Skip to main content
Log in

Nonlinear vibration analysis of pipeline considering the effects of soft nonlinear clamp

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

Soft nonlinear support is a major engineering project, but there are few relevant studies. In this paper, a dynamic pipeline model with soft nonlinear supports at both ends is established. By considering the influence of the Coriolis force and centrifugal force, the dynamical coupling equation of fluid-structure interaction is derived with extended Hamilton’s principle. Then, the approximate analytical solutions are sought via the harmonic balance method. The amplitude-frequency response curves show that different effects can be determined by approximate analysis. It is demonstrated that the increase in the fluid velocity can increase the amplitude of the pipeline system. The frequency range of unstable response increases when the fluid pressure raises. The combination of the soft nonlinear clamp and the large geometrical deformation of the pipeline affects the nonlinear vibration characteristic of the system, and the external excitation force and damping have significant effects on the stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KHUDAYAROV, B. A., KOMILOVA, K. M., and TURAEV, F. Z. Numerical study of the effect of viscoelastic properties of the material and bases on vibration fatigue of pipelines conveying pulsating fluid flow. Engineering Failure Analysis, 115, 104635 (2020)

    Article  Google Scholar 

  2. KHUDAYAROV, B. A. and TURAEV, F. Z. Mathematical simulation of nonlinear oscillations of viscoelastic pipelines conveying fluid. Applied Mathematical Modelling, 66, 662–679 (2019)

    Article  MathSciNet  Google Scholar 

  3. ZHOU, X. Q., YU, D. Y., SHAO, X. Y., ZHANG, C. Y., and WANG, S. Dynamics characteristic of steady fluid conveying in the periodical partially viscoelastic composite pipeline. Composites Part B: Engineering, 111, 387–408 (2017)

    Article  Google Scholar 

  4. WANG, Y. H. and CHEN, Y. M. Dynamic analysis of the viscoelastic pipeline conveying fluid with an improved variable fractional order model based on shifted Legendre polynomials. Fractal and Fractional, 3(4), 52 (2019)

    Article  MathSciNet  Google Scholar 

  5. GUO, X. M., MA, H., ZHANG, X. F., YE, Z., FU, Q., LIU, Z. H., and HAN, Q. K. Uncertain frequency responses of clamp-pipeline systems using an interval-based method. IEEE Access, 8, 29370–29384 (2020)

    Article  Google Scholar 

  6. LIN, J. Z., ZHAO, Y. L., ZHU, Q. Y., HAN, S., MA, H., and HAN, Q. K. Nonlinear characteristic of clamp loosing in aero-engine pipeline system. IEEE Access, 9, 64076–64084 (2021)

    Article  Google Scholar 

  7. JIANG, F., DING, Z. Y., WU, Y. W., BAI, H. B., SHAO, Y. C., and ZI, B. Energy dissipation characteristics and parameter identification of symmetrically coated damping structure of pipelines under different temperature environment. Symmetry, 12(8), 1283 (2020)

    Article  Google Scholar 

  8. LIU, G. M., LI, S. J., LI, Y. H., and CHEN, H. Vibration analysis of pipelines with arbitrary branches by absorbing transfer matrix method. Journal of Sound and Vibration, 332(24), 6519–6536 (2013)

    Article  Google Scholar 

  9. QUAN, L. X., CHE, S. C., GUO, C. H., GAO, H. H., and GUO, M. Axial vibration characteristics of fluid-structure interaction of an aircraft hydraulic pipe based on modified friction coupling model. Applied Sciences, 10(10), 3548 (2020)

    Article  Google Scholar 

  10. GUO, X. M., CAO, Y. M., MA, H., XIAO, C. L., and WEN, B. C. Dynamic analysis of an L-shaped liquid-filled pipe with interval uncertainty. International Journal of Mechanical Sciences, 217, 107040 (2022)

    Article  Google Scholar 

  11. ZHU, H. Z., WANG, W. B., YIN, X. W., and GAO, C. F. Spectral element method for vibration analysis of three-dimensional pipes conveying fluid. International Journal of Mechanics and Materials in Design, 15(2), 345–360 (2019)

