Skip to main content
Log in

Melting effect and Cattaneo-Christov heat flux in fourth-grade material flow through a Darcy-Forchheimer porous medium

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The melting phenomenon in two-dimensional (2D) flow of fourth-grade material over a stretching surface is explored. The flow is created via a stretching surface. A Darcy-Forchheimer (D-F) porous medium is considered in the flow field. The heat transport is examined with the existence of the Cattaneo-Christov (C-C) heat flux. The fourth-grade material is electrically conducting subject to an applied magnetic field. The governing partial differential equations (PDEs) are reduced into ordinary differential equations (ODEs) by appropriate transformations. The solutions are constructed analytically through the optimal homotopy analysis method (OHAM). The fluid velocity, temperature, and skin friction are examined under the effects of various involved parameters. The fluid velocity increases with higher material parameters and velocity ratio parameter while decreases with higher magnetic parameter, porosity parameter, and Forchheimer number. The fluid temperature is reduced with higher melting parameter while boosts against higher Prandtl number, magnetic parameter, and thermal relaxation parameter. Furthermore, the skin friction coefficient decreases against higher melting and velocity ratio parameters while increases against higher material parameters, thermal relaxation parameter, and Forchheimer number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

u, v :

components of velocity

v f :

kinematic fluid viscosity

Pr :

Prandtl number

x, y :

Cartesian coordinates

k f :

fluid thermal conductivity

τ w :

wall shear stress

c pf :

fluid specific heat

μ f :

fluid dynamic viscosity

U 0, U :

stretching and free stream velocities

f′, θ, φ :

dimensionless velocity, temperature, and concentration

α f :

thermal diffusivity of the fluid

α 11 :

viscoelastic parameter

α 22 :

cross viscous parameter

γ 11, γ 22, γ 33 :

fourth-grade fluid parameters

M :

melting parameter

Me :

magnetic parameter

σ f :

electrical conductivity

B 0 :

magnetic field strength

c b :

drag coefficient

φ1 :

porosity of the porous medium

λ f :

fluid latent heat

Fr :

Forchheimer number

k 1 :

permeability of the porous medium

λ :

porosity parameter

T :

ambient temperature

β :

third-grade fluid parameter

ρ f :

fluid density

τ*:

heat flux relaxation time

β 11 :

Biot number for temperature

Re x :

local Reynolds number

ħ f, ħ θ, ħ φ :

convergence control variables

β 22 :

Biot number for concentration

f 0, θ 0, φ 0 :

initial guesses

τ :

Cauchy stress tensor

γ :

thermal relaxation parameter

α i, β i, γ i :

material constants

C s :

surface heat capacity

T w :

wall temperature

ψ :

stream function

T 0 :

ambient temperature

U e(x):

free-stream velocity

ε f, ε θ :

average square residual errors at the mth-order approximation.

References

  1. SALAWU, S. O., KAREEM, R. A., SHAMSHUDDIN, M. D., and KHAN, S. U. Double exothermic reaction of viscous dissipative Oldroyd 8-constant fluid and thermal ignition in a channel. Chemical Physics Letters, 760, 138011 (2020)

    Article  Google Scholar 

  2. KHAN, S. U., AL-KHALED, K., and BHATTI, M. M. Bioconvection analysis for flow of Oldroyd-B nanofluid configured by a convectively heated surface with partial slip effects. Surfaces and Interface, 23, 100982 (2021)

    Article  Google Scholar 

  3. WAQAS, M., HAYAT, T., ALSAEDI, A., and KHAN, W. A. Analytical evaluation of Oldroyd-B nanoliquid under thermo-solutal Robin conditions and stratifications. Computer Methods and Programs in Biomedicine, 19, 105474 (2020)

    Article  Google Scholar 

  4. AWAN, A. U., ABID, S., ULLAH, N., and NADEEM, S. Magnetohydrodynamic oblique stagnation point flow of second grade fluid over an oscillatory stretching surface. Results in Physics, 18, 103233 (2020)

    Article  Google Scholar 

  5. KRISHNA, M. V., AHAMAD, N. A., and CHAMKHA, A. J. Hall and ion slip impacts on unsteady MHD convective rotating flow of heat generating/absorbing second grade fluid. Alexandria Engineering Journal, 60, 845–858 (2021)

    Article  Google Scholar 

  6. HAYAT, T., SHAH, F., and ALSEADI, A. Cattaneo-Christov double diffusions and entropy generation in MHD second grade nanofluid flow by a Riga wall. International Communications in Heat and Mass Transfer, 119, 104824 (2020)

    Article  Google Scholar 

  7. ARIFUZZAMAN, S. M., KHAN, M. S., AL-MAMUN, A., REZA-E-RABBI, S., BISWAS, P., and KARIM, I. Hydrodynamic stability and heat and mass transfer flow analysis of MHD radiative fourth-grade fluid through porous plate with chemical reaction. Journal of King Saud University—Science, 31, 1388–1398 (2019)

