Skip to main content
Log in

A theory of mechanobiological sensation: strain amplification/attenuation of coated liquid inclusion with surface tension

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Cells are compressible and can be regarded as a kind of coated liquid inclusion embedded in a three-dimensional elastic matrix. In the presence of far-field loading, how the coating influences the mechanical response (e.g., volume change) of the liquid inclusion remains elusive, especially when surface tension effects become significant at cell size level. We developed a theoretical model to characterize the mechanical amplification or attenuation role of coating on spherical liquid inclusions, with surface tension and liquid compressibility accounted for. We found that surface tension could increase the volumetric strain of the inclusion through decreasing its effective bulk modulus. We further found that, when there is a monotonic stiffness variation (either decreasing or increasing) from matrix via coating to inclusion, the presence of coating amplified the volumetric strain compared with the case without coating; in the opposite, when there is a non-monotonic stiffness change from matrix via coating to inclusion, the volumetric strain is attenuated by the coating. The results are useful for understanding and exploring the mechanobiological sensation of certain types of cell, e.g., osteocytes and cancer cells.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Krishnan, R., Park, C.Y., Lin, Y.C., et al.: Reinforcement versus fluidization in cytoskeletal mechanoresponsiveness. PLoS ONE 4(5), e5486 (2009)

    Article  Google Scholar 

  2. Chen, X., He, W., Liu, S., et al.: Volumetric response of an ellipsoidal liquid inclusion: implications for cell mechanobiology. Acta. Mech. Sin. 35(2), 338–342 (2019)

    Article  MathSciNet  Google Scholar 

  3. Chen, X., Li, M., Yang, M., et al.: The elastic fields of a compressible liquid inclusion. Extreme Mech. Lett. 22, 122–130 (2018)

    Article  Google Scholar 

  4. Hagan, M.L., Yu, K., Zhu, J., et al.: Decreased pericellular matrix production and selection for enhanced cell membrane repair may impair osteocyte responses to mechanical loading in the aging skeleton. Aging Cell 19(1), e13056 (2020)

    Article  Google Scholar 

  5. Khoshgoftar, M., Torzilli, P.A., Maher, S.A.: Influence of the pericellular and extracellular matrix structural properties on chondrocyte mechanics. J. Orthop. Res. 36(2), 721–729 (2018)

    Google Scholar 

  6. Verbruggen, S.W., Vaughan, T.J., Mcnamara, L.M.: Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes. J. R. Soc. Interface 9(75), 2735–2744 (2012)

    Article  Google Scholar 

  7. Wang, L., Dong, J., Xian, C.J.: Computational modeling of bone cells and their biomechanical behaviors in responses to mechanical stimuli. Crit. Rev. Eukaryot. Gene Expr. 29(1), 51–67 (2019)

    Article  Google Scholar 

  8. Yu, H., Mouw, J.K., Weaver, V.M.: Forcing form and function: biomechanical regulation of tumor evolution. Trends Cell Biol. 21(1), 47–56 (2011)

    Article  Google Scholar 

  9. Kumar, S., Weaver, V.M.: Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev. 28(1–2), 113–127 (2009)

    Article  Google Scholar 

  10. Eshelby, J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Pro. Roy. Soc. A 241(1226), 376–396 (1957)

    MathSciNet  MATH  Google Scholar 

  11. Walpole, L.J.: A coated inclusion in an elastic medium. Math. Proc. Cambridge Philos. Soc. 83(3), 495–506 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jayaraman, K., Reifsnider, K.L.: Residual stresses in a composite with continuously varying Young’s modulus in the fiber/matrix interphase. J. Compos. Mater. 26(6), 770–791 (1992)

    Article  Google Scholar 

  13. Vörös, G., Pukánszky, B.: Effect of a soft interlayer with changing properties on the stress distribution around inclusions and yielding of composites. Compos. A 32(3), 343–352 (2001)

