Skip to main content
Log in

Improved incremental transfer matrix method for nonlinear rotor-bearing system

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Rotor system supported by nonlinear bearing such as squeeze film damper (SFD) is widely used in practice owing to its wide range of damping capacity and simplicity in structure. In this paper, an improved and effective Incremental transfer matrix method (ITMM) is first presented by combining ITMM and fast Fourier transform (FFT). Afterwards this method is applied to calculate the dynamic characteristics of a Jeffcott rotor system with SFD. The convergence difficulties incurred caused by strong nonlinearities of SFD has been dealt by adopting a control factor. It is found that for the more general boundary problems where the boundary conditions are not at input and output ends of a chain system, the supplementary equation is necessarily added. Additionally, the Floquet theory is used to analyze the stability and bifurcation type of the obtained periodic solution. The semi-analytical results, including the periodic solutions of the system, the bifurcation points and their types, are in good agreement with the numerical method. Furthermore, the involution mechanism of the quasi-periodic and chaotic motions near the first-order translational mode and the second order bending mode of this system is also clarified by this method with the aid of Floquet theory.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13: a

Similar content being viewed by others

Abbreviations

\(a,\;a_{si} ,\;a_{ci}\) :

Fourier series, dimensionless

\({\mathbf{A}},\;{\mathbf{B}}\) :

Displacement and angular components in the state vector

\(c\) :

Damping coefficient of linear elastic support, \({\text{N}} \cdot {\text{s/m}}\)

\(C\) :

Clearance of squeeze film damper, m

\({\mathbf{D}}_{i}\) :

Component of transfer matrix of squeeze film damper (SFD)

\(e\) :

Radial displacement of journal, m

\(EI\) :

Flexural rigidity of massless beam, \({\text{N}} \cdot {\text{m}}^{ 2}\)

\(F_{r} ,\;F_{t}\) :

Oil film forces in the polar coordinate system, N

\(F_{x} ,\;F_{y}\) :

Oil film forces in the Cartesian coordinate system, N

\(\bar{F}_{r} ,\;\bar{F}_{t}\) :

Dimensionless oil film forces in the polar coordinate system, dimensionless

\(\bar{F}_{x} ,\;\bar{F}_{y}\) :

Dimensionless oil film forces in the Cartesian coordinate system, dimensionless

\({\mathbf{G}},\;{\mathbf{H}}\) :

Force and moment components in the state vector

\({\mathbf{I}}\) :

Identity matrix

\(J_{d}\) :

Equivalent equatorial moment of inertia of the disk, \({\text{kg}} \cdot {\text{m}}^{2}\)

\(J_{p}\) :

Equivalent polar moment of inertia of the disk, \({\text{kg}} \cdot {\text{m}}^{2}\)

\(J_{m}\) :

Equivalent equatorial moment of inertia of bearing with SFD, \({\text{kg}} \cdot {\text{m}}^{2}\)

\(k\) :

Stiffness coefficient of linear elastic support, \({\text{N/m}}\)

\(l\) :

Length of the massless beam, m

\(L\) :

Length of SFD, m

\(m\) :

Equivalent mass of journal, kg

\(M\) :

Equivalent mass of disk, kg

\(M_{x} ,\;M_{y}\) :

Moment acting on part, \({\text{N}} \cdot {\text{m}}\)

\(N\) :

Maximal harmonic order, dimensionless

\(N_{s}\) :

Length of signal sequence, dimensionless

\(p\) :

Oil film pressure, Pa

\({\mathbf{P}}_{i}\) :

Component of transfer matrix of disk

\(q_{x} ,\;q_{y}\) :

Force action on part, N

\(Q\) :

Amplitude correct factor, dimensionless

\(R\) :

Radius of the journal, m

\({\mathbf{S}}\) :

Basic function vector of Fourier expansion

\(t\) :

Time, s

\({\mathbf{T}}\) :

