Skip to main content

Development of a Generalized K-ω Two-Equation Turbulence Model

  • Conference paper
  • First Online:
New Results in Numerical and Experimental Fluid Mechanics XII (DGLR 2018)

Abstract

The concept behind the development of a new two-equation turbulence model will be discussed. It is designed with free parameters which allow the adjustment of the model to a wide variety of flow conditions without violating the calibration for flat plates. The new model also allows to replace existing models by specific selection of model coefficients. This offers the opportunity for future turbulence model consolidation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Launder, B.E., Spalding, D.B.: The numerical computation of turbulent flows. Comp. Meth. Appl. Mech. Eng 3, 269–289 (1974)

    Article  Google Scholar 

  2. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)

    Article  Google Scholar 

  3. Durbin, P.A.: Near-wall turbulence closure modeling without ‘damping functions’. Theor. Comput. Fluid Dyn. 3(1), 1–13 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Spalart, P.R., Shur, M.L.: On the sensitization of turbulence models to rotation and curvature. Aerospace Sci. Tech. 1(5), 297–302 (1997)

    Article  Google Scholar 

  5. Smirnov, P.E., Menter, F.R.: Sensitization of the SST turbulence model to rotation and curvature by applying the spalart-shur correction term. ASME Paper GT 2008-50480. Berlin, Germany (2008)

    Google Scholar 

  6. Mani, M., Babcock, D.A., Winkler, C.M., and Spalart, P.R.: Predictions of a supersonic turbulent flow in a square duct. AIAA Paper 2013-0860, January 2013

    Google Scholar 

  7. Coles, D.E., Hirst, E.A. (eds.): Computation of Turbulent Boundary Layers- 1968 AFOSR-IFP-Stanford Conference, vol. 2. Stanford University, CA (1969)

    Google Scholar 

  8. Driver, D.M.: Reynolds shear stress measurements in a separated boundary layer flow. In: AIAA 22nd Fluid Dynamics, Plasma Dynamics and Laser Conference, AIAA-91-1787

    Google Scholar 

  9. Vogel, J.C., Eaton, J.K.: Combined heat transfer and fluid dynamic measurements downstream of a backward-facing step. J. Heat Transfer 107(4), 922–929 (1985)

    Article  Google Scholar 

  10. Bell, J.H., Mehta, R.D.: Development of a two-stream mixing layer from tripped and untripped boundary layers. AIAA J. 28(12), 2034–2042 (1990)

    Article  Google Scholar 

  11. Bradbury, L.J.S.: The structure of a self-preserving plane jet. J. Fluid Mech. 23, 31–64 (1965)

    Article  Google Scholar 

  12. Wygnanski, I., Fiedler, H.E.: Some measurements in the self-preserving jet, Boeing Scientific Research Labs, Document D1-82-0712

    Google Scholar 

  13. Wadcock, A.J.: Investigation of low-speed turbulent separated flow around airfoils, NASA Contractor Report 177450

    Google Scholar 

  14. Cook, P.H., McDonald, M.A., Firmin, M.C.P.: Aerofoil rae 2822 - pressure distributions, and boundary layer and wake measurements, Experimental Data Base for Computer Program Assessment, AGARD Report AR 138 (1979)

    Google Scholar 

  15. Ahmed, S.R., Ramm, G.: Some salient features of the time-averaged ground vehicle wake, SAE-Paper 840300 1984 (1994)

    Google Scholar 

  16. Schewe, G.: Reynolds-number effects in flow around more-or-less bluff bodies. J. Wind Eng. Ind. Aerodyn. 89, 1267–1289 (2001)

    Article  Google Scholar 

  17. Timmer, W.A., van Rooij, R.P.J.O.M.: Summary of the delft university wind turbine dedicated airfoils, AIAA Paper, 2003-0352

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Florian R. Menter , Alexey Matyushenko or Richard Lechner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Menter, F.R., Matyushenko, A., Lechner, R. (2020). Development of a Generalized K-ω Two-Equation Turbulence Model. In: Dillmann, A., Heller, G., Krämer, E., Wagner, C., Tropea, C., Jakirlić, S. (eds) New Results in Numerical and Experimental Fluid Mechanics XII. DGLR 2018. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 142. Springer, Cham. https://doi.org/10.1007/978-3-030-25253-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25253-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25252-6

  • Online ISBN: 978-3-030-25253-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics