Skip to main content

Advertisement

Log in

Numerical Modelling of Femur Fracture and Experimental Validation Using Bone Simulant

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 26 June 2017

This article has been updated

Abstract

Bone fracture pattern prediction is still a challenge and an active field of research. The main goal of this article is to present a combined methodology (experimental and numerical) for femur fracture onset analysis. Experimental work includes the characterization of the mechanical properties and fracture testing on a bone simulant. The numerical work focuses on the development of a model whose material properties are provided by the characterization tests. The fracture location and the early stages of the crack propagation are modelled using the extended finite element method and the model is validated by fracture tests developed in the experimental work. It is shown that the accuracy of the numerical results strongly depends on a proper bone behaviour characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Change history

  • 26 June 2017

    An erratum to this article has been published.

References

  1. Ali, A. A., L. Cristofolini, E. Schileo, H. Hu, F. Taddei, R. Kim, P. J. Rullkoetter, and P. J. Laz. Specimen-specific modelling of hip fracture pattern and repair. J. Biomech. 47:536–543, 2014.

    Article  PubMed  Google Scholar 

  2. Basso, T., J. Klaksvik, U. Syversen, and O. A. Foss. A biomechanical comparison of composite femurs and cadaver femurs used in experiments on operated hip fractures. J. Biomech. 47:3898–3902, 2014.

    Article  PubMed  Google Scholar 

  3. Bayraktar, H. H., E. F. Morgan, G. L. Niebur, G. E. Morris, E. K. Wong, and T. M. Keaveny. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J. Biomech. 37:27–35, 2004.

    Article  PubMed  Google Scholar 

  4. Bryana, R., P. B. Nair, and M. Taylor. Use of a statistical model of the whole femur in a large scale, multi-model study of femoral neck fracture risk. J. Biomech. 42:2171–2176, 2009.

    Article  Google Scholar 

  5. Carpintero, P., J. R. Caeiro, R. Carpintero, A. Morales, S. Silva, and M. Mesa. Complications of hip fractures: a review. World J. Orthop. 5(4):402–411, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cook, R. B., and P. Zioupos. The fracture toughness of cancellous bone. J. Biomech. 42:2054–2060, 2009.

    Article  CAS  PubMed  Google Scholar 

  7. Cristofolini, L., M. Juszczyk, S. Martelli, F. Taddei, and M. Viceconti. In vitro replication of spontaneous fractures of the proximal human femur. J. Biomech. 40:2837–2845, 2007.

    Article  PubMed  Google Scholar 

  8. Cristofolini, L., E. Schileo, M. Juszczyk, F. Taddei, S. Martelli, and M. Viceconti. Mechanical testing of bones: the positive synergy of finite-element models and in vitro experiments. Philos. Trans. R. Soc. 368:2725–2763, 2010.

    Article  Google Scholar 

  9. Cristofolini, L., M. Viceconti, A. Cappello, and A. Toni. Mechanical validation of whole bone composite femur models. J. Biomech. 29:525–535, 1996.

    Article  CAS  PubMed  Google Scholar 

  10. Doblaré, M., J. M. García, and M. J. Gómez. Modelling bone tissue fracture and healing: a review. Eng. Fract. Mech. 71:1809–1840, 2004.

    Article  Google Scholar 

  11. Ebrahimi, H., M. Rabinovicha, V. Vuletaa, D. Zalcmana, S. Shaha, A. Dubova, K. Roya, F. S. Siddiquia, and E. H. Schemitschb. Biomechanical properties of an intact, injured, repaired, and healed femur: an experimental and computational study. J. Mech. Behav. Biomed. Mater. 16:121–135, 2012.

    Article  PubMed  Google Scholar 

  12. Fenech, C. M., and T. M. Keaveny. A cellular solid criterion for predicting the axial-shear failure properties of trabecular bone. J. Biomech. Eng. 121:414–422, 1999.

    Article  CAS  PubMed  Google Scholar 

  13. Gardner, M. P., A. C. Chong, A. G. Pollock, and P. H. Wooley. Mechanical evaluation of large-size fourth-generation composite femur and tibia models. Ann. Biomed. Eng. 38:613–620, 2010.

    Article  PubMed  Google Scholar 

  14. Giner, E., C. Arango, A. Vercher, and F. J. Fuenmayor. Numerical modelling of the mechanical behaviour of an osteon with microcracks. J. Mech. Behav. Biomed. Mater. 37:109–124, 2014.

    Article  CAS  PubMed  Google Scholar 

  15. Grassi, L., E. Schileo, F. Taddei, L. Zani, M. Juszczyk, L. Cristofolini, and M. Viceconti. Accuracy of finite element predictions in sideways load configurations for the proximal human femur. J. Biomech. 45:394–399, 2012.

    Article  CAS  PubMed  Google Scholar 

  16. Grassi, L., S. P. Väänänen, M. Ristinmaa, J. S. Jurvelin, and H. Isaksson. How accurately can subject-specific finite element models predict strains and strength of human femora? Investigation using full-field measurements. J. Biomech. 49:802–806, 2016.