The row in supplementary matrix corresponding to supplementary equation

\(u\) :

Unbalance value, \({\text{kg}} \cdot {\text{m}}\)

\({\mathbf{U}}\) :

Transfer matrix

\(x,\;y,\;z\) :

Displacement of part, m

\({\mathbf{z}}\) :

State vector

\(\Delta {\mathbf{z}}\) :

Incremental state vector

\(\alpha ,\;\beta\) :

Angles of disk rotate along x axis and y axis, rad

\(\varepsilon\) :

Dimensionless radial displacement of journal, dimensionless

\(\theta\) :

Film coordinates from the maximum gap, rad

\(\mu\) :

Lubricating viscosity, \({\text{N}} \cdot {\text{s/m}}^{ 2}\)

\(\lambda\) :

Iterative control factor, dimensionless

\(\tau\) :

Dimensionless time, dimensionless

\(\psi\) :

Angular displacement of journal, rad

\(\omega\) :

Rotational speed, rad/s

\(\omega_{\text{r}}\) :

Dimensionless frequency

References

  1. Hamburg, G., Parkinson, J.: Gas turbine shaft dynamics. SAE Trans. 70, 774–784 (1962)

    Google Scholar 

  2. Holmes, R.: The non-linear performance of squeeze-film bearings. Mech. Eng. Mec. 14, 74–77 (1972)

    Google Scholar 

  3. Chen, W., Chen, S., Hu, Z., et al.: A novel dynamic model for the spiral bevel gear drive with elastic ring squeeze film dampers. Nonlinear Dynam. 98, 1081–1105 (2019)

    Article  Google Scholar 

  4. Han, Z., Ding, Q., Zhang, W.: Dynamical analysis of an elastic ring squeeze film damper-rotor system. Mech. Mach. Theory 131, 406–419 (2019)

    Article  Google Scholar 

  5. Chen, Y., Liu, J.: Improving convergence of incremental harmonic balance method using homotopy analysis method. Acta. Mech. Sin. 25, 707–712 (2009)

    Article  MathSciNet  Google Scholar 

  6. Yuan, T., Yang, J., Chen, L.: Nonlinear vibration analysis of a circular composite plate harvester via harmonic balance. Acta. Mech. Sin. 35, 912–925 (2019)

    Article  MathSciNet  Google Scholar 

  7. Chen, L., Basu, B., Nielsen, S.R.: Nonlinear periodic response analysis of mooring cables using harmonic balance method. J. Sound Vib. 438, 402–418 (2019)

    Article  Google Scholar 

  8. Hahn, E.J., Chen, P.Y.P.: Harmonic balance analysis of general squeeze film damped multidegree-of-freedom rotor bearing systems. J. Tribol. 116, 499–507 (1994)

    Article  Google Scholar 

  9. Bonello, P., Brennan, M.J., Holmes, R.: Non-linear modelling of rotor dynamic systems with squeeze film dampers—an efficient integrated approach. J. Sound Vib. 249, 743–773 (2002)

    Article  Google Scholar 

  10. Bonello, P., Brennan, M.J., Holmes, R.: An investigation into the non-linear dynamics of an unbalanced flexible rotor running in an unsupported squeeze-film damper bearing. Mech. Eng. Mec. 217(8), 955–971 (2003)

    Google Scholar 

  11. Chen, H., Hou, L., Chen, Y., et al.: Dynamic characteristics of flexible rotor with squeeze film damper excited by two frequencies. Nonlinear Dynam. 87, 2463–2481 (2017)

    Article  Google Scholar 

  12. He, F., Dousti, S., Allaire, P., et al.: Squeeze film damper effect on vibration of an unbalanced flexible rotor using harmonic balance method. JESTEC. 12(3), 667–685 (2017)

    Google Scholar 

  13. Wu, B.S., Sun, W.P., Lim, C.W.: An analytical approximate technique for a class of strongly non-linear oscillators. Int. J. Nonlin. Mech. 41, 766–774 (2006)

