Skip to main content

Advertisement

Log in

Role of EGFR and FASN in breast cancer progression

  • Review
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

Breast cancer (BC) emerged as one of the life-threatening diseases among females. Despite notable improvements made in cancer detection and treatment worldwide, according to GLOBACAN 2020, BC is the fifth leading cancer, with an estimated 1 in 6 cancer deaths, in a majority of countries. However, the exact cause that leads to BC progression still needs to be determined. Here, we reviewed the role of two novel biomarkers responsible for 50–70% of BC progression. The first one is epidermal growth factor receptor (EGFR) which belongs to the ErbB tyrosine kinases family, signalling pathways associated with it play a significant role in regulating cell proliferation and division. Another one is fatty acid synthase (FASN), a key enzyme responsible for the de novo lipid synthesis required for cancer cell development. This review presents a rationale for the EGFR-mediated pathways, their interaction with FASN, communion of these two biomarkers with BC, and improvements to overcome drug resistance caused by them.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig.12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abulkhair O, Al Balwi M, Makram O, Alsubaie L, Faris M, Shehata H, Ibrahim E et al (2018) Prevalence of BRCA1 and BRCA2 mutations among high-risk Saudi patients with breast cancer. J Globo Oncol 4(18):00066

    Google Scholar 

  • Adnane J, Jackson RJ, Nicosia SV, Cantor AB, Pledger WJ, Sebti SMJO (2000) Loss of p21WAF1/CIP1 accelerates Ras oncogenesis in a transgenic/knockout mammary cancer model. Oncogene 19:5338–5347

    CAS  PubMed  Google Scholar 

  • Agarwal E, Brattain MG, Chowdhury S (2013) Cell survival and metastasis regulation by Akt signaling in colorectal cancer. Cell Signal 25:1711–1719

    CAS  PubMed Central  PubMed  Google Scholar 

  • Al-Thoubaity FK (2020) Molecular classification of breast cancer: A retrospective cohort study. Ann Med Surg 49:44–48

    Google Scholar 

  • Amendola CR, Mahaffey JP, Parker SJ, Ahearn IM, Chen WC, Zhou M, Philips MR et al (2019) KRAS4A directly regulates hexokinase 1. Nature 576:482–486

    CAS  PubMed Central  PubMed  Google Scholar 

  • Andrikopoulou A, Chatzinikolaou S, Panourgias E, Kaparelou M, Liontos M, Dimopoulos M-A, Zagouri F (2022) The emerging role of capivasertib in breast cancer. Breast 63:157–167

    PubMed Central  PubMed  Google Scholar 

  • Avalle L, Pensa S, Regis G, Novelli F, Poli V (2012) STAT1 and STAT3 in tumorigenesis: a matter of balance. JAK-STAT 1:65–72

    PubMed Central  PubMed  Google Scholar 

  • Ayati A, Moghimi S, Salarinejad S, Safavi M, Pouramiri B, Foroumadi A (2020) A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy. Bioorg Chem 99:103811

    CAS  PubMed  Google Scholar 

  • Baselga J, Gómez P, Greil R, Braga S, Climent MA, Wardley AM, Awada A et al (2013) Randomized phase II study of the anti-epidermal growth factor receptor monoclonal antibody cetuximab with cisplatin versus cisplatin alone in patients with metastatic triple-negative breast cancer. J Clin Oncol 31:2586–2592

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bean J, Riely GJ, Balak M, Marks JL, Ladanyi M, Miller VA, Pao W (2008) Acquired resistance to epidermal growth factor receptor kinase inhibitors associated with a novel T854A mutation in a patient with EGFR-mutant lung adenocarcinoma. Clin Cancer Res 14:7519–7525

    CAS  PubMed Central  PubMed  Google Scholar 

  • Becker S, Groner B, Müller CWJN (1998) Three-dimensional structure of the Stat3β homodimer bound to DNA. Nature 394:145–151

    CAS  PubMed  Google Scholar 

  • Bemanian V, Sauer T, Touma J, Lindstedt BA, Chen Y, Ødegård HP, Geisler J et al (2015) The epidermal growth factor receptor (EGFR/HER-1) gatekeeper mutation T790M is present in European patients with early breast cancer. PLoS ONE 10(8):e0134398

    PubMed Central  PubMed  Google Scholar 

  • Benmebarek MR, Karches CH, Cadilha BL, Lesch S, Endres S, Kobold S (2019) Killing mechanisms of chimeric antigen receptor (CAR) T cells. Int J Mol Sci 20:1283

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bhattacharyya GS, Doval DC, Desai CJ, Chaturvedi H, Sharma S, Somashekhar SP (2020) Overview of breast cancer and implications of overtreatment of early-stage breast cancer: an indian perspective. J Glob Oncol 6:789–798

    Google Scholar 

  • Bhushan A, Gonsalves A, Menon JU (2021) Current state of breast cancer diagnosis, treatment, and theranostics. Pharmaceutics 13:723

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bian Y, Yu Y, Wang S, Li LJB (2015) Up-regulation of fatty acid synthase induced by EGFR/ERK activation promotes tumor growth in pancreatic cancer. Biochem Biophys Res Commun 463:612–617

    CAS  PubMed  Google Scholar 

  • Blick SK, Scott LJ (2007) Cetuximab. Drugs 67:2585–2607

    CAS  PubMed  Google Scholar 

  • Bode U, Massimino M, Bach F, Zimmermann M, Khuhlaeva E, Westphal M, Fleischhack G (2012) Nimotuzumab treatment of malignant gliomas. Expert Opin Biol Ther 12:1649–1659

    CAS  PubMed  Google Scholar 

  • Bollu LR, Katreddy RR, Blessing AM, Pham N, Zheng B, Wu X, Weihua ZJO (2015) Intracellular activation of EGFR by fatty acid synthase dependent palmitoylation. Oncotarget 6:34992

    PubMed Central  PubMed  Google Scholar 

  • Bonsu AB, Ncama BP (2019) Recognizing and appraising symptoms of breast cancer as a reason for delayed presentation in Ghanaian women: a qualitative study. PLoS ONE 14:e0208773

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bowers M, Liang T, Gonzalez-Bohorquez D, Zocher S, Jaeger BN, Kovacs WJ, Jessberger S et al (2020) FASN-dependent lipid metabolism links neurogenic stem/progenitor cell activity to learning and memory deficits. Cell Stem Cell 27:98-109.e111

    CAS  PubMed  Google Scholar 

  • Brophy E, Conley J, O’Hearn P, Douglas M, Cheung C, Coco J, Keaney G et al (2013) Pharmacological target validation studies of fatty acid synthase in carcinoma using the potent, selective and orally bioavailable inhibitor IPI-9119. Cancer Res 73:1891

    Google Scholar 

  • Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Greenberg MEJC et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    CAS  PubMed  Google Scholar 

  • Budhiarko D, Putra T, Harsono A, Masykura N, Tjindarbumi D, Widjajahakim G, Utomo A (2017) Frequency of L858R and L861Q EGFR mutation in triple-negative, luminal and HER2 of Indonesian breast cancers patients. Ann Oncol 28:171

    Google Scholar 

  • Bueno MJ, Quintela-Fandino M (2020) Emerging role of Fatty acid synthase in tumor initiation: implications for cancer prevention. Mol Cell Oncol 7:1709389

    PubMed Central  PubMed  Google Scholar 

  • Burslem GM, Smith BE, Lai AC, Jaime-Figueroa S, McQuaid DC, Bondeson DP, Wang J et al (2018) The advantages of targeted protein degradation over inhibition: an RTK case study. Cell Chem Biol 25:67–77

    CAS  PubMed  Google Scholar 

  • Cai W-Q, Zeng L-S, Wang L-F, Wang Y-Y, Cheng J-T, Zhang Y, Wang X-W et al (2020) The latest battles between EGFR monoclonal antibodies and resistant tumor cells. Front Oncol 10:1249

    PubMed Central  PubMed  Google Scholar 

  • Caratelli S, Arriga R, Sconocchia T, Ottaviani A, Lanzilli G, Pastore D, Sconocchia G et al (2020) In vitro elimination of epidermal growth factor receptor-overexpressing cancer cells by CD32A-chimeric receptor T cells in combination with cetuximab or panitumumab. Int J Cancer 146:236–247

    CAS  PubMed  Google Scholar 

  • Carey LA, Rugo HS, Marcom PK, Mayer EL, Esteva FJ, Ma CX, Forero-Torres A et al (2012) TBCRC 001: randomized phase II study of cetuximab in combination with carboplatin in stage IV triple-negative breast cancer. J Clin Oncol 30:2615

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carvalho MA, Zecchin KG, Seguin F, Bastos DC, Agostini M, Rangel AL, Graner E et al (2008) Fatty acid synthase inhibition with Orlistat promotes apoptosis and reduces cell growth and lymph node metastasis in a mouse melanoma model. Int J Cancer 123:2557–2565

    CAS  PubMed  Google Scholar 

  • Chang D-Y, Ma W-L, Lu Y-SJT, Management CR (2021) Role of alpelisib in the treatment of PIK3CA-mutated breast cancer: patient selection and clinical perspectives. Ther Clin Risk Manag 17:193–207

    PubMed Central  PubMed  Google Scholar 

  • Chen Y, Ning Y, Bai G, Tong L, Zhang T, Zhou J, Duan W et al (2020b) Design, synthesis, and biological evaluation of IRAK4-targeting PROTACs. ACS Med Chem Lett 12:82–87

    PubMed Central  PubMed  Google Scholar 

  • Chen Y, Huang L, Dong Y, Tao C, Zhang R, Shao H, Shen H (2020a) Effect of AKT1 (p. E17K) hotspot mutation on malignant tumorigenesis and prognosics. Front Cell Dev Biol 8:573599

    PubMed Central  PubMed  Google Scholar 

  • Cheng C-S, Wang Z, Chen J (2014) Targeting FASN in breast cancer and the discovery of promising inhibitors from natural products derived from traditional chinese medicine. Evid Based Complement Altern Med 2014:232496

    Google Scholar 

  • Cheng H, Nair SK, Murray BW (2016) Recent progress on third generation covalent EGFR inhibitors. Bioorg Med Chem Lett 26:1861–1868

    CAS  PubMed  Google Scholar 

  • Chirala SS, Wakil SJJL (2004) Structure and function of animal fatty acid synthase. Lipids 39:1045–1053

    CAS  PubMed  Google Scholar 

  • Chirala SS, Chang H, Matzuk M, Abu-Elheiga L, Mao J, Mahon K, Wakil SJ et al (2003) Fatty acid synthesis is essential in embryonic development: fatty acid synthase null mutants and most of the heterozygotes die in utero. Proc Natl Acad Sci U S A 100:6358–6363

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ciriello G, Gatza M, Beck A, Wilkerson M, Rhie S, Pastore A, Kandoth C et al (2015) TCGA Research Network. Comprehensive molecular portraits of invasive lobular breast cancer. Cell 163:506–519

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cruz-Gordillo P, Honeywell ME, Harper NW, Leete T, Lee MJ (2020) ELP-dependent expression of MCL1 promotes resistance to EGFR inhibition in triple-negative breast cancer cells. Sci Signal. https://doi.org/10.1126/scisignal.abb9820

    Article  PubMed Central  PubMed  Google Scholar 

  • De Bruijn K, Arends L, Hansen B, Leeflang S, Ruiter R, Van Eijck C (2013) Systematic review and meta-analysis of the association between diabetes mellitus and incidence and mortality in breast and colorectal cancer. Br J Surg 100:1421–1429

    PubMed  Google Scholar 

  • Dean EJ, Falchook GS, Patel MR, Brenner AJ, Infante JR, Arkenau H-T, Schmid P et al (2016) Preliminary activity in the first in human study of the first-in-class fatty acid synthase (FASN) inhibitor, TVB-2640. J Clin Oncol 34:2512

    Google Scholar 

  • Denayer E, de Ravel T, Legius EJJOMG (2008) Clinical and molecular aspects of RAS related disorders. J Med Genet 45:695–703

    CAS  PubMed  Google Scholar 

  • Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Narod SA et al (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13:4429–4434

    PubMed  Google Scholar 

  • Di Simone D, Galimberti S, Basolo F, Ciardiello F, Petrini M, Scheper RJAR (1997) c-Ha-ras transfection and expression of MDR-related genes in MCF-10A human breast cell line. Anticancer Res 17:3587–3592

    PubMed  Google Scholar 

  • Dickler MN, Cobleigh MA, Miller KD, Klein PM, Winer EP (2009) Efficacy and safety of erlotinib in patients with locally advanced or metastatic breast cancer. Breast Cancer Res Treat 115:115–121

    CAS  PubMed  Google Scholar 

  • do Nascimento RG, Otoni KM (2020) Histological and molecular classification of breast cancer: what do we know. Mastology 30:e20200024

    Google Scholar 

  • Douillard J-Y, Oliner KS, Siena S, Tabernero J, Burkes R, Barugel M, Jassem JJNEJOM et al (2013) Panitumumab–FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 369:1023–1034

    CAS  PubMed  Google Scholar 

  • Downward J (1998) Mechanisms and consequences of activation of protein kinase B/Akt. Curr Opin Cell Biol 10:262–267

    CAS  PubMed  Google Scholar 

  • Engelman JA, Zejnullahu K, Mitsudomi T, Song Y, Hyland C, Park JO, Christensen J et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:1039–1043

    CAS  PubMed  Google Scholar 

  • Enomoto A, Murakami H, Asai N, Morone N, Watanabe T, Kawai K, Takahashi MJDC et al (2005) Akt/PKB regulates actin organization and cell motility via Girdin/APE. Dev Cell 9:389–402

    CAS  PubMed  Google Scholar 

  • Erber R, Hartmann A (2020) Histology of luminal breast cancer. Breast Care 15:327–336

    PubMed Central  PubMed  Google Scholar 

  • Fako VE, Zhang JT, Liu JY (2014) Mechanism of orlistat hydrolysis by the thioesterase of human fatty acid synthase. ACS Catal 4:3444–3453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Falchook G, Infante J, Arkenau HT, Patel MR, Dean E, Borazanci E, Burris H et al (2021) First-in-human study of the safety, pharmacokinetics, and pharmacodynamics of first-in-class fatty acid synthase inhibitor TVB-2640 alone and with a taxane in advanced tumors. Eclin Med 34:100797

    Google Scholar 

  • FDA Approves First KRAS Inhibitor: Sotorasib (2021) Cancer discovery 11(8):OF4. https://doi.org/10.1158/2159-8290.CDNB2021-0362

  • Fedele CG, Ooms LM, Ho M, Vieusseux J, O’Toole SA, Millar EK, Baglietto L et al (2010) Inositol polyphosphate 4-phosphatase II regulates PI3K/Akt signaling and is lost in human basal-like breast cancers. Proc Natl Acad Sci U S A 107:22231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fenn K, Maurer M, Lee SM, Crew KD, Trivedi MS, Accordino MK, Kalinsky K et al (2020) Phase 1 study of erlotinib and metformin in metastatic triple-negative breast cancer. Clin Breast Cancer 20:80–86

    CAS  PubMed  Google Scholar 

  • Fhu CW, Ali A (2020) Fatty acid synthase: an emerging target in cancer. Molecules 25:3935

    CAS  PubMed Central  PubMed  Google Scholar 

  • Floris A, Mazarei M, Yang X, Robinson AE, Zhou J, Barberis A, Iglesias-Ara A et al (2020) SUMOylation protects FASN against proteasomal degradation in breast cancer cells treated with grape leaf extract. Biomolecules 10(4):529

    CAS  PubMed Central  PubMed  Google Scholar 

  • Foulkes WD, Smith IE, Reis-Filho JS (2010) Triple-negative breast cancer. N Engl J Med 363:1938–1948

    CAS  PubMed  Google Scholar 

  • Fukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K, Douillard J-Y, Rischin D et al (2003) Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non–small-cell lung cancer. J Clin Oncol 21:2237–2246

    CAS  PubMed  Google Scholar 

  • Furuhashi M, Hotamisligil GS (2008) Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov 7:489–503

    CAS  PubMed Central  PubMed  Google Scholar 

  • Furuta E, Pai SK, Zhan R, Bandyopadhyay S, Watabe M, Mo Y-Y, Miura K et al (2008) Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1. Cancer Res 68:1003–1011

    CAS  PubMed  Google Scholar 

  • Gabrielson EW, Pinn ML, Testa JR, Kuhajda FP (2001) Increased fatty acid synthase is a therapeutic target in mesothelioma. Clin Cancer Res 7:153–157

    CAS  PubMed  Google Scholar 

  • Galiè M (2019) RAS as supporting actor in breast cancer. Front Oncol 9:1199

    PubMed Central  PubMed  Google Scholar 

  • Garnock-Jones KP (2016) Necitumumab: first global approval. Drugs 76:283–289

    CAS  PubMed  Google Scholar 

  • Generali D, Leek R, Fox S, Moore J, Taylor C, Chambers P, Harris A (2007) EGFR mutations in exons 18–21 in sporadic breast cancer. Ann Oncol 18:203–205

    CAS  PubMed  Google Scholar 

  • Giaccone G, Gallegos Ruiz M, Le Chevalier T, Thatcher N, Smit E, Rodriguez JA, Soria J-C et al (2006) Erlotinib for frontline treatment of advanced non–small cell lung cancer: a phase II study. Clin Cancer Res 12:6049–6055

    CAS  PubMed  Google Scholar 

  • Giró-Perafita A, Palomeras S, Lum DH, Blancafort A, Viñas G, Oliveras G, Puig T et al (2016) Preclinical evaluation of fatty acid synthase and EGFR inhibition in triple-negative breast cancer dual FASN and EGFR blockade in TNBC. Clin Cancer Res 22:4687–4697

    PubMed  Google Scholar 

  • Giró-Perafita A, Sarrats A, Pérez-Bueno F, Oliveras G, Buxó M, Brunet J, Miquel TP et al (2017) Fatty acid synthase expression and its association with clinico-histopathological features in triple-negative breast cancer. Oncotarget 8:74391

    PubMed Central  PubMed  Google Scholar 

  • Giró-Perafita A, Rabionet M, Planas M, Feliu L, Ciurana J, Ruiz-Martínez S, Puig T (2019) EGCG-derivative G28 shows high efficacy inhibiting the mammosphere-forming capacity of sensitive and resistant TNBC models. Molecules 24:1027

    PubMed Central  PubMed  Google Scholar 

  • Giusti RM, Shastri KA, Cohen MH, Keegan P, Pazdur R (2007) FDA drug approval summary: panitumumab (Vectibix™). Oncologist 12:577–583

    CAS  PubMed  Google Scholar 

  • Greig SL (2016) Osimertinib: first global approval. Drugs 76:263–273

    CAS  PubMed  Google Scholar 

  • Grosser R, Cherkassky L, Chintala N, Adusumilli PS (2019) Combination immunotherapy with CAR T cells and checkpoint blockade for the treatment of solid tumors. Cancer Cell 36:471–482

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gruslova A, McClellan B, Balinda HU, Viswanadhapalli S, Alers V, Sareddy GR, Brenner AJ et al (2021) FASN inhibition as a potential treatment for endocrine-resistant breast cancer. Breast Cancer Res Treat 187:375–386

    CAS  PubMed  Google Scholar 

  • Guan Z, Xu B, DeSilvio ML, Shen Z, Arpornwirat W, Tong Z, Makhson A et al (2013) Randomized trial of lapatinib versus placebo added to paclitaxel in the treatment of human epidermal growth factor receptor 2–overexpressing metastatic breast cancer. J Clin Oncol 31:1947–1953

    CAS  PubMed  Google Scholar 

  • Guedj M, Marisa L, de Reynies A, Orsetti B, Schiappa R, Bibeau F, Longy M, de Thé H, Theillet C et al (2011) A refined molecular taxonomy of breast cancer. Oncogene 31:10

    Google Scholar 

  • Guerin M, Rezai K, Isambert N, Campone M, Autret A, Pakradouni J, Bertucci FJEJOC et al (2017) PIKHER2: a phase IB study evaluating buparlisib in combination with lapatinib in trastuzumab-resistant HER2-positive advanced breast cancer. Eur J Cancer 86:28–36

    CAS  PubMed  Google Scholar 

  • Gulluni F, De Santis MC, Margaria JP, Martini M, Hirsch E (2019) Class II PI3K functions in cell biology and disease. Trends Cell Biol 29:339–359

    CAS  PubMed  Google Scholar 

  • Gusterson B (2009) Do ‘basal-like’ breast cancers really exist? Nat Rev Cancer 9:128–134

    CAS  PubMed  Google Scholar 

  • Gyamfi J, Lee Y-H, Eom M, Choi JJSR (2018) Interleukin-6/STAT3 signalling regulates adipocyte induced epithelial-mesenchymal transition in breast cancer cells. Sci Rep 8:1–13

    CAS  Google Scholar 

  • Hao J, Zhang Y, Yan X, Yan F, Sun Y, Zeng J, Egilmez NK et al (2018) Circulating adipose fatty acid binding protein is a new link underlying obesity-associated breast/mammary tumor development. Cell Metab 28:689–705

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harbeck N, Thomssen C, Gnant M (2013) St. Gallen 2013: brief preliminary summary of the consensus discussion. Breast Care 8:102–109

    PubMed Central  PubMed  Google Scholar 

  • Hardwicke MA, Rendina AR, Williams SP, Moore ML, Wang L, Krueger JA, Parrish CA et al (2014) A human fatty acid synthase inhibitor binds beta-ketoacyl reductase in the keto-substrate site. Nat Chem Biol 10:774–779

    CAS  PubMed  Google Scholar 

  • Helena AY, Pao W (2013) Targeted therapies: Afatinib—new therapy option for EGFR-mutant lung cancer. Nat Rev Clin Oncol 10:551

    Google Scholar 

  • Henry WS, Laszewski T, Tsang T, Beca F, Beck AH, McAllister SS, Toker A (2017) Aspirin suppresses growth in PI3K-mutant breast cancer by activating AMPK and inhibiting mTORC1 signaling aspirin and PI3K in breast cancer. Cancer Res 77:790–801

    CAS  PubMed  Google Scholar 

  • Héron-Milhavet L, Franckhauser C, Rana V, Berthenet C, Fisher D, Hemmings BA, Lamb NJ et al (2006) Only Akt1 is required for proliferation, while Akt2 promotes cell cycle exit through p21 binding. Mol Cell Biol 26:8267–8280

    PubMed Central  PubMed  Google Scholar 

  • Horton JD, Shimomura I, Brown MS, Hammer RE, Goldstein JL, Shimano H (1998) Activation of cholesterol synthesis in preference to fatty acid synthesis in liver and adipose tissue of transgenic mice overproducing sterol regulatory element-binding protein-2. J Clin Invest 101:2331–2339

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hu X, Li J, Fu M, Zhao X, Wang W (2021) The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther 6:402

    PubMed Central  PubMed  Google Scholar 

  • Hu L, Liang S, Chen H, Lv T, Wu J, Chen D, Xiao ZJ et al (2017) ΔNp63α is a common inhibitory target in oncogenic PI3K/Ras/Her2-induced cell motility and tumor metastasis. Proc Natl Acad Sci U S A 114:E3964-e3973

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang C-H, Mandelker D, Schmidt-Kittler O, Samuels Y, Velculescu VE, Kinzler KW, Amzel LM et al (2007) The structure of a human p110α/p85α complex elucidates the effects of oncogenic PI3Kα mutations. Science 318:1744–1748

    CAS  PubMed  Google Scholar 

  • Hudgins LC, Hellerstein M, Seidman C, Neese R, Diakun J, Hirsch JJTJOCI (1996) Human fatty acid synthesis is stimulated by a eucaloric low fat, high carbohydrate diet. J Clin Invest 97:2081–2091

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hurwitz HI, Uppal N, Wagner SA, Bendell JC, Beck JT, Wade SM III, Wainberg ZAJJOCO et al (2015) Randomized, double-blind, phase II study of ruxolitinib or placebo in combination with capecitabine in patients with metastatic pancreatic cancer for whom therapy with gemcitabine has failed. J Clin Oncol 33:4039

    CAS  PubMed Central  PubMed  Google Scholar 

  • Igelmann S, Neubauer HA, Ferbeyre GJC (2019) STAT3 and STAT5 activation in solid cancers. Cancers (basel) 11:1428

    CAS  PubMed  Google Scholar 

  • Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl KJMC (2010) STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell 39:493–506

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ivanov VN, Bhoumik A, Krasilnikov M, Raz R, Owen-Schaub LB, Levy D, Ronai ZEJMC et al (2001) Cooperation between STAT3 and c-jun suppresses Fas transcription. Mol Cell 7:517–528

    CAS  PubMed  Google Scholar 

  • Janes PW, Daly RJ, Sutherland RJO (1994) Activation of the Ras signalling pathway in human breast cancer cells overexpressing erbB-2. Oncogene 9:3601–3608

    CAS  PubMed  Google Scholar 

  • Janjigian YY, Smit EF, Groen HJ, Horn L, Gettinger S, Camidge DR, Chand VK et al (2014) Dual Inhibition of EGFR with afatinib and cetuximab in kinase inhibitor-resistant EGFR-mutant lung cancer with and without T790M Mutationsdual EGFR inhibition in TKI-resistant. EGFR-Mutant NSCLC Cancer Discov 4:1036–1045

    CAS  Google Scholar 

  • Jean S, Kiger AA (2014) Classes of phosphoinositide 3-kinases at a glance. J Cell Sci 127:923–928

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jia Y, Yun C-H, Park E, Ercan D, Manuia M, Juarez J, Zhang H et al (2016) Overcoming EGFR (T790M) and EGFR (C797S) resistance with mutant-selective allosteric inhibitors. Nature 534:129–132

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang W, Xing X-L, Zhang C, Yi L, Xu W, Ou J, Zhu N (2021) MET and FASN as prognostic biomarkers of triple-negative breast cancer: a systematic evidence landscape of clinical study. Front Oncol 11:604801

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jin W, Wu L, Liang K, Liu B, Lu Y, Fan Z (2003) Roles of the PI-3K and MEK pathways in Ras-mediated chemoresistance in breast cancer cells. Br J Cancer 89:185–191

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones SF, Infante JR (2015) Molecular pathways: fatty acid synthase. Clin Cancer Res 21:5434–5438

    CAS  PubMed  Google Scholar 

  • Juric D, Janku F, Rodón J, Burris HA, Mayer IA, Schuler M, Baselga JJJO et al (2019) Alpelisib plus fulvestrant in PIK3CA-altered and PIK3CA-wild-type estrogen receptor–positive advanced breast cancer: a phase 1b clinical trial. JAMA Oncol 5:e184475–e184475

    PubMed  Google Scholar 

  • Kapadia B, Nanaji NM, Bhalla K, Bhandary B, Lapidus R, Beheshti A, Gartenhaus RB et al (2018) Fatty acid synthase induced S6Kinase facilitates USP11-eIF4B complex formation for sustained oncogenic translation in DLBCL. Nat Commun 9:1–15

    CAS  Google Scholar 

  • Keeton AB, Salter EA, Piazza GA (2017) The RAS-effector interaction as a drug target. Cancer Res 77:221–226

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kodaz H, Kostek O, Hacioglu MB, Erdogan B, Kodaz CE, Hacibekiroglu I, Cicin IJBC et al (2017) Frequency of RAS mutations (KRAS, NRAS, HRAS) in human solid cancer. EJMO 7:1–7

    Google Scholar 

  • Kridel SJ, Axelrod F, Rozenkrantz N, Smith JW (2004) Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Res 64:2070–2075

    CAS  PubMed  Google Scholar 

  • Kwan AK, Piazza GA, Keeton AB, Leite CA (2022) The path to the clinic: a comprehensive review on direct KRAS(G12C) inhibitors. J Exp Clin Cancer Res 41:27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Layman RM, Ruppert AS, Lynn M, Mrozek E, Ramaswamy B, Lustberg MB, Shapiro CL et al (2013) Severe and prolonged lymphopenia observed in patients treated with bendamustine and erlotinib for metastatic triple negative breast cancer. Cancer Chemother Pharmacol 71:1183–1190

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee JS, Sul JY, Park JB, Lee MS, Cha EY, Song IS, Chang ES et al (2013) Fatty acid synthase inhibition by amentoflavone suppresses HER2/neu (erbB2) oncogene in SKBR3 human breast cancer cells. Phytother Res 27:713–720

    CAS  PubMed  Google Scholar 

  • Lee H-J, Zhuang G, Cao Y, Du P, Kim H-J, Settleman JJCC (2014) Drug resistance via feedback activation of Stat3 in oncogene-addicted cancer cells. Cancer Cell 26:207–221

    CAS  PubMed  Google Scholar 

  • Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA (2011) Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Investig 121:2750–2767

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lehmann BD, Jovanović B, Chen X, Estrada MV, Johnson KN, Shyr Y, Pietenpol JA et al (2016) Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS ONE 11:e0157368

    PubMed Central  PubMed  Google Scholar 

  • Leroy C, Ramos P, Cornille K, Bonenfant D, Fritsch C, Voshol H, Bentires-Alj M (2016) Activation of IGF1R/p110β/AKT/mTOR confers resistance to α-specific PI3K inhibition. Breast Cancer Res 18:1–13

    Google Scholar 

  • Li B, Liu H, Espinoza I, Lupu R (2008) Inhibition of fatty acid synthase promotes apoptosis in breast cancer cells via redox and energy stress. Cancer Res 68:4364–4364

    Google Scholar 

  • Li HY, Liang JL, Kuo YL, Lee HH, Calkins MJ, Chang HT, Ger LP et al (2017) miR-105/93-3p promotes chemoresistance and circulating miR-105/93-3p acts as a diagnostic biomarker for triple negative breast cancer. Breast Cancer Res 19:1–14

    Google Scholar 

  • Li Q, Guo Q, Wang S, Wan S, Li Z, Zhang J, Wu X (2022) Design and synthesis of proteolysis targeting chimeras (PROTACs) as an EGFR degrader based on CO-1686. Eur J Med Chem 238:114455

    CAS  PubMed  Google Scholar 

  • Liang J, Zubovitz J, Petrocelli T, Kotchetkov R, Connor MK, Han K, Beniston R et al (2002) PKB/Akt phosphorylates p27, impairs nuclear import of p27 and opposes p27-mediated G1 arrest. Nat Med 8:1153–1160

    CAS  PubMed  Google Scholar 

  • Lin P-H, Tseng L-M, Lee Y-H, Chen S-T, Yeh D-C, Dai M-S, Chang S et al (2022) Neoadjuvant afatinib with paclitaxel for triple-negative breast cancer and the molecular characteristics in responders and non-responders. J Formos Med Assoc 121:2538–2547

    CAS  PubMed  Google Scholar 

  • Liu H, Liu Y, Zhang J-T (2008) A new mechanism of drug resistance in breast cancer cells: fatty acid synthase overexpression-mediated palmitate overproduction. Mol Cancer Ther 7:263–270

    PubMed  Google Scholar 

  • Liu H, Liu J-Y, Wu X, Zhang J-T (2010) Biochemistry, molecular biology, and pharmacology of fatty acid synthase, an emerging therapeutic target and diagnosis/prognosis marker. Int J Biochem Mol Biol 1:69

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Zhou Y, Huang KH, Li Y, Fang X, An L, Zhang J et al (2019) EGFR-specific CAR-T cells trigger cell lysis in EGFR-positive TNBC. Aging (albany NY) 11:11054–11072

    CAS  PubMed  Google Scholar 

  • Liu Y, Zeng H, Wang K, Li Y, Tian P, Li W (2020) Acquired BRAF N581S mutation mediated resistance to gefitinib and responded to dabrafenib plus trametinib. Lung Cancer 146:355–357

    PubMed  Google Scholar 

  • Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Haluska FG et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non–small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    CAS  PubMed  Google Scholar 

  • Machiels J-P, Subramanian S, Ruzsa A, Repassy G, Lifirenko I, Flygare A, Clement PMJ et al (2011) Zalutumumab plus best supportive care versus best supportive care alone in patients with recurrent or metastatic squamous-cell carcinoma of the head and neck after failure of platinum-based chemotherapy: an open-label, randomised phase 3 trial. Lancet Oncol 12:333–343

    CAS  PubMed  Google Scholar 

  • Mashima T, Seimiya H, Tsuruo TJBJOC (2009) De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Br J Cancer 100:1369–1372

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuda N, Wang X, Lim B, Krishnamurthy S, Alvarez RH, Willey JS, Hu J et al (2018) Safety and efficacy of panitumumab plus neoadjuvant chemotherapy in patients with primary HER2-negative inflammatory breast cancer. JAMA Oncol 4:1207–1213

    PubMed Central  PubMed  Google Scholar 

  • Maximiano S, Magalhães P, Guerreiro MP, Morgado M (2016) Trastuzumab in the treatment of breast cancer. BioDrugs: Clin Immunotherap, Biopharm Gene Therapy 30(2), 75–86. https://doi.org/10.1007/s40259-016-0162-9

    Article  CAS  Google Scholar 

  • McKenna M, McGarrigle S, Pidgeon GP (2018) The next generation of PI3K-Akt-mTOR pathway inhibitors in breast cancer cohorts. Biochim Biophys Acta 1870:185–197

    Google Scholar 

  • Menendez JA, Lupu R (2017) Fatty acid synthase (FASN) as a therapeutic target in breast cancer. Expert Opin Ther Tar 21:1001–1016

    CAS  Google Scholar 

  • Menendez JA, Papadimitropoulou A, Vander Steen T, Cuyàs E, Oza-Gajera BP, Verdura S, Lupu R et al (2021) Fatty acid synthase confers tamoxifen resistance to ER+/HER2+ breast cancer. Cancers 13:1132

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meraz MA, White JM, Sheehan KC, Bach EA, Rodig SJ, Dighe AS, Campbell DJC et al (1996) Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK–STAT signaling pathway. Cell 84:431–442

    CAS  PubMed  Google Scholar 

  • Miao H, Verkooijen H, Chia K-S, Bouchardy Magnin C, Pukkala E, Larønningen S, Hartman M et al (2011) Incidence and outcome of male breast cancer: an international population-based study. J Clin Oncol 29:4381–4386

    PubMed  Google Scholar 

  • Miliotou AN, Papadopoulou LC (2018) CAR T-cell therapy: a new era in cancer immunotherapy. Curr Pharm Biotechnol 19:5–18

    PubMed  Google Scholar 

  • Mirza AM, Kohn AD, Roth RA, McMahon M (2000) Oncogenic transformation of cells by a conditionally active form of the protein kinase Akt/PKB. Cell Growth Differ 11:279–292

    CAS  PubMed  Google Scholar 

  • Mohite V, Pratinidhi A, Mohite R (2015) Dietary factors and breast cancer: a case control study from rural India. Asian J Med Sci 6:55–60

    Google Scholar 

  • Mukohara T (2015) PI3K mutations in breast cancer: prognostic and therapeutic implications. Breast Cancer Targets Ther. 7:111

    Google Scholar 

  • Murtuza A, Bulbul A, Shen JP, Keshavarzian P, Woodward BD, Lopez-Diaz FJ, Husain H et al (2019) Novel third-generation EGFR tyrosine kinase inhibitors and strategies to overcome therapeutic resistance in lung cancer. Cancer Res 79:689–698

    CAS  PubMed  Google Scholar 

  • Nagrani R, Mhatre S, Boffetta P et al (2016) Understanding rural–urban differences in risk factors for breast cancer in an Indian population. Cancer Causes Control 27, 199–208. https://doi.org/10.1007/s10552-015-0697-y

    Article  PubMed  Google Scholar 

  • Nakai K, Hung MC, Yamaguchi H (2016) A perspective on anti-EGFR therapies targeting triple-negative breast cancer. Am J Cancer Res 6(8):1609–1623

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakajima H, Ishikawa Y, Furuya M, Sano T, Ohno Y, Horiguchi J, Oyama T (2014) Protein expression, gene amplification, and mutational analysis of EGFR in triple-negative breast cancer. Breast Cancer 21:66–74

    PubMed  Google Scholar 

  • Nakajima EC, Drezner N, Li X, Mishra-Kalyani PS, Liu Y, Zhao H, Singh H et al (2022) FDA approval summary: sotorasib for KRAS G12C-mutated metastatic NSCLC. Clin Cancer Res 28:1482–1486

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nedeljković M, Damjanović A (2019) Mechanisms of chemotherapy resistance in triple-negative breast cancer—how we can rise to the challenge. Cells 8:957

    PubMed Central  PubMed  Google Scholar 

  • Nguyen KS, Kobayashi S, Costa DB (2009) Acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancers dependent on the epidermal growth factor receptor pathway. Clin Lung Cancer 10:281–289

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nidai Ozes O, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DBJN (1999) NF-κB activation by tumour necrosis factor requires the Akt serine–threonine kinase. Nature 401:82–85

    Google Scholar 

  • Nitulescu GM, Van De Venter M, Nitulescu G, Ungurianu A, Juzenas P, Peng Q, Margina D et al (2018) The Akt pathway in oncology therapy and beyond (Review). Int J Oncol. https://doi.org/10.3892/ijo.2018.4597

    Article  PubMed Central  PubMed  Google Scholar 

  • Niu G, Wright KL, Ma Y, Wright GM, Huang M, Irby R, Biology C et al (2005) Role of Stat3 in regulating p53 expression and function. Mol Cell Biol 25:7432–7440

    CAS  PubMed Central  PubMed  Google Scholar 

  • Odero-Marah V, Hawsawi O, Henderson V, Sweeney J (2018) Epithelial-mesenchymal transition (EMT) and prostate cancer. Adv Exp Med Bio 1095:101–110. https://pubmed.ncbi.nlm.nih.gov/30229551/

  • Ogiso H, Ishitani R, Nureki O, Fukai S, Yamanaka M, Kim J-H, Shirouzu M et al (2002) Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell 110:775–787

    CAS  PubMed  Google Scholar 

  • Oida K, Matsuda A, Jung K, Xia Y, Jang H, Amagai Y, Jensen-Jarolim E et al (2014) Nuclear factor-ĸB plays a critical role in both intrinsic and acquired resistance against endocrine therapy in human breast cancer cells. Sci Rep 4:4057

    PubMed Central  PubMed  Google Scholar 

  • Olayioye MA, Neve RM, Lane HA, Hynes NE (2000) The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 19:3159–3167

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oshiro N, Takahashi R, Yoshino K-I, Tanimura K, Nakashima A, Eguchi S, Avruch J et al (2007) The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J Biol Chem 282:20329–20339

    CAS  PubMed  Google Scholar 

  • Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, Varmus H et al (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2:e73

    PubMed Central  PubMed  Google Scholar 

  • Park B-K, Zeng X, Glazer RIJCR (2001) Akt1 induces extracellular matrix invasion and matrix metalloproteinase-2 activity in mouse mammary epithelial cells. Cancer Res 61:7647–7653

    CAS  PubMed  Google Scholar 

  • Park JH, Han HS, Lim SD, Kim WY, Park KS, Yoo YB, Kim W-S et al (2022) Fatty acid synthetase expression in triple-negative breast cancer. J Pathol Transl Med 56:73–80

    PubMed Central  PubMed  Google Scholar 

  • Perou C, Sorlie T, Eisen M, Van De Rijn M, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    CAS  PubMed  Google Scholar 

  • Petrocelli T, Slingerland JM (2001) PTEN deficiency: a role in mammary carcinogenesis. Breast Cancer Res 3:1–5

    Google Scholar 

  • Pistilli B, Pluard T, Urruticoechea A, Farci D, Kong A, Bachelot T et al (2018) Phase II study of buparlisib (BKM120) and trastuzumab in patients with HER2+ locally advanced or metastatic breast cancer resistant to trastuzumab-based therapy. Breast Cancer Res Trea 168:357–364

    CAS  Google Scholar 

  • Pizer ES, Jackisch C, Wood FD, Pasternack GR, Davidson NE, Kuhajda FP (1996) Inhibition of fatty acid synthesis induces programmed cell death in human breast cancer cells. Cancer Res 56:2745–2747

    CAS  PubMed  Google Scholar 

  • Qu X, Liu H, Song X, Sun N, Zhong H, Qiu X, Jiang B et al (2021) Effective degradation of EGFRL858R+ T790M mutant proteins by CRBN-based PROTACs through both proteosome and autophagy/lysosome degradation systems. Eur J Med Chem 218:113328

    CAS  PubMed  Google Scholar 

  • Quilliam LA, Khosravi-Far R, Huff SY, Der CJJB (1995) Guanine nucleotide exchange factors: activators of the Ras superfamily of proteins. BioEssays 17:395–404

    CAS  PubMed  Google Scholar 

  • Ravacci GR, Brentani MM, Tortelli TC, Torrinhas RSM, Santos JR, Logullo AF, Waitzberg DL (2015) Docosahexaenoic acid modulates a HER2-associated lipogenic phenotype, induces apoptosis, and increases trastuzumab action in HER2-overexpressing breast carcinoma cells. BioMed Res Int 2015:1–13

    Google Scholar 

  • Ricoult SJ, Yecies JL, Ben-Sahra I, Manning BDJO (2016) Oncogenic PI3K and K-Ras stimulate de novo lipid synthesis through mTORC1 and SREBP. Oncogene 35(10):1250–1260

    CAS  PubMed  Google Scholar 

  • Riese DJ, Stern DF (1998) Specificity within the EGF family/ErbB receptor family signaling network. BioEssays 20:41–48

    PubMed  Google Scholar 

  • Robey RW, Pluchino KM, Hall MD, Fojo AT, Bates SE, Gottesman MM (2018) Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer 18:452–464

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, Sanchez JM et al (2012) Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a multicentre, open-label, randomized 3 trial. Lancet Oncol 13:239–246

    CAS  PubMed  Google Scholar 

  • Ross SJ, Revenko AS, Hanson LL, Ellston R, Staniszewska A, Whalley N, Buckett LKJSTM et al (2017) Targeting KRAS-dependent tumors with AZD4785, a high-affinity therapeutic antisense oligonucleotide inhibitor of KRAS. Sci Transl Med 9:eaal5253

    PubMed  Google Scholar 

  • Sadowski MC, Pouwer RH, Gunter JH, Lubik AA, Quinn RJ, Nelson CC (2014) The fatty acid synthase inhibitor triclosan: repurposing an anti-microbial agent for targeting prostate cancer. Oncotarget 5:9362

    PubMed Central  PubMed  Google Scholar 

  • Sardesai SD, Thomas A, Gallagher C, Lynce F, Ottaviano YL, Ballinger TJ, Althouse SK et al (2021) Inhibiting fatty acid synthase with omeprazole to improve efficacy of neoadjuvant chemotherapy in patients with operable TNBC inhibiting fatty acid synthase in operable TNBC. Clin Cancer Res 27:5810–5817

    CAS  PubMed  Google Scholar 

  • Secq V, Villeret J, Fina F, Carmassi M, Carcopino X, Garcia S, Charpin C et al (2014) Triple negative breast carcinoma EGFR amplification is not associated with EGFR, Kras or ALK mutations. Br J Cancer 110:1045–1052

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimano H, Horton JD, Hammer RE, Shimomura I, Brown MS, Goldstein JL (1996) Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a. J Clin Invest 98:1575–1584

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimokawa T, Kumar M, Lane M (2002) Effect of fatty acid synthase inhibitor on food intake and expression of hypothalamic neuropeptides. Proc Natl Acad Sci U S A 99:66–71

    CAS  PubMed  Google Scholar 

  • Shiragami R, Murata S, Kosugi C, Tezuka T, Yamazaki M, Hirano A, Koda K et al (2013) Enhanced antitumor activity of cerulenin combined with oxaliplatin in human colon cancer cells. Int J Oncol 43:431–438

    CAS  PubMed  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66:7–30

    PubMed  Google Scholar 

  • Sigismund S, Avanzato D, Lanzetti L (2018) Emerging functions of the EGFR in cancer. Mol Oncol 12:3–20

    PubMed  Google Scholar 

  • Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9:59–71

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sternby B, Hartmann D, Borgstroöm B, Nilsson Å (2002) Degree of in vivo inhibition of human gastric and pancreatic lipases by Orlistat (Tetrahydrolipstatin, THL) in the stomach and small intestine. Clin Nutr 21:395–402

    CAS  PubMed  Google Scholar 

  • Steward L, Conant L, Gao F, Margenthaler JA (2014) Predictive factors and patterns of recurrence in patients with triple negative breast cancer. Ann Surg Oncol 21:2165–2171

    PubMed  Google Scholar 

  • Suburu J, Shi L, Wu J, Wang S, Samuel M, Thomas MJ et al (2014) Fatty acid synthase is required for mammary gland development and milk production during lactation. Am J Physiol Endocrinol Metab 306:E1132–E1143

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun Y-S, Zhao Z, Yang Z-N, Xu F, Lu H-J, Zhu Z-Y, Zhu H-P et al (2017) Risk factors and preventions of breast cancer. Int J Biol Sci 13(11):1387

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249

    PubMed  Google Scholar 

  • Suresh S, Huard S, Brisson A, Némati F, Poulard C, Ye M, Dubois T et al (2021) PRMT1 regulates EGFR and Wnt signaling pathways and is a promising target for combinatorial treatment of breast cancer. bioRxiv 2021:397

    Google Scholar 

  • Takeda M, Nakagawa K (2019) First- and second-generation EGFR-TKIs are all replaced to osimertinib in chemo-naive egfr mutation-positive non-small cell lung cancer? Int J Mol Sci 20:146

    PubMed Central  PubMed  Google Scholar 

  • Tao B-B, He H, Shi X-H, Wang C-L, Li W-Q, Li B, Luo C et al (2013) Up-regulation of USP2a and FASN in gliomas correlates strongly with glioma grade. J Clin Neurosci 20:717–720

    CAS  PubMed  Google Scholar 

  • Tao Z, Shi A, Lu C, Song T, Zhang Z, Zhao J (2015) Breast cancer: epidemiology and etiology. Cell Biochem Biophys 72:333–338

    CAS  PubMed  Google Scholar 

  • Teng YH-F, Tan W-J, Thike A-A, Cheok P-Y, Tse GM-K, Wong N-S, Tan P-H et al (2011) Mutations in the epidermal growth factor receptor (EGFR) gene in triple negative breast cancer: possible implications for targeted therapy. Breast Cancer Res 13:1–9

    Google Scholar 

  • Threadgill DW, Dlugosz AA, Hansen LA, Tennenbaum T, Lichti U, Yee D, Harris RC et al (1995) Targeted disruption of mouse EGF receptor: effect of genetic background on mutant phenotype. Science 269:230–234

    CAS  PubMed  Google Scholar 

  • Tibshirani R, Parker J, Hastie T, Marron J, Nobel A, Deng S, Demeter J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100:8418–8423

    PubMed Central  PubMed  Google Scholar 

  • Tiu-Lim JWW, Yin J, Xiu J, Korn WM, Lenz H-J, In GK, Xia B et al (2021) Molecular characterization of the Ras-MAPK pathway in metastatic breast cancer: Wolters Kluwer health. J Clin Oncol 39:1034

    Google Scholar 

  • To KK, Poon DC, Wei Y, Wang F, Lin G, Fu L (2015) Pelitinib (EKB-569) targets the up-regulation of ABCB 1 and ABCG 2 induced by hyperthermia to eradicate lung cancer. Br J Pharmacol 172:4089–4106

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tolaney S, Burris H, Gartner E, Mayer IA, Saura C, Maurer M et al (2015) Phase I/II study of pilaralisib (SAR245408) in combination with trastuzumab or trastuzumab plus paclitaxel in trastuzumab-refractory HER2-positive metastatic breast cancer. Breast Cancer Res Treat 149:151–161

    CAS  PubMed  Google Scholar 

  • Trédan O, Campone M, Jassem J, Vyzula R, Coudert B, Pacilio C, Mukhopadhyay P et al (2015) Ixabepilone alone or with cetuximab as first-line treatment for advanced/metastatic triple-negative breast cancer. Clin Breast Cancer 15:8–15

    PubMed  Google Scholar 

  • Uramoto H, Shimokawa H, Nagata Y, Ono K, Hanagiri T (2010) EGFR-activating mutations are not present in breast tumors of Japanese patients. Anticancer Res 30:4219–4222

    PubMed  Google Scholar 

  • Vance D, Goldberg I, Mitsuhashi O, Bloch K (1972) Inhibition of fatty acid synthetases by the antibiotic cerulenin. Biochem Biophys Res Commun 48:649–656

    CAS  PubMed  Google Scholar 

  • Vázquez MJ, Leavens W, Liu R, Rodríguez B, Read M, Richards S, Domínguez JM et al (2008) Discovery of GSK837149A, an inhibitor of human fatty acid synthase targeting the β-ketoacyl reductase reaction. FEBS J 275:1556–1567

    PubMed  Google Scholar 

  • Ventura R, Mordec K, Waszczuk J, Wang Z, Lai J, Fridlib M, Heuer TS et al (2015) Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. EBioMedicine 2:808–824

    PubMed Central  PubMed  Google Scholar 

  • Vijayalakshmi K, Babu P (2019) Molecular evolutionary studies of epidermal growth factors using multiple sequence alignment methods. Drug Invention Today 12:1877–1881

    Google Scholar 

  • von Minckwitz G, Jonat W, Fasching P (2005) Gefitinib in taxane-pretreated metastatic breast cancer. A multicenter phase II study on gefitinib in taxane-and anthracycline-pretreated metastatic breast cancer. Breast Cancer Res Treat 89:165–172

    CAS  Google Scholar 

  • Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S, Coppola DJNM et al (2004) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10:48–54

    PubMed  Google Scholar 

  • Wang Q, Chen X, Wang Z (2015) Dimerization drives EGFR endocytosis through two sets of compatible endocytic codes. J Cell Sci 128:935–950

    CAS  PubMed  Google Scholar 

  • Wang J, Zhang X, Shi J, Cao P, Wan M, Zhang Q, Xu J et al (2016) Fatty acid synthase is a primary target of MiR-15a and MiR-16-1 in breast cancer. Oncotarget 7:78566

    PubMed Central  PubMed  Google Scholar 

  • Wang S, Song Y, Liu D (2017b) EAI045: The fourth-generation EGFR inhibitor overcoming T790M and C797S resistance. Cancer Lett 385:51–54

    CAS  PubMed  Google Scholar 

  • Wang S, Liu JC, Ju Y, Pellecchia G, Voisin V, Wang D-Y, Zacksenhaus EJJI et al (2017a) microRNA-143/145 loss induces Ras signaling to promote aggressive Pten-deficient basal-like breast cancer. JCI Insight 2:15

    Google Scholar 

  • Weber LW, Boll M, Stampfl A (2004) Maintaining cholesterol homeostasis: sterol regulatory element-binding proteins. World J Gastroenterol 10:3081–3087

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weber F, Fukino K, Sawada T, Williams N, Sweet K, Brena R, Villalona-Calero M et al (2005) Variability in organ-specific EGFR mutational spectra in tumour epithelium and stroma may be the biological basis for differential responses to tyrosine kinase inhibitors. Br J Cancer 92:1922–1926

    CAS  PubMed Central  PubMed  Google Scholar 

  • Widschwendter A, Tonko-Geymayer S, Welte T, Daxenbichler GN, Marth C, Doppler WJC (2002) Prognostic significance of signal transducer and activator of transcription 1 activation in breast cancer. Clin Cancer Res 8:3065–3074

    CAS  PubMed  Google Scholar 

  • Williams CB, Phelps-Polirer K, Dingle IP, Williams CJ, Rhett MJ, Eblen ST, Yeh ES et al (2020) HUNK phosphorylates EGFR to regulate breast cancer metastasis. Oncogene 39:1112–1124

    CAS  PubMed  Google Scholar 

  • Wilson N, Ironside A, Diana A, Oikonomidou O (2021) Lobular breast cancer: a review. Front Oncol 10:591399

    PubMed Central  PubMed  Google Scholar 

  • Wong S-F (2005) Cetuximab: an epidermal growth factor receptor monoclonal antibody for the treatment of colorectal cancer. Clin Ther 27:684–694

