Skip to main content

Advertisement

Log in

Microcracks on the Rat Root Surface Induced by Orthodontic Force, Crack Extension Simulation, and Proteomics Study

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Root resorption is a common complication during orthodontic treatment. Microcracks occur on the root surface after an orthodontic force is applied and may be related to the root resorption caused by the orthodontic process. However, the mechanisms underlying root resorption induced by microcracks remain unclear. In this study, a rat orthodontic model was used to investigate the biological mechanisms of root resorption caused by microcracks. First, the first molar was loaded with 0.5-N orthodontic force for 7 days, and microcracks were observed on the root apex surface using a scanning electron microscope. Second, to describe the mechanical principle resulting in microcracks, a finite element model of rat orthodontics was established, which showed that a maximum stress on the root apex can cause microcrack extension. Third, after 7 days of loading in vivo, histological observation revealed that root resorption occurred in the stress concentration area and cementoclasts appeared in the resorption cavity. Finally, proteomics analysis of the root apex area, excluding the periodontal ligament, revealed that the NOX2, Aifm1, and MAPK signaling pathways were involved in the root resorption process. Microcrack extension on the root surface increases calcium ion concentrations, alters the proteins related to root resorption, and promotes cementoclast formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Abass, S. K., and J. K. Hartsfield. Orthodontics and external apical root resorption. Semin. Orthod. 13:246–256, 2007.

    Article  Google Scholar 

  2. Alvares, K., C. J. DeHart, P. M. Thomas, N. L. Kelleher, and A. Veis. The unique biomineralization transcriptome and proteome of Lytechinus variegatus teeth. Connect. Tissue Res. 59:20–29, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bhattacharjee, N., S. Barma, N. Konwar, S. Dewanjee, and P. Manna. Mechanistic insight of diabetic nephropathy and its pharmacotherapeutic targets: an update. Eur. J. Pharmacol. 791:8–24, 2016.

    Article  CAS  PubMed  Google Scholar 

  4. Brudvik, P., and P. Rygh. Multi-nucleated cells remove the main hyalinized tissue and start resorption of adjacent root surfaces. Eur. J. Orthod. 16:265–273, 1994.

    Article  CAS  PubMed  Google Scholar 

  5. Brudvik, P., and P. Rygh. Root resorption beneath the main hyalinized zone. Eur. J. Orthod. 16:249–263, 1994.

    Article  CAS  PubMed  Google Scholar 

  6. Cardoso, L., B. C. Herman, O. Verborgt, D. Laudier, R. J. Majeska, and M. B. Schaffler. Osteocyte apoptosis controls activation of intracortical resorption in response to bone fatigue. J Bone Miner Res 24:597–605, 2009.

    Article  CAS  PubMed  Google Scholar 

  7. Cohn, Z. A., and B. Benson. The in vitro differentiation of mononuclear phagocytes: II. The influence of serum on granule granule formation, hydrolase production, and pinocytosis. J. Exp. Med. 121:835–848, 1965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Conesa, A., S. Götz, J. M. García-Gómez, J. Terol, M. Talón, and M. Robles. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676, 2005.

    Article  CAS  PubMed  Google Scholar 

  9. DeLaurier, A., A. Boyde, M. A. Horton, and J. S. Price. Analysis of the surface characteristics and mineralization status of feline teeth using scanning electron microscopy. J. Anat. 209:655–669, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dimayacyac-Esleta, B. R. T., C.-F. Tsai, R. B. Kitata, P.-Y. Lin, W.-K. Choong, T.-D. Lin, Y.-T. Wang, S.-H. Weng, P.-C. Yang, S. D. Arco, T.-Y. Sung, and Y.-J. Chen. Rapid high-pH reverse phase StageTip for sensitive small-scale membrane proteomic profiling. Anal. Chem. 87:12016–12023, 2015.

    Article  CAS  PubMed  Google Scholar 

  11. Donaldson, F., D. Ruffoni, P. Schneider, A. Levchuk, A. Zwahlen, P. Pankaj, and R. Müller. Modeling microdamage behavior of cortical bone. Biomech. Model. Mechanobiol. 13:1227–1242, 2014.