    Article  MathSciNet  Google Scholar 

  14. Lau, S.L., Cheung, Y.K.: Amplitude incremental variational principle for nonlinear vibration of elastic systems. J. Appl. Mech. 48, 959–964 (1981)

    Article  Google Scholar 

  15. Raghothama, A., Narayanan, S.: Bifurcation and chaos in geared rotor bearing system by incremental harmonic balance method. J. Sound Vib. 226, 469–492 (1999)

    Article  Google Scholar 

  16. Zhou, Y., Luo, Z., Bian, Z., et al.: Nonlinear vibration characteristics of the rotor bearing system with bolted flange joints. Mech. Eng. Mul. 233, 910–930 (2019)

    Google Scholar 

  17. Ju, R., Fan, W., Zhu, W., et al.: A modified two-timescale incremental harmonic balance method for steady-state quasi-periodic responses of nonlinear systems. J. Comput. Nonlin. Dyn. 12, 5 (2017)

    Google Scholar 

  18. Rao, J.S.: History of Rotating Machinery Dynamics. Springer, Berlin (2011)

    Book  Google Scholar 

  19. Choi, S.T., Mau, S.Y.: Dynamic analysis of geared rotor-bearing systems by the transfer matrix method. J. Mech. Design. 123, 562–568 (2001)

    Article  Google Scholar 

  20. Lee, A., Kang, Y., Liu, S.: Steady-state analysis of a rotor mounted on nonlinear bearings by the transfer matrix method. Int. J. Mech. Sci. 35, 479–490 (1993)

    Article  Google Scholar 

  21. Zu, J.W., Ji, Z.: An improved transfer matrix method for steady-state analysis of nonlinear rotor-bearing systems. J. Eng. Gas Turb. Power 124, 303–310 (2002)

    Article  Google Scholar 

  22. Yasuda, K., Torii, T., Kasahara, M.: Proposition of an incremental transfer matrix method for nonlinear vibration analysis. JSME Int. J. Ser. 3(34), 12–18 (1991)

    Google Scholar 

  23. Miralles, J.P., Olivo, P.J.J., Peiro, D.G., et al.: A fast Galerkin method to obtain the periodic solutions of a nonlinear oscillator. Appl. Math. Comput. 86, 261–282 (1997)

    MathSciNet  MATH  Google Scholar 

  24. Wang, H., Tian, H.: A fast Galerkin method with efficient matrix assembly and storage for a peridynamic model. J. Comput. Phys. 231, 7730–7738 (2012)

    Article  MathSciNet  Google Scholar 

  25. Dakel, M.Z., Baguet, S., Dufour, R.: Nonlinear dynamics of a support-excited flexible rotor with hydrodynamic journal bearings. J. Sound Vib. 333, 2774–2799 (2014)

    Article  Google Scholar 

  26. Amamou, A., Chouchane, M.: Nonlinear stability analysis of long hydrodynamic journal bearings using numerical continuation. Mech. Mach. Theory 72, 17–24 (2014)

    Article  Google Scholar 

  27. Rui, X., Abbas, L.K., Yang, F., et al.: flapwise vibration computations of coupled helicopter rotor/fuselage: application of multibody system dynamics. AIAA J. 56(2), 1–18 (2017)

    Google Scholar 

  28. Abbas, L.K., Rui, X.: Vibration of spinning beam based on transfer matrix method of linear multibody systems. In: International Conference on Mechanical, System and Control Engineering, St. Petersburg, May 19–21 (2017)

  29. Zhou, Q., Rui, X.: A representation of the transfer matrix method for linear controlled multibody systems using matrix signal flow graph. In: ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Quebec City, Aug 26–29 (2018)

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from China Science Challenge Project (Grant JCKY2016212A506-0104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoting Rui.