    Article  Google Scholar 

  12. ZHANG, Y. L., GAO, P. X., LIU, X. F., YU, T., and HUANG, Z. H. Fluid-induced vibration of a hydraulic pipeline with piezoelectric active constrained layer-damping materials. Coatings, 11(7), 757 (2021)

    Article  Google Scholar 

  13. LIU, X. D., SUN, W., and GAO, Z. H. Optimization of hoop layouts for reducing vibration amplitude of pipeline system using the semi-analytical model and genetic algorithm. IEEE Access, 8, 224394–224408 (2020)

    Article  Google Scholar 

  14. KAVIANIPOUR, O. Effects of the passive electromagnetic damper on the behavior of a fluid-conveying pipeline. Proceedings of the Institution of Mechanical Engineers Part C: Journal of Mechanical Engineering Science, 233(7), 2329–2339 (2019)

    Google Scholar 

  15. MAO, X. Y., DING, H., and CHEN, L. Q. Steady-state response of a fluid-conveying pipe with 3: 1 internal resonance in supercritical regime. Nonlinear Dynamics, 86(2), 795–809 (2016)

    Article  Google Scholar 

  16. ZANG, J. and CHEN, L. Q. Complex dynamics of a harmonically excited structure coupled with a nonlinear energy sink. Acta Mechanica Sinica, 33(4), 801–822 (2017)

    Article  MathSciNet  Google Scholar 

  17. DING, H., TAN, X., and DOWELL, E. H. Natural frequencies of a super-critical transporting Timoshenko beam. European Journal of Mechanics-A/Solids, 66, 79–93 (2017)

    Article  MathSciNet  Google Scholar 

  18. ZHANG, Y. W., HOU, S., ZHANG, Z., ZANG, J., NI, Z. Y., and TENG, Y. Y. Nonlinear vibration absorption of laminated composite beams in complex environment. Nonlinear Dynamics, 99(4), 2605–2622 (2020)

    Article  Google Scholar 

  19. WANG, H., RONGONG, J. A., and TOMLINSON, G. R. Nonlinear static and dynamic properties of metal rubber dampers. Energy, 10(1), 1301–1315 (2010)

    Google Scholar 

  20. XU, J. D., GUO, B. T., ZHU, Z. G., and LI, Q. H. Vibration characteristics of metal rubber materials (in Chinese). Journal of Aerospace Power, 19(5), 4 (2004)

    Google Scholar 

  21. ALKHARABSHEH, S. A. and YOUNIS, M. I. Dynamics of MEMS arches of flexible supports. Journal of Microelectromechanical Systems, 22(1), 216–224 (2012)

    Article  Google Scholar 

  22. GAO, P. X., ZHAI, J. Y., QU, F. Z., and HAN, Q. K. Vibration and damping analysis of aerospace pipeline conveying fluid with constrained layer damping treatment. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 232(8), 1529–1541 (2017)

    Article  Google Scholar 

  23. CHEN, L. Q., ZHANG, Y. L., ZHANG, G. C., and DING, H. Evolution of the double-jumping in pipes conveying fluid flowing at the supercritical speed. International Journal of Non-Linear Mechanics, 58, 11–21 (2014)

    Article  Google Scholar 

  24. TAN, X., MAO, X. Y., DING, H., and CHEN, L. Q. Vibration around non-trivial equilibrium of a supercritical Timoshenko pipe conveying fluid. Journal of Sound and Vibration, 428, 104–118 (2018)

    Article  Google Scholar 

  25. LU, Z. Q., ZHANG, K. K., DING, H., and CHEN, L. Q. Internal resonance and stress distribution of pipes conveying fluid in supercritical regime. International Journal of Mechanical Sciences, 186, 105900 (2020)

    Article  Google Scholar 

  26. HE, J. H. Hamilton’s principle for dynamical elasticity. Applied Mathematics Letters, 72, 65–69 (2017)

    Article  MathSciNet  Google Scholar 

  27. ZHANG, Y. W., CHEN, W. J., NI, Z. Y., ZANG, J., and HOU, S. Supersonic aerodynamic piezoelectric energy harvesting performance of functionally graded beams. Composite Structures, 233, 111537 (2020)