    Article  Google Scholar 

  14. Duan, H.L., Wang, J., Huang, Z.P., et al.: Stress fields of a spheroidal inhomogeneity with an interphase in an infinite medium under remote loadings. Proc R Soc A 461(2056), 1055–1080 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Bertoldi, K., Bigoni, D., Drugan, W.J.: Structural interfaces in linear elasticity. Part II: Effective properties and neutrality. J. Mech. Phys. Solids 55(1), 35–63 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yi, M.W., Huang, Z.P., Yan, Z., et al.: Effective moduli of particle-filled composite with inhomogeneous interphase: Part I–bounds. Compos. Sci. Technol. 64(9), 1345–1351 (2004)

    Article  Google Scholar 

  17. Yan, Z., Wang, J., Yi, M.W., et al.: Effective moduli of particle-filled composite with inhomogeneous interphase: Part II–mapping method and evaluation. Compos. Sci. Technol. 64(9), 1353–1362 (2004)

    Article  Google Scholar 

  18. Hashin, Z.: Thin interphase/imperfect interface in elasticity with application to coated fiber composites. J. Mech. Phys. Solids 50(12), 2509–2537 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bai, S.L., Wang, G.T., Hiver, J.M., et al.: Microstructures and mechanical properties of polypropylene/polyamide 6/polyethelene-octene elastomer blends. Polymer 45(9), 3063–3071 (2004)

    Article  Google Scholar 

  20. Ostoja-Starzewski, M., Jasiuk, I., Wang, W., et al.: Composites with functionally graded interphases: mesocontinuum concept and effective transverse conductivity. Acta Mater. 44(5), 2057–2066 (1996)

    Article  Google Scholar 

  21. Wang, W., Jasiuk, I.: Effective elastic constants of particulate composites with inhomogeneous interphases. J. Compos. Mater. 32(15), 1391–1424 (1998)

    Article  Google Scholar 

  22. Christensen, R.M., Lo, K.H.: Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids 27(4), 315–330 (1979)

    Article  MATH  Google Scholar 

  23. Mancarella, F., Wettlaufer, J.S.: Surface tension and a self-consistent theory of soft composite solids with elastic inclusions. Soft Matter 13(5), 945–955 (2017)

    Article  Google Scholar 

  24. Xiao, J., Xu, B.-X., Xu, Y., et al.: The generalized self-consistent micromechanics prediction of the magnetoelectroelastic properties of multi-coated nanocomposites with surface effect. Smart Mater. Struct. 28(5), 055004 (2019)

    Article  Google Scholar 

  25. Peng, C., Feng, J., Feiting, S., et al.: Modified two-phase micromechanical model and generalized self-consistent model for predicting dynamic modulus of asphalt concrete. Constr. Build. Mater. 201, 33–41 (2019)

    Article  Google Scholar 

  26. Lurie, S., Solyaev, Y., Shramko, K.: Comparison between the Mori-Tanaka and generalized self-consistent methods in the framework of anti-plane strain inclusion problem in strain gradient elasticity. Mech. Mater. 122, 133–144 (2018)

    Article  Google Scholar 

  27. Mancarella, F., Style, R.W., Wettlaufer, J.S.: Interfacial tension and a three-phase generalized self-consistent theory of non-dilute soft composite solids. Soft Matter 12(10), 2744 (2016)

    Article  MATH  Google Scholar 

  28. Chen, X., Li, M., Liu, S., et al.: Mechanics tuning of liquid inclusions via bio-coating. Extreme Mech. Lett. 2020, 101049 (2020)

    Article  Google Scholar 

  29. Shafiro, B., Kachanov, M.: Materials with fluid-filled pores of various shapes: Effective elastic properties and fluid pressure polarization. Int. J. Solids Struct. 34(27), 3517–3540 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. Style, R.W., Wettlaufer, J.S., Dufresne, E.R.: Surface tension and the mechanics of liquid inclusions in compliant solids. Soft Matter 11(4), 672–679 (2015)