Appendices

Appendix I

1.1 Expressions of derivatives of the oil force

In this section, the expressions of derivatives of the oil force generated by squeeze film damper in Sect. 2.2 are given as follows,

$$\frac{{\partial \bar{F}_{x} }}{\partial x} = \frac{{\partial \bar{F}_{t} }}{\partial x}\sin \psi + \bar{F}_{t} \frac{{\partial \sin \psi_{t} }}{\partial x} - \frac{{\partial \bar{F}_{r} }}{\partial x}\cos \psi - \bar{F}_{r} \frac{\partial \cos \psi }{\partial x},$$
$$\frac{{\partial \bar{F}_{x} }}{\partial y} = \frac{{\partial \bar{F}_{t} }}{\partial y}\sin \psi + \bar{F}_{t} \frac{{\partial \sin \psi_{t} }}{\partial y} - \frac{{\partial \bar{F}_{r} }}{\partial y}\cos \psi - \bar{F}_{r} \frac{\partial \cos \psi }{\partial y},$$
$$\frac{{\partial \bar{F}_{x} }}{{\partial x^{\prime}}} = \frac{{\partial \bar{F}_{t} }}{{\partial x^{\prime}}}\sin \psi - \frac{{\partial \bar{F}_{r} }}{{\partial x^{\prime}}}\cos \psi ,$$
$$\frac{{\partial \bar{F}_{x} }}{{\partial y^{\prime}}} = \frac{{\partial \bar{F}_{t} }}{{\partial y^{\prime}}}\sin \psi - \frac{{\partial \bar{F}_{r} }}{{\partial y^{\prime}}}\cos \psi ,$$
$$\frac{{\partial \bar{F}_{x} }}{\partial \omega } = \frac{{\partial \bar{F}_{t} }}{\partial \omega }\sin \psi - \frac{{\partial \bar{F}_{r} }}{\partial \omega }\cos \psi ,$$
$$\frac{{\partial \bar{F}_{y} }}{\partial x} = - \frac{{\partial \bar{F}_{t} }}{\partial x}\cos \psi - \bar{F}_{t} \frac{{\partial \cos \psi_{t} }}{\partial x} - \frac{{\partial \bar{F}_{r} }}{\partial x}\sin \psi - \bar{F}_{r} \frac{\partial \sin \psi }{\partial x},$$
$$\frac{{\partial \bar{F}_{y} }}{\partial y} = - \frac{{\partial \bar{F}_{t} }}{\partial y}\cos \psi - \bar{F}_{t} \frac{{\partial \cos \psi_{t} }}{\partial y} - \frac{{\partial \bar{F}_{r} }}{\partial y}\sin \psi - \bar{F}_{r} \frac{\partial \sin \psi }{\partial y},$$
$$\frac{{\partial \bar{F}_{y} }}{{\partial x^{\prime}}} = - \frac{{\partial \bar{F}_{t} }}{{\partial x^{\prime}}}\cos \psi - \frac{{\partial \bar{F}_{r} }}{{\partial x^{\prime}}}\sin \psi ,$$
$$\frac{{\partial \bar{F}_{y} }}{{\partial y^{\prime}}} = - \frac{{\partial \bar{F}_{t} }}{{\partial y^{\prime}}}\cos \psi - \frac{{\partial \bar{F}_{r} }}{{\partial y^{\prime}}}\sin \psi ,$$
$$\frac{{\partial \bar{F}_{y} }}{\partial \omega } = - \frac{{\partial \bar{F}_{t} }}{\partial \omega }\cos \psi - \frac{{\partial \bar{F}_{r} }}{\partial \omega }\sin \psi .$$

The analytical expressions for \(F_{t}\) and \(F_{r}\) have been derived in Sect. 2.3, where the specific expressions for \(\varepsilon\), \(\dot{\varepsilon }\), \(\psi\) and \(\dot{\psi }\) in them are

$$\varepsilon = \sqrt {(x^{2} + y^{2} )} ,\;\dot{\varepsilon } = \frac{{x\dot{x} + y\dot{y}}}{\varepsilon },\;\psi = \arctan \left(\frac{y}{x}\right),\;\dot{\psi } = - \frac{{\dot{x}y}}{{x^{2} + y^{2} }} + \frac{{x\dot{y}}}{{x^{2} + y^{2} }}.$$

Appendix II

2.1 Transfer matrices

In Sect. 2, the incremental transfer matrix of bearing supported by SFD has been derived. As a supplement, the other matrices of components are directly given here.

  1. (1)

    Disk

    Figure 14 shows a simplified model of the disk, the transfer equation is

    $$\left\{ {\begin{array}{*{20}c} {\Delta {\mathbf{A}}_{x} } \\ {\Delta {\mathbf{B}}_{\beta } } \\ {\Delta {\mathbf{H}}_{y} } \\ {\Delta {\mathbf{G}}_{x} } \\ {\Delta {\mathbf{A}}_{y} } \\ {\Delta {\mathbf{B}}_{\alpha } } \\ {\Delta {\mathbf{H}}_{x} } \\ {\Delta {\mathbf{G}}_{y} } \\ {\Delta \omega } \\ 1 \\ \end{array} } \right\}^{\text{R}} = \left[ {\begin{array}{*{20}c} {\mathbf{I}} & {} & {} & {} & {} & {} & {} & {} & {} & {} \\ {} & {\mathbf{I}} & {} & {} & {} & {} & {} & {} & {} & {} \\ {} & { - {\mathbf{P}}_{14}^{\prime } } & {\mathbf{I}} & {} & {} & { - {\mathbf{P}}_{15}^{\prime } } & {} & {} & { - {\mathbf{P}}_{16}^{\prime } } & { - {\mathbf{P}}_{13}^{\prime } } \\ {{\mathbf{P}}_{4}^{\prime } } & {} & {} & {\mathbf{I}} & {} & {} & {} & {} & {{\mathbf{P}}_{5}^{\prime } } & {{\mathbf{P}}_{3}^{\prime } + {\mathbf{P}}_{6}^{\prime } } \\ {} & {} & {} & {} & {\mathbf{I}} & {} & {} & {} & {} & {} \\ {} & {} & {} & {} & {} & {\mathbf{I}} & {} & {} & {} & {} \\ {} & {{\mathbf{P}}_{20}^{\prime } } & {} & {} & {} & { - {\mathbf{P}}_{19}^{\prime } } & {\mathbf{I}} & {} & { - {\mathbf{P}}_{21}^{\prime } } & {{\mathbf{P}}_{18}^{\prime } } \\ {} & {} & {} & {} & { - {\mathbf{P}}_{9}^{\prime } } & {} & {} & {\mathbf{I}} & {{\mathbf{P}}_{10}^{\prime } } & {{\mathbf{P}}_{8}^{\prime } + {\mathbf{P}}_{11}^{\prime } } \\ {} & {} & {} & {} & {} & {} & {} & {} & 1 & {} \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & 1 \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {\Delta {\mathbf{A}}_{x} } \\ {\Delta {\mathbf{B}}_{\beta } } \\ {\Delta {\mathbf{H}}_{y} } \\ {\Delta {\mathbf{G}}_{x} } \\ {\Delta {\mathbf{A}}_{y} } \\ {\Delta {\mathbf{B}}_{\alpha } } \\ {\Delta {\mathbf{H}}_{x} } \\ {\Delta {\mathbf{G}}_{y} } \\ {\Delta \omega } \\ 1 \\ \end{array} } \right\}^{\text{L}} ,$$