    Article  Google Scholar 

  28. AZARIPOUR, S. and BAGHANI, M. Vibration analysis of FG annular sector in moderately thick plates with two piezoelectric layers. Applied Mathematics and Mechanics (English Edition), 40(6), 783–804 (2019) https://doi.org/10.1007/s10483-019-2468-8

    Article  MathSciNet  Google Scholar 

  29. YAS, M. H. and RAHIMI, S. Thermal vibration of functionally graded porous nanocomposite beams reinforced by graphene platelets. Applied Mathematics and Mechanics (English Edition), 41(8), 1209–1226 (2020) https://doi.org/10.1007/s10483-020-2634-6

    Article  MathSciNet  Google Scholar 

  30. GHAYESH, M. H. Nonlinear vibration analysis of axially functionally graded shear-deformable tapered beams. Applied Mathematical Modelling, 59, 583–596 (2018)

    Article  MathSciNet  Google Scholar 

  31. YANG, T. Z., LIU, T., TANG, Y., HOU, S., and LYU, X. F. Enhanced targeted energy transfer for adaptive vibration suppression of pipes conveying fluid. Nonlinear Dynamics, 97(3), 1937–1944 (2019)

    Article  Google Scholar 

  32. YE, S. Q., MAO, X. Y., DING, H., JI, J. C., and CHEN, L. Q. Nonlinear vibrations of a slightly curved beam with nonlinear boundary conditions. International Journal of Mechanical Sciences, 168, 105294 (2019)

    Article  Google Scholar 

  33. GAO, K., HUANG, Q., KITIPORNCHAI, S., and YANK, J. Nonlinear dynamic buckling of functionally graded porous beams. Mechanics of Advanced Materials and Structures, 28(4), 418–429 (2021)

    Article  Google Scholar 

  34. LI, Q. Y., WU, D., CHEN, X. J., LIU, L., YU, Y. G., and GAO, W. Nonlinear vibration and dynamic buckling analyses of sandwich functionally graded porous plate with graphene platelet reinforcement resting on Winkler-Pasternak elastic foundation. International Journal of Mechanical Sciences, 148, 596–610 (2018)

    Article  Google Scholar 

  35. ABBASZADEH, M. and DEHGHAN, M. Investigation of the Oldroyd model as a generalized incompressible Navier-Stokes equation via the interpolating stabilized element free Galerkin technique. Applied Numerical Mathematics, 150, 274–294 (2020)

    Article  MathSciNet  Google Scholar 

  36. LU, Z. Q., WU, D., DING, H., and CHEN, L. Q. Vibration isolation and energy harvesting integrated in a Stewart platform with high static and low dynamic stiffness. Applied Mathematical Modelling, 89, 249–267 (2021)

    Article  MathSciNet  Google Scholar 

  37. FAROKHI, H. and GHAYESH, M. H. Supercritical nonlinear parametric dynamics of Timoshenko microbeams. Communications in Nonlinear Science and Numerical Simulation, 59, 592–605 (2018)

    Article  MathSciNet  Google Scholar 

  38. LIU, Y. F., QIN, Z. Y., and CHU, F. L. Nonlinear dynamic responses of sandwich functionally graded porous cylindrical shells embedded in elastic media under 1:1 internal resonance. Applied Mathematics and Mechanics (English Edition), 42(6), 805–818 (2021) https://doi.org/10.1007/s10483-021-2740-7

    Article  MathSciNet  Google Scholar 

  39. DING, H., ZHU, M. H., and CHEN, L. Q. Nonlinear vibration isolation of a viscoelastic beam. Nonlinear Dynamics, 92(2), 325–349 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Ma.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11972112), the Fundamental Research Funds for the Central Universities of China (Nos. N2103024 and N2003014), and the National Science and Technology Major Project of China (No. J2019-I-0008-0008)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Cao, Y., Guo, X. et al. Nonlinear vibration analysis of pipeline considering the effects of soft nonlinear clamp. Appl. Math. Mech.-Engl. Ed. 43, 1555–1568 (2022). https://doi.org/10.1007/s10483-022-2903-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-022-2903-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation