Skip to main content

Advertisement

Log in

Superresolved spatial transcriptomics transferred from a histological context

  • Published:
Applied Intelligence Aims and scope Submit manuscript

Abstract

Spatially resolved transcriptomics (SRT) is a vital technique in biology that allows for gene expression measurement at the resolution of individual spots while preserving spatial information. However, owing to technical limitations, single-spot resolution often includes data from multiple cells, leading to suboptimal results and opportunities for improvement. In this study, we propose a deep learning-based, plug-and-play method for enhancing spot resolution to obtain higher-resolution SRT data. Our approach involves training a convolutional neural network (CNN) model and introducing a shift-predict operation to obtain superresolution spots. Using a human breast cancer SRT dataset, we demonstrate that our method achieves 9 × superresolution, outperforming traditional superresolution techniques. Crucially, our method decreased the mean squared error (MSE) to 1.379 for all genes, 2.287 for tumor-related genes at 4 × superresolution, 1.866 for all genes, and 3.371 for tumor-related genes at 9 × superresolution, reflecting substantial improvements compared to the traditional approaches, including Gaussian RBF, multiquadric RBF, linear RBF, resize-predict, bilinear, and bicubic methods. Furthermore, we verify our method's effectiveness using external and simulated datasets. Our proposed method offers a substantial advancement in SRT by enabling higher-resolution gene expression data generation. By providing a deeper understanding of gene expression patterns and their underlying biological significance, this method contributes to progress in biology and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The human breast cancer in situ capturing transcriptomics we used in this paper is available at https://data.mendeley.com/datasets/29ntw7sh4r. The Breast Cancer Semantic Segmentation (BCSS) dataset utilized is accessible at https://github.com/PathologyDataScience/BCSS.

Abbreviations

BCSS:

Breast cancer semantic segmentation

CNN:

Convolutional neural network

GAP:

Global average pooling

HVS:

Human visual system

MSE:

Mean square error

NMF:

Nonnegative matrix factorization

PSNR:

Peak-signal-to-noise ratio

RBF:

Radial basis function

ROI:

Region of interest

scRNA-seq:

Single-cell RNA sequencing

SP:

Senior pathologist

SRT:

Spatially resolved transcriptomics

SSIM:

Structural similarity index measure

WSIs:

Whole-slide images

References

  1. Rao A, Barkley D, França GS, Yanai I (2021) Exploring tissue architecture using spatial transcriptomics. Nature 596:211–220. https://doi.org/10.1038/s41586-021-03634-9

    Article  Google Scholar 

  2. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A, Lao K, Surani MA (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6:377–382. https://doi.org/10.1038/nmeth.1315

    Article  Google Scholar 

  3. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–1214. https://doi.org/10.1016/j.cell.2015.05.002

    Article  Google Scholar 

  4. Zheng GXY, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, Ziraldo SB, Wheeler TD, McDermott GP, Zhu J, Gregory MT, Shuga J, Montesclaros L, Underwood JG, Masquelier DA, Nishimura SY, Schnall-Levin M, Wyatt PW, Hindson CM, Bharadwaj R, Wong A, Ness KD, Beppu LW, Deeg HJ, McFarland C, Loeb KR, Valente WJ, Ericson NG, Stevens EA, Radich JP, Mikkelsen TS, Hindson BJ, Bielas JH (2017) Massively parallel digital transcriptional profiling of single cells. Nat Commun 8:14049. https://doi.org/10.1038/ncomms14049

    Article  Google Scholar 

  5. Marx V (2021) Method of the year: spatially resolved transcriptomics. Nat Methods 18:9–14. https://doi.org/10.1038/s41592-020-01033-y

    Article  Google Scholar 

  6. Eng C-HL, Lawson M, Zhu Q, Dries R, Koulena N, Takei Y, Yun J, Cronin C, Karp C, Yuan G-C, Cai L (2019) Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+. Nature 568:235–239. https://doi.org/10.1038/s41586-019-1049-y

    Article  Google Scholar 

  7. Codeluppi S, Borm LE, Zeisel A, La Manno G, van Lunteren JA, Svensson CI, Linnarsson S (2018) Spatial organization of the somatosensory cortex revealed by osmFISH. Nat Methods 15:932–935. https://doi.org/10.1038/s41592-018-0175-z

    Article  Google Scholar 

  8. Moses L, Pachter L (2022) Museum of spatial transcriptomics. Nat Methods 19:534–546. https://doi.org/10.1038/s41592-022-01409-2