    where \({\mathbf{P}}_{1} = \int_{0}^{{2{\uppi}}} {{\mathbf{S}}^{\text{T}} {\mathbf{S}}{\text{d}}\tau }\), \({\mathbf{P}}_{2} = \int_{0}^{{2{\uppi}}} {{\mathbf{S}}^{\text{T}} {\mathbf{S}}{\text{d}}\tau }\), \({\mathbf{P}}_{3} = \int_{0}^{{2{\uppi}}} {{\mathbf{S}}^{\text{T}} (q_{x10} - m\omega_{0}^{2} x_{0}^{\prime \prime } + u\omega_{0}^{2} \cos \tau - q_{x20} ){\text{d}}\tau }\), \({\mathbf{P}}_{4} = \int_{0}^{{2{\uppi}}} {{\mathbf{S}}^{\text{T}} \omega_{0}^{2} m{\mathbf{S^{\prime\prime}}}{\text{d}}\tau }\), \({\mathbf{P}}_{5} = \int_{0}^{{2{\uppi}}} {{\mathbf{S}}^{\text{T}} (2u\omega_{0} \cos \tau - 2\omega_{0} mx_{0}^{\prime \prime } ){\text{d}}\tau }\), \({\mathbf{P}}_{7} = \int_{0}^{{2{\uppi}}} {{\mathbf{S}}^{\text{T}} {\mathbf{S}}{\text{d}}\tau }\), \({\mathbf{P}}_{8} = \int_{0}^{{2{\uppi}}} {{\mathbf{S}}^{\text{T}} (q_{y10} - m\omega_{0}^{2} y_{0}^{\prime \prime } + u\omega_{0}^{2} \sin \tau - q_{y20} ){\text{d}}\tau }\), \({\mathbf{P}}_{9} = \int_{0}^{{2{\uppi}}} {{\mathbf{S}}^{\text{T}} \omega_{0}^{2} m{\mathbf{S^{\prime\prime}}}{\text{d}}\tau }\), \({\mathbf{P}}_{10} = \int_{0}^{{2{\uppi}}} {{\mathbf{S}}^{\text{T}} (2u\omega_{0} \sin \tau - 2\omega_{0} my_{0}^{\prime \prime } ){\text{d}}\tau }\), \({\mathbf{P}}_{12} = \int_{0}^{{2{\uppi}}} {{\mathbf{S}}^{\text{T}} {\mathbf{S}}{\text{d}}\tau }\), \({\mathbf{P}}_{13} = \int_{0}^{{2{\uppi}}} {{\mathbf{S}}^{\text{T}} (M_{y10} - J_{d} \omega_{0}^{2} \beta_{0}^{\prime \prime } - J_{p} \omega_{0}^{2} a_{0}^{\prime } - M_{y20} ){\text{d}}\tau }\), \({\mathbf{P}}_{14} = \int_{0}^{{2{\uppi}}} {{\mathbf{S}}^{\text{T}} \omega_{0}^{2} J_{d} {\mathbf{S^{\prime\prime}}}{\text{d}}\tau }\), \({\mathbf{P}}_{15} = \int_{0}^{{2{\uppi}}} {{\mathbf{S}}^{\text{T}} \omega_{0}^{2} J_{p} {\mathbf{S^{\prime}}}{\text{d}}\tau }\), \({\mathbf{P}}_{16} = \int_{0}^{{2{\uppi}}} {{\mathbf{S}}^{\text{T}} (2\omega_{0} J_{d} \beta_{0}^{\prime \prime } + 2\omega_{0} J_{p} \alpha^{\prime}){\text{d}}\tau }\), \({\mathbf{P}}_{17} = \int_{0}^{{2{\uppi}}} {{\mathbf{S}}^{\text{T}} {\mathbf{S}}{\text{d}}\tau }\), \({\mathbf{P}}_{18} = \int_{0}^{{2{\uppi}}} {{\mathbf{S}}^{\text{T}} (M_{x10} - J_{d} \omega_{0}^{2} \alpha_{0}^{\prime \prime } + J_{p} \omega_{0}^{2} \beta_{0}^{\prime } - M_{x20} ){\text{d}}\tau }\), \({\mathbf{P}}_{19} = \int_{0}^{{2{\uppi}}} {{\mathbf{S}}^{\text{T}} \omega_{0}^{2} J_{d} {\mathbf{S^{\prime\prime}}}{\text{d}}\tau }\), \({\mathbf{P}}_{20} = \int_{0}^{{2{\uppi}}} {{\mathbf{S}}^{\text{T}} \omega_{0}^{2} J_{p} {\mathbf{S^{\prime}}}{\text{d}}\tau }\), \({\mathbf{P}}_{21} = \int_{0}^{{2{\uppi}}} {{\mathbf{S}}^{\text{T}} (2\omega_{0} J_{d} \alpha_{0}^{\prime \prime } - 2\omega_{0} J_{p} \beta^{\prime}){\text{d}}\tau }\).