    Article  PubMed  Google Scholar 

  12. El-Benna, J., P. M.-C. Dang, M.-A. Gougerot-Pocidalo, J.-C. Marie, and F. Braut-Boucher. p47phox, the phagocyte NADPH oxidase/NOX2 organizer: structure, phosphorylation and implication in diseases. Exp. Mol. Med. 41:217–225, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Giuliani, N., M. Ferretti, M. Bolzoni, P. Storti, M. Lazzaretti, B. Dalla Palma, S. Bonomini, E. Martella, L. Agnelli, A. Neri, F. Ceccarelli, and C. Palumbo. Increased osteocyte death in multiple myeloma patients: role in myeloma-induced osteoclast formation. Leukemia 26:1391–1401, 2012.

    Article  CAS  PubMed  Google Scholar 

  14. Gonzales, C., H. Hotokezaka, Y. Arai, T. Ninomiya, J. Tominaga, I. Jang, Y. Hotokezaka, M. Tanaka, and N. Yoshida. An in vivo 3D micro-CT evaluation of tooth movement after the application of different force magnitudes in rat molar. Angle Orthod. 79:703–714, 2009.

    Article  PubMed  Google Scholar 

  15. Görlach, A., K. Bertram, S. Hudecova, and O. Krizanova. Calcium and ROS: a mutual interplay. Redox Biol. 6:260–271, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Götz, S., J. M. García-Gómez, J. Terol, T. D. Williams, S. H. Nagaraj, M. J. Nueda, M. Robles, M. Talón, J. Dopazo, and A. Conesa. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36:3420–3435, 2008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Gu, G., M. Mulari, Z. Peng, T. A. Hentunen, and H. K. Väänänen. Death of osteocytes turns off the inhibition of osteoclasts and triggers local bone resorption. Biochem. Biophys. Res. Commun. 335:1095–1101, 2005.

    Article  CAS  PubMed  Google Scholar 

  18. Guan, L., S. Lin, W. Yan, L. Chen, and X. Wang. Effects of calcitonin on orthodontic tooth movement and associated root resorption in rats. Acta Odontol. Scand. 75:595–602, 2017.

    Article  CAS  PubMed  Google Scholar 

  19. Herman, B. C., L. Cardoso, R. J. Majeska, K. J. Jepsen, and M. B. Schaffler. Activation of bone remodeling after fatigue: differential response to linear microcracks and diffuse damage. Bone 47:766–772, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hichijo, N., E. Tanaka, N. Kawai, L. J. van Ruijven, and G. E. J. Langenbach. Effects of decreased occlusal loading during growth on the mandibular bone characteristics. PLoS ONE 10:e0129290, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Ibrahim, A. Y., S. Gudhimella, S. N. Pandruvada, and S. S. Huja. Resolving differences between animal models for expedited orthodontic tooth movement. Orthod. Craniofac. Res. 20:72–76, 2017.

    Article  PubMed  Google Scholar 

  22. Iglesias-Linares, A., and J. J. K. Hartsfield. Cellular and molecular pathways leading to external root resorption. J. Dent. Res. 96:145–152, 2017.

    Article  CAS  PubMed  Google Scholar 

  23. Inubushi, T., E. Tanaka, E. B. Rego, J. Ohtani, A. Kawazoe, K. Tanne, M. Miyauchi, and T. Takata. Ultrasound stimulation attenuates resorption of tooth root induced by experimental force application. Bone 53:497–506, 2013.

    Article  PubMed  Google Scholar 

  24. Jiang, H., Y. Ren, Z. Liu, and S. Zhang. Microscale finite element analysis for predicting effects of air voids on mechanical properties of single fiber bundle in composites. J. Mater. Sci. 54:1363–1381, 2019.

    Article  CAS  Google Scholar 

  25. Jung, H., and O. Akkus. Activation of intracellular calcium signaling in osteoblasts colocalizes with the formation of post-yield diffuse microdamage in bone matrix. Bonekey Rep. 5:778, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kawarizadeh, A., C. Bourauel, and A. Jäger. Experimental and numerical determination of initial tooth mobility and material properties of the periodontal ligament in rat molar specimens. Eur. J. Orthod. 25:569–578, 2003.

    Article  CAS  PubMed  Google Scholar 

  27. Kilkenny, C., W. J. Browne, I. C. Cuthill, M. Emerson, and D. G. Altman. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8:e1000412, 2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Lee, D. G., S.-H. Kim, S. Kim, J. H. Yu, and S. W. Cho. Prediction of material properties of ceramic composite material by porous structure and porosity using the finite element method. Int. J. Precis. Eng. Manuf. 20:805–814, 2019.

    Article  Google Scholar 

  29. Levine, J., E. Kwon, P. Paez, W. Yan, G. Czerwieniec, J. A. Loo, M. V. Sofroniew, and I.-B. Wanner. Traumatically injured astrocytes release a proteomic signature modulated by STAT3-dependent cell survival. Glia 64:668–694, 2016.

    Article  PubMed  Google Scholar 

  30. Lim, J.-A., L. Li, O. Kakhlon, R. Myerowitz, and N. Raben. Defects in calcium homeostasis and mitochondria can be reversed in Pompe disease. Autophagy 11:385–402, 2015.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Lü, L.-W., G.-W. Meng, and Z.-H. Liu. Finite element analysis of multi-piece post-crown restoration using different types of adhesives. Int. J. Oral Sci. 5:162–166, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lyu, C., L. Zhang, and S. Zou. The effectiveness of supplemental vibrational force on enhancing orthodontic treatment. A systematic review. Eur. J. Orthod. 41:502–512, 2019.

    Article  PubMed  Google Scholar 

  33. Marco, M., E. Giner, R. Larraínzar-Garijo, J. R. Caeiro, and M. H. Miguélez. Numerical modelling of femur fracture and experimental validation using bone simulant. Ann. Biomed. Eng. 45:2395–2408, 2017.

    Article  PubMed  Google Scholar 

  34. Matsumoto, Y., S. Sringkarnboriboon, and T. Ono. Proinflammatory mediators related to orthodontically induced periapical root resorption in rat mandibular molars. Eur. J. Orthod. 39:686–691, 2017.

    Article  PubMed  Google Scholar 

  35. Mentaverri, R., S. Yano, N. Chattopadhyay, L. Petit, O. Kifor, S. Kamel, E. F. Terwilliger, M. Brazier, and E. M. Brown. The calcium sensing receptor is directly involved in both osteoclast differentiation and apoptosis. FASEB J. 20:2562–2564, 2006.

    Article  CAS  PubMed  Google Scholar 

  36. Michelogiannakis, D., D. Al-Shammery, Z. Akram, P. E. Rossouw, F. Javed, and G. E. Romanos. Influence of low-level laser therapy on orthodontically-induced inflammatory root resorption. A systematic review. Arch. Oral Biol. 100:1–13, 2019.

    Article  PubMed  Google Scholar 

  37. Milne, T. J., I. Ichim, B. Patel, A. McNaughton, and M. C. Meikle. Induction of osteopenia during experimental tooth movement in the rat: alveolar bone remodelling and the mechanostat theory. Eur. J. Orthod. 31:221–231, 2009.

    Article  PubMed  Google Scholar 

  38. Miyake, N., N. I. Wolf, F. K. Cayami, J. Crawford, A. Bley, D. Bulas, A. Conant, S. J. Bent, K. W. Gripp, A. Hahn, S. Humphray, S. Kimura-Ohba, Z. Kingsbury, B. R. Lajoie, D. Lal, D. Micha, A. Pizzino, R. J. Sinke, D. Sival, I. Stolte-Dijkstra, A. Superti-Furga, N. Ulrick, R. J. Taft, T. Ogata, K. Ozono, N. Matsumoto, B. A. Neubauer, C. Simons, and A. Vanderver. X-linked hypomyelination with spondylometaphyseal dysplasia (H-SMD) associated with mutations in AIFM1. Neurogenetics 18:185–194, 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nayyer, N., T. Tripathi, P. Rai, and R. Gopal. Effect of photobiomodulation on external root resorption during orthodontic tooth movement—a scoping review. Lasers Dent. Sci. 3:219–226, 2019.