    Article  Google Scholar 

  9. Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, Vanderburg CR, Welch J, Chen LM, Chen F, Macosko EZ (2019) Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363:1463–1467. https://doi.org/10.1126/science.aaw1219

    Article  Google Scholar 

  10. Stickels RR, Murray E, Kumar P, Li J, Marshall JL, Di Bella DJ, Arlotta P, Macosko EZ, Chen F (2021) Highly sensitive spatial transcriptomics at near-cellular resolution with Slide-seqV2. Nat Biotechnol 39:313–319. https://doi.org/10.1038/s41587-020-0739-1

    Article  Google Scholar 

  11. Yue L, Liu F, Hu J, Yang P, Wang Y, Dong J, Shu W, Huang X, Wang S (2023) A guidebook of spatial transcriptomic technologies, data resources and analysis approaches. Comput Struct Biotechnol J 21:940–955. https://doi.org/10.1016/j.csbj.2023.01.016

    Article  Google Scholar 

  12. Ståhl PL, Salmén F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, Giacomello S, Asp M, Westholm JO, Huss M, Mollbrink A, Linnarsson S, Codeluppi S, Borg Å, Pontén F, Costea PI, Sahlén P, Mulder J, Bergmann O, Lundeberg J, Frisén J (2016) Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353:78–82. https://doi.org/10.1126/science.aaf2403

    Article  Google Scholar 

  13. Maynard KR, Collado-Torres L, Weber LM, Uytingco C, Barry BK, Williams SR, Catallini JL, Tran MN, Besich Z, Tippani M, Chew J, Yin Y, Kleinman JE, Hyde TM, Rao N, Hicks SC, Martinowich K, Jaffe AE (2021) Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex. Nat Neurosci 24:425–436. https://doi.org/10.1038/s41593-020-00787-0

    Article  Google Scholar 

  14. Yang F, Wang W, Wang F, Fang Y, Tang D, Huang J, Lu H, Yao J (2022) scBERT as a large-scale pretrained deep language model for cell type annotation of single-cell RNA-seq data. Nat Mach Intell 4:852–866. https://doi.org/10.1038/s42256-022-00534-z

    Article  Google Scholar 

  15. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, Khodadoust MS, Esfahani MS, Luca BA, Steiner D, Diehn M, Alizadeh AA (2019) Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat Biotechnol 37:773–782. https://doi.org/10.1038/s41587-019-0114-2

    Article  Google Scholar 

  16. Li L, Zhang Y, Ren Y et al (2022) Pan-cancer single-cell analysis reveals the core factors and pathway in specific cancer stem cells of upper gastrointestinal cancer. Front Bioeng Biotechnol 10:1–12. https://doi.org/10.3389/fbioe.2022.849798

    Article  Google Scholar 

  17. Huang Y, Zhang P (2021) Evaluation of machine learning approaches for cell-type identification from single-cell transcriptomics data. Brief Bioinform 22:bbab035. https://doi.org/10.1093/bib/bbab035

    Article  Google Scholar 

  18. Kong Y, Genchev GZ, Wang X, Zhao H, Lu H (2020) Nuclear segmentation in histopathological images using two-stage stacked U-Nets with attention mechanism. Front Bioeng Biotechnol 8:573866. https://doi.org/10.3389/fbioe.2020.573866

    Article  Google Scholar 

  19. Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyö D, Moreira AL, Razavian N, Tsirigos A (2018) Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning. Nat Med 24:1559–1567. https://doi.org/10.1038/s41591-018-0177-5

    Article  Google Scholar 

  20. Gürünlü B, Öztürk S (2022) A novel method for forgery detection on lung cancer images. IJISS 11:13–20

    Google Scholar 

  21. Xiao X, Kong Y, Wang Z, Lu H (2023) Transformer with convolution and graph-node co-embedding: an accurate and interpretable vision backbone for predicting gene expressions from local histopathological image. bioRxiv. https://doi.org/10.1101/2023.05.28.542669

  22. Cable DM, Murray E, Zou LS, Goeva A, Macosko EZ, Chen F, Irizarry RA (2022) Robust decomposition of cell type mixtures in spatial transcriptomics. Nat Biotechnol 40:517–526. https://doi.org/10.1038/s41587-021-00830-w

    Article  Google Scholar 

  23. Dong R, Yuan G-C (2021) SpatialDWLS: accurate deconvolution of spatial transcriptomic data. Genome Biol 22:145. https://doi.org/10.1186/s13059-021-02362-7

    Article  Google Scholar 

  24. Elosua-Bayes M, Nieto P, Mereu E, Gut I, Heyn H (2021) SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. Nucleic Acids Res 49:e50. https://doi.org/10.1093/nar/gkab043

    Article  Google Scholar 

  25. Biancalani T, Scalia G, Buffoni L, Avasthi R, Lu Z, Sanger A, Tokcan N, Vanderburg CR, Segerstolpe Å, Zhang M, Avraham-Davidi I, Vickovic S, Nitzan M, Ma S, Subramanian A, Lipinski M, Buenrostro J, Brown NB, Fanelli D, Zhuang X, Macosko EZ, Regev A (2021) Deep learning and alignment of spatially resolved single-cell transcriptomes with Tangram. Nat Methods 18:1352–1362. https://doi.org/10.1038/s41592-021-01264-7

    Article  Google Scholar 

  26. Zhao E, Stone MR, Ren X, Guenthoer J, Smythe KS, Pulliam T, Williams SR, Uytingco CR, Taylor SEB, Nghiem P, Bielas JH, Gottardo R (2021) Spatial transcriptomics at subspot resolution with BayesSpace. Nat Biotechnol 39:1375–1384. https://doi.org/10.1038/s41587-021-00935-2

    Article  Google Scholar 

  27. Monjo T, Koido M, Nagasawa S, Suzuki Y, Kamatani Y (2022) Efficient prediction of a spatial transcriptomics profile better characterizes breast cancer tissue sections without costly experimentation. Sci Rep 12:4133. https://doi.org/10.1038/s41598-022-07685-4

    Article  Google Scholar 

  28. Wei H, Lu H, Zhao H (2022) Inferring time-lagged causality using the derivative of single-cell expression. Int J Mol Sci 23:3348convo

    Article  Google Scholar 

  29. Torrisi M, Pollastri G, Le Q (2020) Deep learning methods in protein structure prediction. Comput Struct Biotechnol J 18:1301–1310. https://doi.org/10.1016/j.csbj.2019.12.011

    Article  Google Scholar 

  30. Zhang Y, Qiu L, Ren Y et al (2022) A meta-learning approach to improving radiation response prediction in cancers. Comput Biol Med 150:106163. https://doi.org/10.1016/j.compbiomed.2022.106163

    Article  Google Scholar 

  31. He B, Bergenstråhle L, Stenbeck L, Abid A, Andersson A, Borg Å, Maaskola J, Lundeberg J, Zou J (2020) Integrating spatial gene expression and breast tumour morphology via deep learning. Nat Biomed Eng 4:827–834. https://doi.org/10.1038/s41551-020-0578-x

    Article  Google Scholar 

  32. Schmauch B, Romagnoni A, Pronier E, Saillard C, Maillé P, Calderaro J, Kamoun A, Sefta M, Toldo S, Zaslavskiy M, Clozel T, Moarii M, Courtiol P, Wainrib G (2020) A deep learning model to predict RNA-Seq expression of tumours from whole slide images. Nat Commun 11:3877. https://doi.org/10.1038/s41467-020-17678-4

    Article  Google Scholar 

  33. Chelebian E, Avenel C, Kartasalo K, Marklund M, Tanoglidi A, Mirtti T, Colling R, Erickson A, Lamb AD, Lundeberg J, Wählby C (2021) Morphological features extracted by ai associated with spatial transcriptomics in prostate cancer. Cancers 13:4837. https://doi.org/10.3390/cancers13194837

    Article  Google Scholar 

  34. Hong R, Liu W, DeLair D, Razavian N, Fenyö D (2021) Predicting endometrial cancer subtypes and molecular features from histopathology images using multi-resolution deep learning models. Cell Rep Med 2:100400. https://doi.org/10.1016/j.xcrm.2021.100400

    Article  Google Scholar 

  35. Wang Y, Kartasalo K, Weitz P, Ács B, Valkonen M, Larsson C, Ruusuvuori P, Hartman J, Rantalainen M (2021) Predicting molecular phenotypes from histopathology images: a transcriptome-wide expression-morphology analysis in breast cancer. Can Res 81:5115–5126. https://doi.org/10.1158/0008-5472.CAN-21-0482