    Article  Google Scholar 

  31. Guo, M., Pegoraro, A.F., Mao, A., et al.: Cell volume change through water efflux impacts cell stiffness and stem cell fate. Pro. Natl. Acad. Sci. USA 114(41), 201705179 (2017)

    Article  Google Scholar 

  32. Wang, M., Yang, Y., Han, L., et al.: Cell mechanical microenvironment for cell volume regulation. J. Cell. Physiol. 235(5), 4070–4081 (2020)

    Article  Google Scholar 

  33. Liu, A., Yu, T., Young, K., et al.: Cell mechanical and physiological behavior in the regime of rapid mechanical compressions that lead to cell volume change. Small 16(2), 1903857 (2020)

    Article  Google Scholar 

  34. Amit, T., Ran, K., Lebleu, V.S., et al.: Cell growth and size homeostasis in proliferating animal cells. Science 325(5937), 167–171 (2009)

    Article  Google Scholar 

  35. Hui, T.H., Zhou, Z.L., Qian, J., et al.: Volumetric deformation of live cells induced by pressure-activated cross-membrane ion transport. Phys. Rev. Lett. 113(11), 118101 (2014)

    Article  Google Scholar 

  36. Badowski, C., Iskander, A., Gaspar, D., et al.: Molecular crowding–(in cell culture). Cell Eng. Regener. 2020, 483–509 (2020)

    Article  Google Scholar 

  37. Watanabe, C., Yanagisawa, M.: Unique phase behavior in cell size space: synergistic effect of molecular crowding and confinement. Biophys. Rev. 12(2), 385 (2020)

    Article  Google Scholar 

  38. Liao, H.S., Wen, P.J., Wu, L.G., et al.: Effect of osmotic pressure on cellular stiffness as evaluated through force mapping measurements. J. Biomech. Eng. 140(5), 054502 (2018)

    Article  Google Scholar 

  39. Oh, D., Zidovska, A., Xu, Y., et al.: Development of time-integrated multipoint moment analysis for spatially resolved fluctuation spectroscopy with high time resolution. Biophys. J. 101(6), 1546–1554 (2011)

    Article  Google Scholar 

  40. Jerome, I., Joe, S., Rui, P., et al.: Osmotic challenge drives rapid and reversible chromatin condensation in chondrocytes. Biophys. J. 104(4), 759–769 (2013)

    Article  Google Scholar 

  41. Charras, G.T., Horton, M.A.: Determination of cellular strains by combined atomic force microscopy and finite element modeling. Biophys. J. 83(2), 858–879 (2002)

    Article  Google Scholar 

  42. Kelly, G.M., Kilpatrick, J.I., Van Es, M.H., et al.: Bone cell elasticity and morphology changes during the cell cycle. J. Biomech. 44(8), 1484–1490 (2011)

    Article  Google Scholar 

  43. Rubiano, A., Galitz, C., Simmons, C.S.: Mechanical characterization by mesoscale indentation: advantages and pitfalls for tissue and scaffolds. Tissue Eng. Part C 25(10), 619–629 (2019)

    Article  Google Scholar 

  44. Kostic, A., Lynch, C.D., Sheetz, M.P.: Differential matrix rigidity response in breast cancer cell lines correlates with the tissue tropism. PLoS ONE 4(7), e6361 (2009)

    Article  Google Scholar 

  45. Lam, W.A., Cao, L., Umesh, V., et al.: Extracellular matrix rigidity modulates neuroblastoma cell differentiation and N-myc expression. Mol. Cancer 9(1), 35 (2010)

    Article  Google Scholar 

  46. Pathi, S.P., Kowalczewski, C., Tadipatri, R., et al.: A novel 3-D mineralized tumor model to study breast cancer bone metastasis. PLoS ONE 5(1), e8849 (2010)

    Article  Google Scholar 

  47. Menton, D., Simmons, D., Chang, S.L., et al.: From bone lining cell to osteocyte—an SEM study. Anatom. Record 209(1), 29–39 (1984)