    Article  Google Scholar 

  40. Ochiai, N., Y. Nakachi, T. Yokoo, T. Ichihara, T. Eriksson, Y. Yonemoto, T. Kato, H. Ogata, N. Fujimoto, Y. Kobayashi, N. Udagawa, S. Kaku, T. Ueki, Y. Okazaki, N. Takahashi, and T. Suda. Murine osteoclasts secrete serine protease HtrA1 capable of degrading osteoprotegerin in the bone microenvironment. Commun. Biol. 2:86, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ouyang, S., Z. Deng, and X. Hou. Stress concentration in octagonal honeycombs due to defects. Compos. Struct. 204:814–821, 2018.

    Article  Google Scholar 

  42. Parker, R. J., and E. F. Harris. Directions of orthodontic tooth movements associated with external apical root resorption of the maxillary central incisor. Am. J. Orthod. Dentofac. Orthop. 114:677–683, 1998.

    Article  CAS  Google Scholar 

  43. Rahimi, A., L. Keilig, G. Bendels, R. Klein, T. M. Buzug, I. Abdelgader, M. Abboud, and C. Bourauel. 3D Reconstruction of dental specimens from 2D histological images and μCT-Scans. Comput. Methods Biomech. Biomed. Eng. 8:167–176, 2005.

    Article  CAS  Google Scholar 

  44. Ru, N., S. S.-Y. Liu, Y. Bai, S. Li, Y. Liu, and X. Wei. BoneCeramic graft regenerates alveolar defects but slows orthodontic tooth movement with less root resorption. Am. J. Orthod. Dentofac. Orthop. 149:523–532, 2016.

    Article  Google Scholar 

  45. Sato, M., K. Nagata, S. Kuroda, S. Horiuchi, T. Nakamura, M. Karima, T. Inubushi, and E. Tanaka. Low-intensity pulsed ultrasound activates integrin-mediated mechanotransduction pathway in synovial cells. Ann. Biomed. Eng. 42:2156–2163, 2014.

    Article  PubMed  Google Scholar 

  46. Schileo, E., F. Taddei, L. Cristofolini, and M. Viceconti. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J. Biomech. 41:356–367, 2008.

    Article  PubMed  Google Scholar 

  47. Schwarz, A. M. Tissue changes incidental to orthodontic tooth movement. Int. J. Orthod. Oral Surg. Radiogr. 18:331–352, 1932.

    Article  Google Scholar 

  48. Shah, A., D. Lee, M. Song, S. Kim, M. K. Kang, and R. H. Kim. Clastic cells are absent around the root surface in pulp-exposed periapical periodontitis lesions in mice. Oral Dis. 24:57–62, 2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shirokova, N., and E. Niggli. Cardiac phenotype of duchenne muscular dystrophy: insights from cellular studies. J. Mol. Cell. Cardiol. 58:217–224, 2013.

    Article  CAS  PubMed  Google Scholar 

  50. Shu, Y., M. J. Baumann, E. D. Case, R. K. Irwin, S. E. Meyer, C. S. Pearson, and L. R. McCabe. Surface microcracks signal osteoblasts to regulate alignment and bone formation. Mater. Sci. Eng. C 44:191–200, 2014.

    Article  CAS  Google Scholar 

  51. Simon, A. R., U. Rai, B. L. Fanburg, and B. H. Cochran. Activation of the JAK-STAT pathway by reactive oxygen species. Am. J. Physiol. Physiol. 275:C1640–C1652, 1998.

    Article  CAS  Google Scholar 

  52. Spivak, M., J. Weston, L. Bottou, L. Käll, and W. S. Noble. Improvements to the percolator algorithm for peptide identification from shotgun proteomics data sets. J. Proteome Res. 8:3737–3745, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sringkarnboriboon, S., Y. Matsumoto, and K. Soma. Root resorption related to hypofunctional periodontium in experimental tooth movement. J. Dent. Res. 82:486–490, 2003.