    Article  Google Scholar 

  36. Stenbeck L, Bergenstråhle L, Lundeberg J, Borg Å (2021) Human breast cancer in situ capturing transcriptomics. Mendeley Data, V5. https://doi.org/10.17632/29ntw7sh4r.5

  37. Wang Z, Chen J, Hoi SCH (2021) Deep learning for image super-resolution: a survey. IEEE Trans Pattern Anal Mach Intell 43:3365–3387. https://doi.org/10.1109/TPAMI.2020.2982166

    Article  Google Scholar 

  38. Amgad M, Elfandy H, Hussein H, Atteya LA, Elsebaie MAT, Abo Elnasr LS, Sakr RA, Salem HSE, Ismail AF, Saad AM, Ahmed J, Elsebaie MAT, Rahman M, Ruhban IA, Elgazar NM, Alagha Y, Osman MH, Alhusseiny AM, Khalaf MM, Younes A-AF, Abdulkarim A, Younes DM, Gadallah AM, Elkashash AM, Fala SY, Zaki BM, Beezley J, Chittajallu DR, Manthey D, Gutman DA, Cooper LAD (2019) Structured crowdsourcing enables convolutional segmentation of histology images. Bioinformatics 35:3461–3467. https://doi.org/10.1093/bioinformatics/btz083

    Article  Google Scholar 

  39. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Honolulu, HI, pp 2261–2269. https://doi.org/10.1109/CVPR.2017.243

  40. Zhang Y-D, Satapathy SC, Zhang X, Wang S-H (2021) COVID-19 diagnosis via DenseNet and optimization of transfer learning setting. Cogn Comput. https://doi.org/10.1007/s12559-020-09776-8

    Article  Google Scholar 

  41. Ezzat D, Hassanien AE, Ella HA (2021) An optimized deep learning architecture for the diagnosis of COVID-19 disease based on gravitational search optimization. Appl Soft Comput 98:106742. https://doi.org/10.1016/j.asoc.2020.106742

    Article  Google Scholar 

  42. Jung Y, Kim T, Han M-R, Kim S, Kim G, Lee S, Choi YJ (2022) Ovarian tumor diagnosis using deep convolutional neural networks and a denoising convolutional autoencoder. Sci Rep 12:17024. https://doi.org/10.1038/s41598-022-20653-2

    Article  Google Scholar 

  43. Riasatian A, Babaie M, Maleki D, Kalra S, Valipour M, Hemati S, Zaveri M, Safarpoor A, Shafiei S, Afshari M, Rasoolijaberi M, Sikaroudi M, Adnan M, Shah S, Choi C, Damaskinos S, Campbell CJ, Diamandis P, Pantanowitz L, Kashani H, Ghodsi A, Tizhoosh HR (2021) Fine-tuning and training of densenet for histopathology image representation using TCGA diagnostic slides. Med Image Anal 70:102032. https://doi.org/10.1016/j.media.2021.102032

    Article  Google Scholar 

  44. Deng J, Dong W, Socher R, Li L-J, Kai Li, Li Fei-Fei (2009) ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, Miami, FL, pp 248–255. https://doi.org/10.1109/CVPR.2009.5206848

  45. Mason A, Rioux J, Clarke SE, Costa A, Schmidt M, Keough V, Huynh T, Beyea S (2020) Comparison of objective image quality metrics to expert radiologists’ scoring of diagnostic quality of MR images. IEEE Trans Med Imaging 39:1064–1072. https://doi.org/10.1109/TMI.2019.2930338

    Article  Google Scholar 

  46. Nilsson J, Akenine-Moller T (2021) Understanding SSL. arXiv 313–330. https://doi.org/10.1201/noe0849385858-25

  47. Buhmann MD (2000) Radial basis functions. Acta Numer 9:1–38. https://doi.org/10.1017/S0962492900000015

    Article  MathSciNet  Google Scholar 

  48. Qiu D, Zheng L, Zhu J, Huang D (2021) Multiple improved residual networks for medical image super-resolution. Futur Gener Comput Syst 116:200–208. https://doi.org/10.1016/j.future.2020.11.001

    Article  Google Scholar 

  49. Cavoretto R, De Rossi A, Mukhametzhanov MS, YaD S (2021) On the search of the shape parameter in radial basis functions using univariate global optimization methods. J Glob Optim 79:305–327. https://doi.org/10.1007/s10898-019-00853-3

    Article  MathSciNet  Google Scholar 

  50. Gruslova A, McClellan B, Balinda HU, Viswanadhapalli S, Alers V, Sareddy GR, Huang T, Garcia M, deGraffenried L, Vadlamudi RK, Brenner AJ (2021) FASN inhibition as a potential treatment for endocrine-resistant breast cancer. Breast Cancer Res Treat 187:375–386. https://doi.org/10.1007/s10549-021-06231-6

    Article  Google Scholar 

  51. Chaturvedi S, Biswas M, Sadhukhan S, Sonawane A (2023) Role of EGFR and FASN in breast cancer progression. J Cell Commun Signal. https://doi.org/10.1007/s12079-023-00771-w

    Article  Google Scholar 

  52. Wang C, Wang Z, Yao T, Zhou J, Wang Z (2022) The immune-related role of beta-2-microglobulin in melanoma. Front Oncol 12:944722. https://doi.org/10.3389/fonc.2022.944722

    Article  Google Scholar 

  53. Schaafsma E, Fugle CM, Wang X, Cheng C (2021) Pan-cancer association of HLA gene expression with cancer prognosis and immunotherapy efficacy. Br J Cancer 125:422–432. https://doi.org/10.1038/s41416-021-01400-2

    Article  Google Scholar 

  54. Wang C, Lv J, Xue C, Li J, Liu Y, Xu D, Jiang Y, Jiang S, Zhu M, Yang Y, Zhang S (2022) Novel role of COX6c in the regulation of oxidative phosphorylation and diseases. Cell Death Discov 8:1–8. https://doi.org/10.1038/s41420-022-01130-1

    Article  Google Scholar 

  55. Sun X, Li K, Hase M, Zha R, Feng Y, Li B-Y, Yokota H (2022) Suppression of breast cancer-associated bone loss with osteoblast proteomes via Hsp90ab1/moesin-mediated inhibition of TGFβ/FN1/CD44 signaling. Theranostics 12:929–943. https://doi.org/10.7150/thno.66148

    Article  Google Scholar 

  56. Fu Y, Jung AW, Torne RV, Gonzalez S, Vöhringer H, Shmatko A, Yates LR, Jimenez-Linan M, Moore L, Gerstung M (2020) Pan-cancer computational histopathology reveals mutations, tumor composition and prognosis. Nat Cancer 1:800–810. https://doi.org/10.1038/s43018-020-0085-8

    Article  Google Scholar 

  57. Schrammen PL, Ghaffari Laleh N, Echle A, Truhn D, Schulz V, Brinker TJ, Brenner H, Chang-Claude J, Alwers E, Brobeil A, Kloor M, Heij LR, Jäger D, Trautwein C, Grabsch HI, Quirke P, West NP, Hoffmeister M, Kather JN (2022) Weakly supervised annotation-free cancer detection and prediction of genotype in routine histopathology. J Pathol 256:50–60. https://doi.org/10.1002/path.5800

    Article  Google Scholar 

Download references

Acknowledgements

The computations in this paper were run on the \(\pi\) 2.0 cluster supported by the Center for High-Performance Computing at Shanghai Jiao Tong University.

Funding

This work was supported by the Neil Shen's SJTU Medical Research Fund (to YK, HL), SJTU Trans-med Awards Research (STAR) 20210106 (to HL), Innovative Research Team of High-Level Local Universities in Shanghai (SHSMU-ZDCX20212200, to HL).

Author information

Authors and Affiliations

Authors

Contributions

S. W. participated in the data acquisition, performed the model construction and the statistical analysis, and drafted the manuscript. X. C. Z. participated in the study design and was involved in interpreting study findings and implications. Y. K. participated in its design and drafted the manuscript. H.L. supervised all aspects of the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hui Lu.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that the research was conducted without any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Messages

1. This study proposes a deep learning-based, plug-and-play method for enhancing spot resolution in spatially resolved transcriptomics (SRT) data using a convolutional neural network (CNN) model and shift-predict operation.

2. The method achieves 9 × superresolution on a human breast cancer SRT dataset and outperforms traditional superresolution techniques.

3. The effectiveness of the proposed method is demonstrated using an external dataset and a simulated dataset, providing deeper insights into gene expression patterns and cellular structures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhou, X., Kong, Y. et al. Superresolved spatial transcriptomics transferred from a histological context. Appl Intell 53, 31033–31045 (2023). https://doi.org/10.1007/s10489-023-05190-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10489-023-05190-3

Keywords

Navigation