article  MathSciNet  MATH  Google Scholar 

  • Elsner, W., Warzecha, P.: Modeling of rough wall boundary layers with an intermittency transport model. Task Q. 14, 271–282 (2010)

    Google Scholar 

  • ERCOFTAC Data base of Transition Modelling Test Cases, http://cfd.mace.manchester.ac.uk/ercoftac/doku.php?id=cases:case020

  • Erfort, G., von Backström, T.W., Venter, G.: Numerically determined empirical relationships for a transitional turbulence model. JAFM 12, 2031–2038 (2019)

    Article  Google Scholar 

  • Fu, S., Wang, L.: RANS modeling of high-speed aerodynamic flow transition with consideration of stability theory. Prog. Aerosp. Sci. 58, 36–59 (2013). https://doi.org/10.1016/j.paerosci.2012.08.004

    Article  Google Scholar 

  • Ge, X., Arolla, S., Durbin, P.A.: A bypass transition model based on the intermittency function. Flow Turbul. Combust. (2015). https://doi.org/10.31274/etd-180810-4424

    Article  Google Scholar 

  • Grabe, C., Krumbein, A.: Extension of the γ-Reθt Model for Prediction of Crossflow Transition. AIAA 2014–1269. In: 52nd Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, National Harbor, Maryland (2014).

  • Huang, J., Corke, T., Thomas, F.: Plasma Actuators for Separation Control of Low Pressure Turbine Blades. In: 41st Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics (2003)

  • Ingen J.L.Van: A Suggested Semi-empirical Method for the Calculation of the Boundary Layer Transition Region. Report No VTH-71 and 74, Delft University (1956)

  • Jecker, L., Vermeersch, O., Deniau, H., Croner, E., Casalis, G.: A laminar kinetic energy model based on the Klebanoff-mode dynamics to predict bypass transition. Eur. J. Mech. b. Fluids 74, 265–279 (2019). https://doi.org/10.1016/j.euromechflu.2018.08.016

    Article  MathSciNet  Google Scholar 

  • Juntasaro, E., Narejo, A.A.: A γ-kL transition model for transitional flow with pressure gradient effects. Eng. J. 21, 279–304 (2017). https://doi.org/10.4186/ej.2017.21.2.279

    Article  Google Scholar 

  • Juntasaro, E., Ngiamsoongnirn, K., Thawornsathit, P., Durbin, P.: Development of an intermittency transport equation for modeling bypass, natural and separation-induced transition. J. Turbul. (2021). https://doi.org/10.1080/14685248.2021.1932947

    Article  MathSciNet  Google Scholar 

  • Kaynak, U., Bas, O., Cakmakcioglu, S.C., Tuncer, I.H.: Transition modeling for low to high speed boundary layer flows with CFD applications. IntechOpen (2019)

  • Krumbein, A.: Automatic transition prediction and application to high-lift multi-element configurations. J. Aircr. 42, 1150–1164 (2005). https://doi.org/10.2514/1.10329

    Article  Google Scholar 

  • Krumbein, A., François, D.G., Krimmelbein, N.: Transport-based Transition Prediction for the Common Research Model Natural Laminar Flow Configuration. AIAA 2022–1541. In: AIAA SCITECH 2022 Forum. American Institute of Aeronautics and Astronautics, San Diego, CA & Virtual (2022)

  • Kubacki, S., Dick, E.: An algebraic intermittency model for bypass, separation-induced and wake-induced transition. Int. J. Heat Fluid Flow 62, 344–361 (2016)

    Article  Google Scholar 

  • Kubacki, S., Simoni, D., Lengani, D., Dick, E.: An extended version of an algebraic intermittency model for prediction of separation-induced transition at elevated free-stream turbulence level. IJTPP. 5, 28 (2020). https://doi.org/10.3390/ijtpp5040028

    Article  Google Scholar 

  • Kubacki, S., Górecki, B., Dick, E.: An Algebraic Intermittency Model added to the RANS k-ω Model for Transition Simulation. 11th European Conference on Turbomachinery Fluid dynamics and Thermodynamics ETC11. (2015)