    Fig. 14
    figure 14

    Model of disk

  2. (2)

    Massless beam

    $$\left\{ {\begin{array}{*{20}c} {\Delta {\mathbf{A}}_{x} } \\ {\Delta {\mathbf{B}}_{\beta } } \\ {\Delta {\mathbf{H}}_{y} } \\ {\Delta {\mathbf{G}}_{x} } \\ {\Delta {\mathbf{A}}_{y} } \\ {\Delta {\mathbf{B}}_{\alpha } } \\ {\Delta {\mathbf{H}}_{x} } \\ {\Delta {\mathbf{G}}_{y} } \\ {\Delta \omega } \\ 1 \\ \end{array} } \right\}^{\text{R}} = \left[ {\begin{array}{*{20}c} {{\mathbf{U}}_{1} } & {} & {} \\ {} & {{\mathbf{U}}_{2} } & {} \\ {} & {} & {{\mathbf{I}}_{2} } \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {\Delta {\mathbf{A}}_{x} } \\ {\Delta {\mathbf{B}}_{\beta } } \\ {\Delta {\mathbf{H}}_{y} } \\ {\Delta {\mathbf{G}}_{x} } \\ {\Delta {\mathbf{A}}_{y} } \\ {\Delta {\mathbf{B}}_{\alpha } } \\ {\Delta {\mathbf{H}}_{x} } \\ {\Delta {\mathbf{G}}_{y} } \\ {\Delta \omega } \\ 1 \\ \end{array} } \right\}^{\text{L}} ,$$

    where \({\mathbf{U}}_{1} = \left[ {\begin{array}{*{20}c} {\mathbf{I}} & {{\mathbf{B}}_{1}^{\prime } } & {{\mathbf{B}}_{2}^{\prime } } & {{\mathbf{B}}_{3}^{\prime } } \\ {} & {\mathbf{I}} & {{\mathbf{B}}_{4}^{\prime } } & {{\mathbf{B}}_{5}^{\prime } } \\ {} & {} & {\mathbf{I}} & {{\mathbf{B}}_{6}^{\prime } } \\ {} & {} & {} & {\mathbf{I}} \\ \end{array} } \right]\), \({\mathbf{B}}_{1} = \int_{0}^{{2{\uppi}}} {{\mathbf{S}}^{\text{T}} l{\mathbf{S}}{\text{d}}\tau }\), \({\mathbf{B}}_{2} = \int_{0}^{{2{\uppi}}} {{\mathbf{S}}^{\text{T}} \frac{{l^{2} }}{EI}{\mathbf{S}}{\text{d}}\tau }\), \({\mathbf{B}}_{3} = \int_{0}^{{2{\uppi}}} {{\mathbf{S}}^{\text{T}} \frac{{l^{3} (1 - \nu )}}{6EI}{\mathbf{S}}{\text{d}}\tau }\), \({\mathbf{B}}_{4} = \int_{0}^{{2{\uppi}}} {{\mathbf{S}}^{\text{T}} \frac{l}{EI}{\mathbf{S}}{\text{d}}\tau }\), \({\mathbf{B}}_{5} = \int_{0}^{{2{\uppi}}} {{\mathbf{S}}^{\text{T}} \frac{{l^{2} }}{2EI}{\mathbf{S}}{\text{d}}\tau }\), \({\mathbf{B}}_{6} = \int_{0}^{{2{\uppi}}} {{\mathbf{S}}^{\text{T}} l{\mathbf{S}}{\text{d}}\tau }\), \({\mathbf{U}}_{2} = {\mathbf{R}}^{\text{T}} {\mathbf{U}}_{1} {\mathbf{R}}\), \({\mathbf{R}} = {\text{diag}}({\mathbf{I}},\; - {\mathbf{I}},\; - {\mathbf{I}},\;{\mathbf{I}})\).