    Article  Google Scholar 

  48. Wells, R.G.: The role of matrix stiffness in regulating cell behavior. Hepatology 47(4), 1394–1400 (2008)

    Article  Google Scholar 

  49. Yeh, W.-C., Li, P.-C., Jeng, Y.-M., et al.: Elastic modulus measurements of human liver and correlation with pathology. Ultrasound Med. Biol. 28(4), 467–474 (2002)

    Article  Google Scholar 

  50. Ladjal, H., Hanus, J.L., Pillarisetti, A., et al.: Atomic force microscopy-based single-cell indentation: experimentation and finite element simulation. in: International Conference on Intelligent Robots and Systems. St. Louis, MO (2009)

  51. Ding, Y., Xu, G.-K., Wang, G.-F.: On the determination of elastic moduli of cells by AFM based indentation. Sci. Rep. 7, 45575 (2017)

    Article  Google Scholar 

  52. Sugawara, Y., Ando, R., Kamioka, H., et al.: The three-dimensional morphometry and cell–cell communication of the osteocyte network in chick and mouse embryonic calvaria. Calcif. Tissue Int. 88(5), 416–424 (2011)

    Article  Google Scholar 

  53. Sugawara, Y., Ando, R., Kamioka, H., et al.: The alteration of a mechanical property of bone cells during the process of changing from osteoblasts to osteocytes. Bone 43(1), 19–24 (2008)

    Article  Google Scholar 

  54. McCreadie, B.R., Hollister, S.J.: Strain concentrations surrounding an ellipsoid model of lacunae and osteocytes. Comput. Methods Biomech Bio Med. Eng. 1(1), 61–68 (1997)

    Article  Google Scholar 

  55. Guilak, F., Alexopoulos, L.G., Upton, M.L., et al.: The pericellular matrix as a transducer of biomechanical and biochemical signals in articular cartilage. Ann. N. Y. Acad. Sci. 1068(1), 498–512 (2006)

    Article  Google Scholar 

  56. Kato, N., Koshino, T., Saito, T., et al.: Estimation of Young’s modulus in swine cortical bone using quantitative computed tomography. Bulletin. 57(4), 183–186 (1998)

    Google Scholar 

  57. Han, Y.L., Ronceray, P., Xu, G., et al.: Cell contraction induces long-ranged stress stiffening in the extracellular matrix. Proc. Natl. Acad. Sci. 115(16), 4075–4080 (2018)

    Article  Google Scholar 

  58. Ronceray, P., Broedersz, C.P., Lenz, M.: Fiber networks amplify active stress. Proc. Natl. Acad. Sci. 113(11), 2827–2832 (2016)

    Article  Google Scholar 

  59. Ban, E., Wang, H., Franklin, J.M., et al.: Strong triaxial coupling and anomalous Poisson effect in collagen networks. Proc. Natl. Acad. Sci. 116(14), 6790–6799 (2019)

    Article  Google Scholar 

  60. Fletcher, D.A., Mullins, R.D.: Cell mechanics and the cytoskeleton. Nature 463(7280), 485–492 (2010)

    Article  Google Scholar 

  61. Jiang, H., Sun, S.X.: Cellular pressure and volume regulation and implications for cell mechanics. Biophys. J. 105(3), 609–619 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grants 12032010, 11532009, and 11902155), the Natural Science Foundation of Jiangsu Province (Grant BK20190382), the foundation of “Jiangsu Provincial Key Laboratory of Bionic Functional Materials”, the Foundation for the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaobao Liu or Tian Jian Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Executive Editor: Xi-Qiao Feng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 221 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ti, F., Chen, X., Yang, H. et al. A theory of mechanobiological sensation: strain amplification/attenuation of coated liquid inclusion with surface tension. Acta Mech. Sin. 37, 145–155 (2021). https://doi.org/10.1007/s10409-020-01017-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-020-01017-3

Keywords

Navigation