  • Lake, J., King, P., Rivir, R.: Low Reynolds number loss reduction on turbine blades with dimples and V-grooves. In: 38th Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics, Reno,NV,U.S.A. (2000)

  • Langel, C.M., Chow, R.C., van Dam, C.P., Maniaci, D.C.: A Transport Equation Approach to Modeling the Influence of Surface Roughness on Boundary Layer Transition. SANDIA report SAND2017-10670(2017)

  • Langtry, R.B., Menter, F.R.: Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA J. 47, 2894–2906 (2009). https://doi.org/10.2514/1.42362

    Article  Google Scholar 

  • Langtry, R.B., Menter, F.R., Likki, S.R., Suzen, Y.B., Huang, P.G., Völker, S.: A correlation-based transition model using local variables—part II: test cases and industrial applications. J. Turbomach. 128, 423–434 (2004). https://doi.org/10.1115/1.2184353

    Article  Google Scholar 

  • Langtry, R.B., Sengupta, K., Yeh, D.T., Dorgan, A.J.: Extending the γ-Reθ Local Correlation based Transition Model for Crossflow Effects. In: 45th AIAA Fluid Dynamics Conference. p. 12. , Dallas, TX (2015)

  • Lardeau, S., Leschziner, M.A.: Modelling of wake-induced transition in low-pressure turbine cascades. AIAA J. 44, 1854–1865 (2006)

    Article  Google Scholar 

  • Lodefier, K., Dick, E.: Modelling of unsteady transition in low-pressure turbine blade flows with two dynamic intermittency equations. Flow Turbulence Combust. 76, 103–132 (2006). https://doi.org/10.1007/s10494-005-9007-1

    Article  MATH  Google Scholar 

  • Lopes, R., Eça, L., Vaz, G.: On the numerical behavior of RANS-based transition models. J Fluids Eng. (2020). https://doi.org/10.1115/1.4045576

    Article  Google Scholar 

  • Malan, P., Suluksna, K., Juntasaro, E.: Calibrating the γ − Reθt Transition Model for Commercial CFD. AIAA 2009–1142. In: 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics, Orlando, Florida (2009)

  • Mauro, S., Lanzafame, R., Messina, M., Pirrello, D.: Transition turbulence model calibration for wind turbine airfoil characterization through the use of a Micro-Genetic Algorithm. Int J Energy Environ Eng. 8, 359–374 (2017). https://doi.org/10.1007/s40095-017-0248-2

    Article  Google Scholar 

  • Mayle, R.E., Schulz, A.: The Path to Predicting Bypass Transition. In: Volume 1: Turbomachinery. p. V001T01A065. American Society of Mechanical Engineers, Birmingham, UK (1996)

  • McGhee, R., Viken, J., Pfenninger, W., Beasley, W., Harvey, W.: Experimental results for a flapped natural-laminar-flow airfoil with high lift/drag ratio. NASA TM 85788. (1984)

  • McGhee, J., Walker, S., Millard, B.F.: Experimental results for the Eppler 387 airfoils at low Reynolds numbers in the Langley Low-Turbulence Pressure Tunnel. NASA TM 4062. (1988)

  • Medida, S., Baeder, J.D.: Application of the Correlation-based γ − Reθt Transition Model to the Spalart-Allmaras Turbulence Model. In: 20th AIAA Computational Fluid Dynamics Conference. p. 21. , Honolulu, Hawaii (2011)

  • Medida, S., Baeder, J.: A New Crossflow Transition Onset Criterion for RANS Turbulence Models. In: 21st AIAA Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics, San Diego, CA (2013)

  • Medina, H., Beechook, A., Fadhila, H., Aleksandrova, S., Benjamin, S.: A novel laminar kinetic energy model for the prediction of pretransitional velocity fluctuations and boundary layer transition. Int. J. Heat Fluid Flow 69, 150–163 (2018). https://doi.org/10.1016/j.ijheatfluidflow.2017.12.008

    Article  Google Scholar 

  • Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32, 1598–1605 (1994). https://doi.org/10.2514/3.12149

    Article  Google Scholar 

  • Menter, F.R., Langtry, R., Völker, S.: Transition modelling for general purpose CFD codes. Flow Turbulence Combust. 77, 277–303 (2006). https://doi.org/10.1007/s10494-006-9047-1

    Article  MATH  Google Scholar 

  • Menter, F.R., Smirnov, P.E., Liu, T., Avancha, R.: A one-equation local correlation-based transition model. Flow Turbulence Combust. 95, 583–619 (2015). https://doi.org/10.1007/s10494-015-9622-4

    Article  Google Scholar 

  • Menter, F.R., Matyushenko, A., Lechner, R.: Development of a Generalized k-ω Two-Equation Turbulence Model. In: Dillmann, A., Heller, G., Krämer, E., Wagner, C., Tropea, C., Jakirlić, S. (eds.) New Results in Numerical and Experimental Fluid Mechanics XII, pp. 101–109. Springer International Publishing (2020)

    Chapter  Google Scholar 

  • Menter, F.R., Smirnov, P.E.: Development of a RANS-based model for predicting crossflow transition. 19th STAB/DGLR Symposium, Munich. (2014)

  • Menter, F.R., Esch, T., Kubacki, S.: Transition Modeling for Local Variables. In: Engineering Turbulence Modelling and Experiments 5. pp. 555–564. Elsevier (2002)

  • Menter, F.R., Lechner, R., Matyushenko, A.: Best Practice: Generalized k-ω Two-Equation Turbulence Model in ANSYS CFD (GEKO). ANSYS Germany GmbH (2019)

  • Muller, C., Herbst, F.: Modelling of crossflow-induced transition based on local variables. In: In Proc. ECCOMAS. p. 13. , Barcelona (Spain) (2014)

  • Pacciani, R., Marconcini, M., Arnone, A., Bertini, F.: An assessment of the laminar kinetic energy concept for the prediction of high-lift, low-Reynolds number cascade flows. Proc. Inst. Mech. Eng. Part a J. Power Energy. 225, 995–1003 (2011). https://doi.org/10.1177/0957650911412444

    Article  Google Scholar 

  • Piotrowski, M.G.H., Zingg, D.W.: Smooth local correlation-based transition model for the spalart-allmaras turbulence model. AIAA J. 59, 474–492 (2021). https://doi.org/10.2514/1.J059784

    Article  Google Scholar 

  • Sandhu, J.P.S., Ghosh, S.: A Simplified Local Correlation-Based Zero-Equation Transition Model. In: AIAA Aviation 2020 Forum. American Institute of Aeronautics and Astronautics, Virtual event (2020)

  • Sandhu, J.P.S., Ghosh, S.: A local correlation-based zero-equation transition model. Comput. Fluids 214, 104758 (2021). https://doi.org/10.1016/j.compfluid.2020.104758

    Article  MathSciNet  MATH  Google Scholar 

  • Schubauer, G.B., Klebanoff, P.S.: Contributions on the mechanics of boundary-layer transition. NACA-TR-1289. 12 (1956)

  • Shi, Y., Gross, R., Mader, C.A., Martins, J.R.R.A.: Transition Prediction in a RANS Solver based on Linear Stability Theory for Complex Three-Dimensional Configurations. AIAA 2018–0819. In: 2018 AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics (2018)

  • Slotnick, J., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E., Mavriplis, D.: CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences. NASA/CR-2014-0218178, 58 (2014)

  • Smith, A. M. O., Nathalie Gamberoni.: Transition, pressure gradient, and stability theory. Report no. es. 26388, douglas aircraft co. (1956)

  • Somers, D.M.: Design and Experimental Results for a Natural-Laminar-Flow Airfoil for General Aviation Applications. NASA TM 1861. 104 (1981)

  • Somers, D.M.: Design and experimental results for the S809 airfoil. National Renewable Energy Lab. (1997)

  • Spalart, P., Allmaras, S.: A One-Equation Turbulence Model for Aerodynamic Flows. In: 30th Aerospace Sciences Meeting and Exhibit. , Reno,NV,U.S.A. (1992)

  • Stabnikov, A.S., Garbaruk, A.V.: Analysis of the abilities of algebraic laminar-turbulent transition models. J. Phys.: Conf. Ser. 1135, 012104 (2018). https://doi.org/10.1088/1742-6596/1135/1/012104

  • Suluksna, K., Dechaumphai, P., Juntasaro, E.: Correlations for modeling transitional boundary layers under influences of freestream turbulence and pressure gradient - ScienceDirect. Int. J. Heat Mass Transf. (2009). https://doi.org/10.1016/j.ijheatfluidflow.2008.09.004

    Article  Google Scholar 

  • Suzen, Y.B., Huang, P.G.: Numerical simulation of unsteady wake/blade interactions in low-pressure turbine flows using an intermittency transport equation. J Turbomach. 127(3), 431–444 (2005). https://doi.org/10.1115/1.1860375

    Article  Google Scholar 

  • Volino, R.J., Hultgren, L.S.: Measurements in separated and transitional boundary layers under low-pressure turbine airfoil conditions. J. Turbomach. 123, 189–197 (2001). https://doi.org/10.1115/1.1350408

    Article  Google Scholar 

  • Walters, D.K., Cokljat, D.: A three-equation eddy-viscosity model for reynolds-averaged navier-stokes simulations of transitional flow. J. Fluids Eng. 130, 121401 (2008). https://doi.org/10.1115/1.2979230

    Article  Google Scholar 

  • Walters, D.K., Leylek, J.H.: A new model for boundary-layer transition using a single-point rans approach. J. Turbomach. 126(1), 193–202 (2004)

    Article  Google Scholar 

  • Watanabe, Y., Misaka, T., Obayashi, S., Arima, T., Yamagichi, Y.: Application of Crossflow Transition Criteria to Local Correlation-Based Transition Model. In: 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. American Institute of Aeronautics and Astronautics, Orlando, Florida (2009)

  • Xing-hao, X., Hai-jie, R., Yi-feng, Z., Xian-xu, Y., Jian-qiang, C., Shu-sheng, C.: Transition prediction with hypersonic cross-flow model on HIFiRE-5. J. Phys.: Conf. Ser. 1786, 012051 (2021). https://doi.org/10.1088/1742-6596/1786/1/012051

  • Xu, J.K., Bai, J.Q., Qiao, L., Zhang, Y.: Correlation-based transition transport modeling for simulating crossflow instabilities. JAFM. 9, 2435–2442 (2016b). https://doi.org/10.18869/acadpub.jafm.68.236.25356

    Article  Google Scholar 

  • Xu, J., Bai, J., Qiao, L., Zhang, Y., Fu, Z.: A Linear Stability Theory-Based Transition Model Using Local Variables for RANS Simulations of Transitional Flow. AIAA 2016a-3490. In: 46th AIAA Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics, Washington, D.C. (2016a)

  • Yao, H.: A local correlation-based transition model for Spalart-Allmaras turbulence model, https://ses.library.usyd.edu.au/handle/2123/17382, (2017)

  • Zafar, M.I., Choudhari, M.M., Paredes, P., Xiao, H.: Recurrent neural network for end-to-end modeling of laminar-turbulent transition. DCE. 2, e17 (2021). https://doi.org/10.1017/dce.2021.11

    Article  Google Scholar 

Download references

Acknowledgements

All the computations were conducted with the use of the cluster Tornado of the Computer Center “Polytechnichesky”. Russian authors’ research was funded by the Ministry of Science and Higher Education of the Russian Federation as part of World-class Research Center program: Advanced Digital Technologies (contract No. 075-15-2020-934 of Nov. 17, 2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian R. Menter.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose. No funding not given in the acknowledgements was received for conducting this study. No conflict of interest exists. Informed consent: ‘Not applicable’.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menter, F.R., Matyushenko, A., Lechner, R. et al. An Algebraic LCTM Model for Laminar–Turbulent Transition Prediction. Flow Turbulence Combust 109, 841–869 (2022). https://doi.org/10.1007/s10494-022-00336-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-022-00336-8

Keywords

Navigation