    Article  CAS  PubMed  Google Scholar 

  54. Tami, A. E., P. Nasser, O. Verborgt, M. B. Schaffler, and M. L. K. Tate. The role of interstitial fluid flow in the remodeling response to fatigue loading. J. Bone Miner. Res. 17:2030–2037, 2002.

    Article  CAS  PubMed  Google Scholar 

  55. Taylor, D., J. G. Hazenberg, and T. C. Lee. Living with cracks: damage and repair in human bone. Nat. Mater. 6:263–268, 2007.

    Article  CAS  PubMed  Google Scholar 

  56. Vasquez-Sancho, F., A. Abdollahi, D. Damjanovic, and G. Catalan. Flexoelectricity in bones. Adv. Mater. 30:1705316, 2018.

    Article  CAS  Google Scholar 

  57. Verborgt, O., G. J. Gibson, and M. B. Schaffler. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue in vivo. J. Bone Miner. Res. 15:60–67, 2000.

    Article  CAS  PubMed  Google Scholar 

  58. Verna, C., P. M. Cattaneo, and M. Dalstra. Corticotomy affects both the modus and magnitude of orthodontic tooth movement. Eur. J. Orthod. 40:107–112, 2018.

    Article  PubMed  Google Scholar 

  59. Viecilli, R. F., M. H. Kar-kuri, J. Varriale, A. Budiman, and M. Janal. Effects of initial stresses and time on orthodontic external root resorption. J. Dent. Res. 92:346–351, 2013.

    Article  CAS  PubMed  Google Scholar 

  60. Wiśniewski, J. R., A. Zougman, N. Nagaraj, and M. Mann. Universal sample preparation method for proteome analysis. Nat. Methods 6:359–362, 2009.

    Article  PubMed  CAS  Google Scholar 

  61. Xiao, S., L. Li, L. Wang, Y. Wang, M. Zhang, J. Yao, and Y. Fan. Root surface microcracks induced by orthodontic force as a potential primary indicator of root resorption. J. Biomech. 110:109938, 2020.

    Article  PubMed  Google Scholar 

  62. Yamaguchi, M., N. Aihara, T. Kojima, and K. Kasai. RANKL increase in compressed periodontal ligament cells from root resorption. J. Dent. Res. 85:751–756, 2006.

    Article  CAS  PubMed  Google Scholar 

  63. Yu, C., D. Huang, K. Wang, B. Lin, Y. Liu, S. Liu, W. Wu, and H. Zhang. Advanced oxidation protein products induce apoptosis, and upregulate sclerostin and RANKL expression, in osteocytic MLO-Y4 cells via JNK/p38 MAPK activation. Mol. Med. Rep. 15:543–550, 2017.

    Article  CAS  PubMed  Google Scholar 

  64. Yuan, S., Z. Yang, and G. Chen. 3D microstructure model and thermal shock failure mechanism of a Si3N4-bonded SiC ceramic refractory with SiC high volume ratio particles. Ceram. Int. 45:4219–4229, 2019.

    Article  CAS  Google Scholar 

  65. Zhao, N., B. L. Foster, and L. F. Bonewald. The cementocyte—an osteocyte relative? J. Dent. Res. 95:734–741, 2016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhao, Y., A. Sarkar, and X. Wang. Peptide nucleic acid based tension sensor for cellular force imaging with strong DNase resistance. Biosens. Bioelectron. 150:111959, 2020.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. U20A20390 and 11827803). We thank Dr. Peng Xu and Dr. Tianyun Jiang for their assistance in guiding the use of related finite element softwares. We thank the Beijing Fangtailun Medical Technology Co., Ltd. for providing the laser transmitter.

Conflict of interest

The authors declare no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linhao Li or Yubo Fan.

Additional information

Associate Editor Eiji Tanaka oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 685 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, S., Li, L., Yao, J. et al. Microcracks on the Rat Root Surface Induced by Orthodontic Force, Crack Extension Simulation, and Proteomics Study. Ann Biomed Eng 49, 2228–2242 (2021). https://doi.org/10.1007/s10439-021-02733-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-021-02733-y

Keywords

Navigation