  3. (3)

    Bearing supported by linear-elastic spring

    $$\left\{ {\begin{array}{*{20}c} {\Delta {\mathbf{A}}_{x} } \\ {\Delta {\mathbf{B}}_{\beta } } \\ {\Delta {\mathbf{H}}_{y} } \\ {\Delta {\mathbf{G}}_{x} } \\ {\Delta {\mathbf{A}}_{y} } \\ {\Delta {\mathbf{B}}_{\alpha } } \\ {\Delta {\mathbf{H}}_{x} } \\ {\Delta {\mathbf{G}}_{y} } \\ {\Delta \omega } \\ 1 \\ \end{array} } \right\}^{\text{R}} = \left[ {\begin{array}{*{20}c} {{\mathbf{U}}_{1} } & {} & {} \\ {} & {{\mathbf{U}}_{2} } & {} \\ {} & {} & {{\mathbf{I}}_{2} } \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {\Delta {\mathbf{A}}_{x} } \\ {\Delta {\mathbf{B}}_{\beta } } \\ {\Delta {\mathbf{H}}_{y} } \\ {\Delta {\mathbf{G}}_{x} } \\ {\Delta {\mathbf{A}}_{y} } \\ {\Delta {\mathbf{B}}_{\alpha } } \\ {\Delta {\mathbf{H}}_{x} } \\ {\Delta {\mathbf{G}}_{y} } \\ {\Delta \omega } \\ 1 \\ \end{array} } \right\}^{\text{L}} ,$$

    where \({\mathbf{U}}_{1} = \left[ {\begin{array}{*{20}c} {\mathbf{I}} & {} & {} & {} \\ {} & {\mathbf{I}} & {} & {} \\ {} & {} & {\mathbf{I}} & {} \\ { - ({\mathbf{L}}_{1} + {\mathbf{L}}_{2} )} & {} & {} & {\mathbf{I}} \\ \end{array} } \right]\), \({\mathbf{L}}_{1} + {\mathbf{L}}_{2} = \frac{{\int_{0}^{{2{\uppi}}} {{\mathbf{S}}^{\text{T}} m\omega^{2} {\mathbf{S^{\prime\prime}}}{\text{d}}\tau } + \int_{0}^{{2{\uppi}}} {{\mathbf{S}}^{\text{T}} k{\mathbf{S}}{\text{d}}\tau } }}{{\int_{0}^{{2{\uppi}}} {{\mathbf{S}}^{\text{T}} {\mathbf{S}}d\tau } }}\), \({\mathbf{U}}_{2} = {\mathbf{R}}^{\text{T}} {\mathbf{U}}_{1} {\mathbf{R}}\), \({\mathbf{R}} = {\text{diag}}({\mathbf{I}},\; - {\mathbf{I}},\; - {\mathbf{I}},\;{\mathbf{I}})\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Rui, X., Zhang, Z. et al. Improved incremental transfer matrix method for nonlinear rotor-bearing system. Acta Mech. Sin. 36, 1119–1132 (2020). https://doi.org/10.1007/s10409-020-00976-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-020-00976-x

Keywords

Navigation