    Article  Google Scholar 

  8. SOBAMOWO, M. G., YINUSA, A. A., and ALADENUSI, S. T. Impacts of magnetic field and thermal radiation on squeezing flow and heat transfer of third grade nanofluid between two disks embedded in a porous medium. Heliyon, 6, e03621 (2020)

    Article  Google Scholar 

  9. HAYAT, T., MUHAMMAD, K., ALSAEDI, A., and AHMAD, B. Melting effect in squeezing flow of third-garde fluid with non-Fourier heat flux model. Physica Scripta, 94, 105705 (2019)

    Article  Google Scholar 

  10. NANDEPPANAVAR, M. M., VAISHALI, S., KEMPARAJU, M. C., and RAVEENDRA, N. Theoretical analysis of thermal characteristics of Casson nano fluid flow past an exponential stretching sheet in Darcy porous media. Case Studies in Thermal Engineering, 21, 100717 (2020)

    Article  Google Scholar 

  11. TURKYILMAZOGLU, M. Single phase nanofluids in fluid mechanics and their hydrodynamic linear stability analysis. Computer Methods and Programs in Biomedicine, 187, 105171 (2020)

    Article  Google Scholar 

  12. HAYAT, T., MUHAMMAD, K., and MOMANI, S. Melting heat and viscous dissipation in flow of hybrid nanomaterial: a numerical study via finite difference method. Journal of Thermal Analysis and Calorimetry (2021) https://doi.org/10.1007/s10973-021-10944-7

  13. RASHIDI, M. M., GHAHREMANIAN, S., TOGHRAIE, D., and ROY, P. Effect of solid surface structure on the condensation flow of argon in rough nanochannels with different roughness geometries using molecular dynamics simulation. International Communications in Heat and Mass Transfer, 117, 104741 (2020)

    Article  Google Scholar 

  14. RASOOL, G., CHAMKHA, A. J., MUHAMMAD, T., SHAFIQ, A., and KHAN, I. Darcy-Forchheimer relation in Casson type MHD nanofluid flow over non-linear stretching surface. Propulsion and Power Research, 9, 159–168 (2020)

    Article  Google Scholar 

  15. SEIKH, A., AKINSHILO, A., TAHERI, M. H., GORJI, M. R., ALHARTHI, N. H., KHAN, I., and KHAN, A. R. Influence of the nanoparticles and uniform magnetic field on the slip blood flows in arterial vessels. Physica Scripta, 49, 125218 (2019)

    Article  Google Scholar 

  16. IBRAHIM, W. Magnetohydrodynamic (MHD) boundary layer stagnation point flow and heat transfer of a nanofluid past a stretching sheet with melting. Propulsion and Power Research, 6, 214–222 (2017)

    Article  Google Scholar 

  17. GOUD, B. S. Heat generation/absorption influence on steady stretched permeable surface on MHD flow of a micropolar fluid through a porous medium in the presence of variable suction/injection. International Journal of Thermofluids, 7–8, 100044 (2020)

    Article  Google Scholar 

  18. HAYAT, T., MUHAMMAD, K., and ALSAEDI, A. Melting effect in MHD stagnation point flow of Jeffrey nanomaterial. Physica Scripta, 94, 115702 (2019)

    Article  Google Scholar 

  19. PATIL, V. S., PATIL, A. B., GANESH, S., HUMANE, P. P., and PATIL, N. S. Unsteady MHD flow of a nano Powell-Eyring fluid near stagnation point past a convectively heated stretching sheet in the existence of chemical reaction with thermal radiation. Materials Today: Proceedings, 44, 3767–3776 (2021)

    Google Scholar 

  20. SABU, A. S., MATHEW, A., NEETHU, T. S., and GEORGE, K. A. Statistical analysis of MHD convective ferro-nanofluid flow through an inclined channel with hall current, heat source and soret effect. Thermal Science and Engineering Progress, 22, 100816 (2021)

    Article  Google Scholar 

  21. HAYAT, T., MUHAMMAD, K., FAROOQ, M., and ALSAEDI, A. Unsteady squeezing flow of carbon nanotubes with convective boundary conditions. PLoS One, 11, 0152923 (2016)

    Google Scholar 

  22. NAZEER, M., ALI, N., AHMAD, F., and LATIF, M. Numerical and perturbation solutions of third-grade fluid in a porous channel: boundary and thermal slip effects. Pramana: Journal of Physics, 94, 44 (2020)

    Article  Google Scholar 

  23. KAZEMI, M. A., JAVANMARD, M., TAHERI, M. H., and ASKARI, N. Heat transfer investigation of the fourth-grade non-Newtonian MHD fluid flow in a plane duct considering the viscous dissipation, joule heating and forced convection on the walls. SN Applied Sciences, 2, 1752 (2020)

    Article  Google Scholar 

  24. OKECHI, N. F. and ASGHAR, S. MHD Stokes flow in a corrugated curved channel. Chinese Journal of Physics, 71, 38–53 (2021)