    CAS  PubMed  Google Scholar 

  • Xia W, Chen J-S, Zhou X, Sun P-R, Lee D-F, Liao Y, Hung M-CJCCR et al (2004) Phosphorylation/cytoplasmic localization of p21Cip1/WAF1 is associated with HER2/neu overexpression and provides a novel combination predictor for poor prognosis in breast cancer patients. Clin Cancer Res 10:3815–3824

    CAS  PubMed  Google Scholar 

  • Xuhong J-C, Qi X-W, Zhang Y, Jiang J (2019) Mechanism, safety and efficacy of three tyrosine kinase inhibitors lapatinib, neratinib and pyrotinib in HER2-positive breast cancer. Am J Cancer Res 9:2103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yaeger R, Corcoran RBJCD (2019) Targeting alterations in the RAF–MEK pathway targeting RAF and MEK alterations. Cancer Discov 9:329–341

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang Y-A, Morin PJ, Han WF, Chen T, Bornman DM, Gabrielson EW, Pizer ES (2003) Regulation of fatty acid synthase expression in breast cancer by sterol regulatory element binding protein-1c. Exp Cell Res 282:132–137

    CAS  PubMed  Google Scholar 

  • Yarden Y (2001) The EGFR family and its ligands in human cancer: signalling mechanisms and therapeutic opportunities. Eur J Cancer 37:3–8

    Google Scholar 

  • Yersal O, Barutca S (2014) Biological subtypes of breast cancer: prognostic and therapeutic implications. World J Clin Oncol 5:412–424

    PubMed Central  PubMed  Google Scholar 

  • Yi J, Zhu J, Wu J, Thompson CB, Jiang X (2020) Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci U S A 117:31189–31197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yoon S, Lee M-Y, Park SW, Moon J-S, Koh Y-K, Ahn Y-H, Kim K-SJJOBC et al (2007) Up-regulation of acetyl-CoA carboxylase α and fatty acid synthase by human epidermal growth factor receptor 2 at the translational level in breast cancer cells. J Biol Chem 282:26122–26131

    CAS  PubMed  Google Scholar 

  • Yu H, Jove RJNRC (2004) The STATs of cancer—new molecular targets come of age. Oncotarget 4:97–105

    CAS  Google Scholar 

  • Zaytseva YY, Rychahou PG, Le A-T, Scott TL, Flight RM, Kim JT, Morris AJ et al (2018) Preclinical evaluation of novel fatty acid synthase inhibitors in primary colorectal cancer cells and a patient-derived xenograft model of colorectal cancer. Oncotarget 9:24787

    PubMed Central  PubMed  Google Scholar 

  • Zeichner SB, Terawaki H, Gogineni K (2016) A review of systemic treatment in metastatic triple-negative breast cancer. Breast Cancer Basic Clin Res 10:32783

    Google Scholar 

  • Zeng X, Qu X, Zhao C, Xu L, Hou K, Liu Y, Zhang L et al (2019) FEN1 mediates miR-200a methylation and promotes breast cancer cell growth via MET and EGFR signaling. FASEB J 33:10717–10730

    CAS  PubMed  Google Scholar 

  • Zeng J, Sauter ER, Li B (2020) FABP4: a new player in obesity-associated breast cancer. Trends Mol Med 26:437–440

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhan L, Xiang B, Muthuswamy SK (2006) Controlled activation of ErbB1/ErbB2 heterodimers promote invasion of three-dimensional organized epithelia in an ErbB1-dependent manner: implications for progression of ErbB2-overexpressing tumors. Cancer Res 66:5201–5208

    CAS  PubMed  Google Scholar 

  • Zhang H, Rakha EA, Ball GR, Spiteri I, Aleskandarany M, Paish EC, Green AR et al (2010) The proteins FABP7 and OATP2 are associated with the basal phenotype and patient outcome in human breast cancer. Breast Cancer Res Treat 12:41–51

    Google Scholar 

  • Zhao Y, Ma J, Fan Y, Wang Z, Tian R, Ji W, Niu R et al (2018) TGF-β transactivates EGFR and facilitates breast cancer migration and invasion through canonical Smad3 and ERK/Sp1 signaling pathways. Mol Oncol 12:305–321

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao L, Qiu T, Jiang D, Xu H, Zou L, Yang Q, Chen C, Jiao B (2020) SGCE promotes breast cancer stem cells by stabilizing EGFR. Adv Sci 7(14):1903700

  • Zheng Z-Y, Tian L, Bu W, Fan C, Gao X, Wang H, Edwards DJCR et al (2015) Wild-type N-Ras, overexpressed in basal-like breast cancer, promotes tumor formation by inducing IL-8 secretion via JAK2 activation. Cell Rep 12:511–524

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhong W-Z, Zhou Q, Wu Y-L (2017) The resistance mechanisms and treatment strategies for EGFR-mutant advanced non-small-cell lung cancer. Oncotarget 8:71358

    PubMed Central  PubMed  Google Scholar 

  • Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung M-CJN (2001) HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 3:973–982

    CAS  PubMed  Google Scholar 

  • Zhou L, Jiang S, Fu Q, Smith K, Tu K, Li H, Zhao Y (2016) FASN, ErbB2-mediated glycolysis is required for breast cancer cell migration. Oncol Rep 35:2715–2722

    CAS  PubMed  Google Scholar 

  • Zhou M, Chen M, Shi B, Di S, Sun R, Jiang H, Li Z (2022) Radiation enhances the efficacy of EGFR-targeted CAR-T cells against triple-negative breast cancer by activating NF-κB/Icam1 signaling. Mol Ther 30:3379–3393

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu Z, Wang S, Zhu J, Yang Q, Dong H, Huang JJB (2016) MicroRNA-544 down-regulates both Bcl6 and Stat3 to inhibit tumor growth of human triple negative breast cancer. Biol Chem 397:1087–1095

    CAS  PubMed  Google Scholar 

  • Zielinska H, Holly J, Bahl A, Perks C (2018) Inhibition of FASN and ERα signalling during hyperglycaemia-induced matrix-specific EMT promotes breast cancer cell invasion via a caveolin-1-dependent mechanism. Cancer Lett 419:187–202

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zoppoli G, Moran E, Soncini D, Cea M, Garuti A, Rocco I, Icardi GJCCDT et al (2010) Ras-induced resistance to lapatinib is overcome by MEK inhibition. Curr Cancer Drug Taregts 10:168–175

    CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to all members of Sushabhan Sadhukhan and Avinash Sonawane laboratories for valuable discussions.

Funding

DST-INSPIRE and UGC-NET fellowship awarded to Suchi Chaturvedi and Mainak Biswas respectively is highly acknowledged. We also acknowledge the funding from the Council of Scientific & Industrial Research (CSIR), India (02(0434)/21/EMR-II.

Author information

Authors and Affiliations

Authors

Contributions

SC collected the data and wrote the manuscript. MB edited the manuscript. SS and AS supported, managed, and supervised the manuscript. SS and AS are the corresponding authors of this manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Sushabhan Sadhukhan or Avinash Sonawane.

Ethics declarations

Conflict of interest

The authors declare no competing interest.

Ethical approval and consent to participate

Not applicable. This article is a literature review and does not contain any new experimental data.

Consent for publication

All authors approved the final manuscript for submission.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaturvedi, S., Biswas, M., Sadhukhan, S. et al. Role of EGFR and FASN in breast cancer progression. J. Cell Commun. Signal. 17, 1249–1282 (2023). https://doi.org/10.1007/s12079-023-00771-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-023-00771-w

Keywords

Navigation