    Article  PubMed  Google Scholar 

  17. Grassi, L., S. P. Väänänen, S. A. Yavari, H. Weinans, J. S. Jurvelin, A. A. Zadpoor, and H. Isaksson. Experimental validation of finite element model for proximal composite femur using optical measurements. J. Mech. Behav. Biomed. Mater. 21:86–94, 2013.

    Article  PubMed  Google Scholar 

  18. Hambli, R., and S. Allaoui. A robust 3d finite element simulation of human proximal femur progressive fracture under stance load with experimental validation. Ann. Biomed. Eng. 41(12):2515–2527, 2013.

    Article  PubMed  Google Scholar 

  19. Juszczyk, M. M., L. Cristofolini, and M. Viceconti. The human proximal femur behaves linearly elastic up to failure under physiological loading conditions. J. Biomech. 44:2259–2266, 2011.

    Article  PubMed  Google Scholar 

  20. Kelly, N., and J. P. McGarry. Experimental and numerical characterisation of the elasto-plastic properties of bovine trabecular bone and a trabecular bone analogue. J. Mech. Behav. Biomed. Mater. 9:184–197, 2012.

    Article  PubMed  Google Scholar 

  21. Kemper, A. R., C. McNally, E. Kennedy, S. J. Manoogian, and S. M. Duma. The material properties of human tibia cortical bone in tension and compression: implications for the tibia index. In: Proceedings of the 20th International Technical Conference on the Enhanced Safety of Vehicles (ESV), 2007.

  22. Keyak, J. H. Relationships between femoral fracture loads for two load configurations. J. Biomech. 33:499–502, 2000.

    Article  CAS  PubMed  Google Scholar 

  23. Kutz, M. Standard Handbook of Biomedical Engineering and Design, Chapter 8: Bone Mechanics. New York: McGraw-Hill, pp. 8.1–8.23, 2003.

    Google Scholar 

  24. Marco, M., M. Rodríguez-Millán, C. Santiuste, E. Giner, and H. Miguélez. A review on recent advances in numerical modelling of bone cutting. J. Mech. Behav. Biomed. Mater. 44:179–201, 2015.

    Article  PubMed  Google Scholar 

  25. Morgan, E. F., and T. M. Keaveny. Dependence of yield strain of human trabecular bone on anatomic site. J. Biomech. 34:569–577, 2001.

    Article  CAS  PubMed  Google Scholar 

  26. Pal, B., S. Gupta, A. M. R. New, and M. Browne. Strain and micromotion in intact and resurfaced composite femurs: experimental and numerical investigations. J. Biomech. 43:1923–1930, 2010.

    Article  PubMed  Google Scholar 

  27. Schaefer, T. K., C. Spross, K. K. Stoffel, and P. J. Yates. Biomechanical properties of a posterior fully threaded positioning screw for cannulated screw fixation of displaced neck of femur fractures. Injury 46:2130–2133, 2015.

    Article  PubMed  Google Scholar 

  28. Schileo, E., L. Balistreri, L. Grassi, L. Cristofolini, and F. Taddei. To what extent can linear finite element models of human femora predict failure under stance and fall loading configurations. J. Biomech. 47:3531–3538, 2014.

    Article  PubMed  Google Scholar 

  29. Schileo, E., F. Taddei, L. Cristofolini, and M. Viceconti. Subject-specific finite element models implementing a maximum principal strain criterion are able to estimate failure risk and fracture location on human femurs tested in vitro. J. Biomech. 41:356–367, 2008.

    Article  PubMed  Google Scholar 

  30. Shah, S., H. Bougherara, E. H. Schemitsch, and R. Zdero. Biomechanical stress maps of an artificial femur obtained using a new infrared thermography technique validated by strain gages. Med. Eng. Phys. 34:1496–1502, 2012.

    Article  PubMed  Google Scholar 

  31. Taddei, F., I. Palmadori, W. R. Taylor, M. O. Heller, B. Bordini, A. Toni, and E. Schileo. Safety factor of the proximal femur during gait: a population-based finite element study. J. Biomech. 47:3433–3440, 2014.

    Article  PubMed  Google Scholar 

  32. Verhulp, E., B. Rietbergen, and R. Huiskes. Load distribution in the healthy and osteoporotic human proximal femur during a fall to the side. Bone 42:30–35, 2008.

    Article  CAS  PubMed  Google Scholar 

  33. Zimmermann, E. A., M. E. Launey, H. D. Barth, and R. O. Ritchie. Mixed-mode fracture of human cortical bone. Biomaterials 30:5877–5884, 2009.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the funding support received from the Spanish Ministry of Economy and Competitiveness and the FEDER operation program for funding the Projects DPI2013-46641-R, RTC-2015-3887-8 and the Generalitat Valenciana through the Project Prometeo/2016/007.

Conflict of interest

The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Marco.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

The original version of this article was revised: Ricardo Larraínzar-Garijo’s name has been corrected.

An erratum to this article is available at https://doi.org/10.1007/s10439-017-1880-y.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marco, M., Giner, E., Larraínzar-Garijo, R. et al. Numerical Modelling of Femur Fracture and Experimental Validation Using Bone Simulant. Ann Biomed Eng 45, 2395–2408 (2017). https://doi.org/10.1007/s10439-017-1877-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-017-1877-6

Keywords

Navigation