Skip to main content
Log in

Compression of a pressurized spherical shell by a spherical or flat probe

  • Regular Article - Living Systems
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Measuring the mechanical properties of cells and tissues often involves indentation with a sphere or compression between two plates. Different theoretical approaches have been developed to retrieve material parameters (e.g., elastic modulus) or state variables (e.g., pressure) from such experiments. Here, we extend previous theoretical work on indentation of a spherical pressurized shell by a point force to cover indentation by a spherical probe or a plate. We provide formulae that enable the modulus or pressure to be deduced from experimental results with realistic contact geometries, giving different results that are applicable depending on pressure level. We expect our results to be broadly useful when investigating biomechanics or mechanobiology of cells and tissues.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. K.S. Cole, J. Cell. Comp. Physiol. 1, 1 (1932)

    Article  Google Scholar 

  2. K. Bando, K. Ohba, Y. Oiso, J. Biorheol. 27, 18 (2013)

    Article  Google Scholar 

  3. R. Goswami, A. Asnacios, P. Milani, S. Graindorge, G. Houlné, J. Mutterer, O. Hamant, M.E. Chabouté, Current Biol: CB 30, 2013 (2020)

    Article  Google Scholar 

  4. Y. Hiramoto, Exp. Cell Res. 32, 59 (1963)

    Article  Google Scholar 

  5. M. Yoneda, J. Exp. Biol. 41, 893 (1964)

    Article  Google Scholar 

  6. J. Blewett, K. Burrows, C. Thomas, Biotech. Lett. 22, 1877 (2000)

    Article  Google Scholar 

  7. Z. Zhang, J. Blewett, C. Thomas, J. Biotechnol. 71, 17 (1999)

    Article  Google Scholar 

  8. L. Davidson, G. Oster, R. Keller, M. Koehl, Dev. Biol. 209, 221 (1999)

    Article  Google Scholar 

  9. T.V. Stirbat, S. Tlili, T. Houver, J.P. Rieu, C. Barentin, H. Delanoë-Ayari, Eur. Phys. J. E 36, 84 (2013)

    Article  Google Scholar 

  10. J. Alcaraz, J. Otero, I. Jorba, D. Navajas, Semi. Cell. Develop. Biol. (2017-07)

  11. P. Milani, S.A. Braybrook, A. Boudaoud, J. Exp. Botany 64, 4651 (2013-11)

  12. R. Mahaffy, C. Shih, F. MacKintosh, J. Käs, Phys. Rev. Lett. 85, 880 (2000)

    Article  ADS  Google Scholar 

  13. W.W. Feng, H. Pangnan, Int. J. Solids Struct. 11, 437 (1975)

    Article  Google Scholar 

  14. T. Lardner, P. Pujara, in Mechanics Today (Elsevier, 1980), pp. 161–176

  15. A. Touhami, B. Nysten, Y.F. Dufrêne, Langmuir 19, 4539 (2003)

    Article  Google Scholar 

  16. J.D. Stenson, P. Hartley, C. Wang, C.R. Thomas, Biotechnol. Prog. 27, 505 (2011)

    Article  Google Scholar 

  17. C.R. Thomas, J.D. Stenson, Z. Zhang, in High Resolution Microbial Single Cell Analytics (Springer, 2010), pp. 83–98

  18. D. Vella, A. Ajdari, A. Vaziri, A. Boudaoud, J. R. Soc. Interf. 9, 448 (2012)

    Article  Google Scholar 

  19. D. Vella, A. Ajdari, A. Vaziri, A. Boudaoud, Phys. Rev. Lett. 109, 144302 (2012)

    Article  ADS  Google Scholar 

  20. B. Audoly, Y. Pomeau, Elasticity and Geometry: From Hair Curls to the Non-linear Response of Shells (Oxford University Press, Oxford, 2010)

    MATH  Google Scholar 

  21. A.V. Pogorelov, Extrinsic Geometry of Convex Surfaces, vol. 35 (American Mathematical Society, Providence, 1973)

    Book  Google Scholar 

  22. T. Cebeci, H.B. Keller, J. Comput. Phys. 7, 289 (1971)

    Article  ADS  Google Scholar 

  23. J.M. Codjoe, K. Miller, E.S. Haswell, The Plant Cell pp. koab230– (2021)

  24. K.H. Vining, D.J. Mooney, Nature Reviews Molecular Cell Biology (2017)

  25. Q. Mao, T. Lecuit, Tissue Remodeling and Epithelial Morphogenesis 116, 633 (2016)

    Google Scholar 

  26. V. Davì, N. Minc, Current Opinion Microbiol 28, 36 (2015)

    Article  Google Scholar 

  27. S.X. Sun, H. Jiang, Microbiol. Mol. Biol. Rev. 75, 543 (2011)

    Article  Google Scholar 

  28. F. Bizet, A.G. Bengough, I. Hummel, M.B. Bogeat-Triboulot, L.X. Dupuy, J. Exp. Bot. 67, 5605 (2016)

    Article  Google Scholar 

  29. N.P. Money, Biology of the Fungal Cell (Springer, Berlin, 2001), pp. 3–17

    Book  Google Scholar 

Download references

Funding

Etienne Couturier is funded by ANR AnAdSPi (ANR-20-CE30-0005). Arezki Boudaoud is funded by ANR-17-CE20-0023-02 WALLMIME, ANR-20-CE13-0022-03 HydroField, ANR-20-CE13-0003-02 CellWallSense.

Author information

Authors and Affiliations

Authors

Contributions

EC, DV, and AB designed the research. EC performed the research. EC, DV, and AB wrote the article.

Corresponding author

Correspondence to Etienne Couturier.

Additional information

Guest editors: Alexandre Kabla, BenoÃRt Ladoux, Jean-Marc Di Meglio.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Couturier, E., Vella, D. & Boudaoud, A. Compression of a pressurized spherical shell by a spherical or flat probe. Eur. Phys. J. E 45, 13 (2022). https://doi.org/10.1140/epje/s10189-022-00166-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/s10189-022-00166-6

Navigation