    Article  MathSciNet  Google Scholar 

  25. MUHAMMAD, K., HAYAT, T., and ALSAEDI, A. Numerical study of Newtonian heating in flow of hybrid nanofluid (SWCNTs+CuO+ethylene glycol) past a curved surface with viscous dissipation. Journal of Thermal Analysis and Calorimetery, 143, 1291–1302 (2021)

    Article  Google Scholar 

  26. DERO, S., ROHNI, A. M., and SAABAN, A. Stability analysis of Cu-C6H9NaO7 and Ag-C6H9NaO7 nanofluids with effect of viscous dissipation over stretching and shrinking surfaces using a single phase model. Heliyon, 6, e03510 (2020)

    Article  Google Scholar 

  27. BHATTI, M. M. and RASHIDI, M. M. Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet. Journal of Molecular Liquids, 221, 567–573 (2016)

    Article  Google Scholar 

  28. SHAW, S., MABOOD, F., MUHAMMAD, T., NAYAK, M. K., and ALGHAMDI, M. Numerical simulation for entropy optimized nonlinear radiative flow of GO-Al2O3 magneto nanomaterials with auto catalysis chemical reaction. Numerical Methods for Partial Differential Equations, 10, 22623 (2020)

    Article  Google Scholar 

  29. BILAL, M., SAGHEER, M., and HUSSAIN, S. Numerical study of magnetohydrodynamics and thermal radiation on Williamson nanofluid flow over a stretching cylinder with variable thermal conductivity. Alexandria Engineering Journal, 57, 3281–3289 (2018)

    Article  Google Scholar 

  30. EID, M. R. and MABOOD, F. Entropy analysis of a hydromagnetic micropolar dusty carbon NTs-kerosene nanofluid with heat generation: Darcy-Forchheimer scheme. Journal of Thermal Analysis and Calorimetry, 143, 2419–2436 (2021)

    Article  Google Scholar 

  31. AHMED, F. and KHAN, W. A. Efficiency enhancement of an air-conditioner utilizing nanofluids: an experimental study. Energy Reports, 7, 575–583 (2021)

    Article  Google Scholar 

  32. SOUAYEH, B., KUMAR, K. G., REDDY, M. G., RANI, S., HDHIRI, N., ALFANNAKH, H., and GORJI, M. R. Slip flow and radiative heat transfer behavior of titanium alloy and ferromagnetic nanoparticles along with suspension of dusty fluid. Journal of Molecular Liquids, 290, 111223 (2019)

    Article  Google Scholar 

  33. AL-HOSSAINY, A. F. and EID, M. R. Combined experimental thin films, TDDFT-DFT theoretical method, and spin effect on [PEG-H2O/ZrO2+MgO]h hybrid nanofluid flow with higher chemical rate. Surfaces and Interfaces, 23, 100971 (2021)

    Article  Google Scholar 

  34. KHAN, N. A., SAEED, U. B., SULTAN, F., and ULLAH, S. Study of velocity and temperature distributions in boudary layer flow of fourth grade fluid over an exponential stretching sheet. AIP Advances, 8, 025011 (2018)

    Article  Google Scholar 

  35. MUHAMMAD, K., HAYAT, T., and ALSAEDI, A. OHAM analysis of fourth grade nanomaterial in presence of stagnation point and convective heat-mass conditions. Waves in Random and Complex Media, 1, 1–17 (2021)

    Google Scholar 

  36. FAROOQ, U., ZHAO, Y. L., HAYAT, T., and LIAO, S. J. Application of the HAM-based mathematica package BVPh 2.0 on MHD Falkner-Skan flow of nanofluid. Computers and Fluids, 111, 64–75 (2015)

    Article  MATH  Google Scholar 

  37. ZHENG, L. and ZHANG, X. Homotopy analytical method. Modeling and Analysis of Modern Fluid Problems, 1, 115–178 (2017)

    Article  Google Scholar 

  38. SINGH, K. and KUMAR, M. Melting and heat absorption effects in boundary layer stagnation-point flow towards a stretching sheet in a micropolar fluid. Ain Shams Engineering Journal, 9, 861–868 (2018)

    Article  Google Scholar 

  39. AZEANY, N. A., NASIR, M., ISHAK, A., and POP, I. Stagnation-point flow and heat transfer past a permeable quadratically stretching/shrinking sheet. Chinese Journal of Physics, 55, 2081–2091 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Muhammad.

Additional information

Citation: HAYAT, T., MUHAMMAD, K., and ALSAEDI, A. Melting effect and Cattaneo-Christov heat flux in fourth-grade material flow through a Darcy-Forchheimer porous medium. Applied Mathematics and Mechanics (English Edition), 42(12), 1787–1798 (2021) https://doi.org/10.1007/s10483-021-2798-6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayat, T., Muhammad, K. & Alsaedi, A. Melting effect and Cattaneo-Christov heat flux in fourth-grade material flow through a Darcy-Forchheimer porous medium. Appl. Math. Mech.-Engl. Ed. 42, 1787–1798 (2021). https://doi.org/10.1007/s10483-021-2798-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-021-2798-6

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation