Skip to main content
Log in

Nichtinvasive funktionelle Lungenbildgebung mit hyperpolarisiertem Xenon

Durchbruch für die Diagnostik?

Noninvasive functional lung imaging with hyperpolarized xenon

Breakthrough for diagnostics?

  • Leitthema
  • Published:
Zeitschrift für Pneumologie Aims and scope

Zusammenfassung

Hintergrund

Die Magnetresonanztomographie (MRT) ist ein nichtinvasives Verfahren mit hervorragendem Weichteilkontrast. Aufgrund der geringen Protonendichte und vielen Luft-Gewebe-Übergängen ist die Anwendung in der Lunge jedoch eingeschränkt, so dass hier häufig röntgenbasierte Methoden eingesetzt werden (mit den bekannten Nachteilen ionisierender Strahlung).

Fragestellung

In dieser Übersichtsarbeit wird die Lungen-MRT mit hyperpolarisiertem Xenon-129 (Xe-MRT) dargestellt. Die Xe-MRT erlaubt einzigartige wertvolle Einblicke in die Mikrostruktur und Funktion der Lunge, einschließlich des Gasaustauschs mit roten Blutkörperchen – Parameter, die mit klinischen Standardmethoden nicht zugänglich sind.

Material und Methoden

Durch die magnetische Markierung, die Hyperpolarisierung, wird das Signal von Xenon-129 um bis zu 100.000-fach verstärkt. Hierbei werden die Elektronen von Rubidium mittels Laserlicht zunächst auf 100 % polarisiert und dann durch Stöße auf Xenon übertragen. Danach wird das hyperpolarisierte Gas in einem Beutel zum Patienten gebracht und eingeatmet, kurz bevor die MRT-Aufnahmen beginnen.

Ergebnisse

Durch spezielle Programmierungen (Sequenzen) in der MRT kann die Ventilation, Mikrostruktur oder der Gasaustausch der Lunge in 3‑D dargestellt werden. Dies ermöglicht z. B. die quantitative Darstellung von Belüftungsdefekten, der Größe der Alveolen, der Gasaufnahme im Gewebe und des Gastransfers ins Blut.

Schlussfolgerung

Die Xe-MRT liefert einzigartige Informationen über den Zustand der Lunge – nichtinvasiv, in vivo und in weniger als einer Minute.

Abstract

Background

Magnetic resonance imaging (MRI) is a noninvasive technique that provides excellent contrast for soft tissue organs. However, due to the low density of protons and many air–tissue junctions, its application in the lung is limited. Thus, X‑ray-based methods are often used here (with the well-known disadvantages of ionizing radiation).

Objectives

In this review, we discuss pulmonary MRI with hyperpolarized xenon-129 (Xe-MRI). Xe-MRI provides unique valuable insights into lung microstructure and function, including gas exchange with red blood cells—parameters not accessible by any standard clinical methods.

Methods

By magnetic labelling, i.e. hyperpolarization, the signal from xenon-129 is amplified by up to 100,000 times. In this process, electrons from rubidium are first polarized to 100% using laser light and then transferred to xenon by collisions. Then the hyperpolarized gas is brought to the patient in a bag and inhaled shortly before the MRI scan.

Results

Using special programming (sequences) of the MRI, the ventilation, microstructure, or gas exchange of the lungs, can be displayed in 3D. This allows, for example, quantitative visualization of ventilation defects, alveolar size, tissue gas uptake and gas transfer to the blood.

Conclusions

Xe-MRI provides unique information about the state of the lung—noninvasively, in vivo and in less than a minute.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10

Literatur

  1. Voskrebenzev A, Gutberlet M, Klimeš F, Kaireit TF, Schönfeld C, Rotärmel A et al (2018) Feasibility of quantitative regional ventilation and perfusion mapping with phase-resolved functional lung (PREFUL) MRI in healthy volunteers and COPD, CTEPH, and CF patients. Magn Reson Med 79(4):2306–2314

    Article  CAS  PubMed  Google Scholar 

  2. Renz DM, Herrmann K‑H, Kraemer M, Boettcher J, Waginger M, Krueger P‑C et al (2022) Ultrashort echo time MRI of the lung in children and adolescents: comparison with non-enhanced computed tomography and standard post-contrast T1w MRI sequences. Eur Radiol 32:1833–1842. https://doi.org/10.1007/s00330-021-08236-7

    Article  PubMed  Google Scholar 

  3. Ebert M, Grossmann T, Heil W, Otten EW, Surkau R, Thelen M et al (1996) Nuclear magnetic resonance imaging with hyperpolarised helium‑3. Lancet 347(9011):1297–1299

    Article  CAS  PubMed  Google Scholar 

  4. Mugler JP, Driehuys B, Brookeman JR, Cates GD, Berr SS, Bryant RG et al (1997) MR imaging and spectroscopy using hyperpolarized129Xe gas: Preliminary human results. Magn Reson Med 37(6):809–815

    Article  PubMed  Google Scholar 

  5. Buzan MTA, Eichinger M, Kreuter M, Kauczor H‑U, Herth FJ, Warth A et al (2015) T2 mapping of CT remodelling patterns in interstitial lung disease. Eur Radiol 25(11):3167–3174

    Article  PubMed  Google Scholar 

  6. Zapp J, Domsch S, Weingärtner S, Schad LR (2017) Gaussian signal relaxation around spin echoes: implications for precise reversible transverse relaxation quantification of pulmonary tissue at 1.5 and 3 tesla. Magn Reson Med 77(5):1938–1945

    Article  CAS  PubMed  Google Scholar 

  7. Heye T, Sommer G, Miedinger D, Bremerich J, Bieri O (2015) Ultrafast 3D balanced steady-state free precession MRI of the lung: assessment of anatomic details in comparison to low-dose CT: Ultrafast 3D bSSFP MRI of the lung. J Magn Reson Imaging 42(3):602–609

    Article  PubMed  Google Scholar 

  8. Bauman G, Pusterla O, Bieri O (2019) Functional lung imaging with transient spoiled gradient echo. Magn Reson Med 81(3):1915–1923

    Article  PubMed  Google Scholar 

  9. Nichols MB, Paschal CB (2008) Measurement of longitudinal (T1) relaxation in the human lung at 3.0 Tesla with tissue-based and regional gradient analyses. J Magn Reson Imaging 27(1):224–228

    Article  PubMed  Google Scholar 

  10. Puderbach M, Eichinger M, Gahr J, Ley S, Tuengerthal S, Schmähl A et al (2007) Proton MRI appearance of cystic fibrosis: comparison to CT. Eur Radiol 17(3):716–724

    Article  PubMed  Google Scholar 

  11. Roach DJ, Crémillieux Y, Fleck RJ, Brody AS, Serai SD, Szczesniak RD et al (2016) Ultrashort echo-time magnetic resonance imaging is a sensitive method for the evaluation of early cystic fibrosis lung disease. Annals ATS 13(11):1923–1931

    Article  Google Scholar 

  12. Pusterla O, Bauman G, Bieri O (2018) Three-dimensional oxygen-enhanced MRI of the human lung at 1.5T with ultra-fast balanced steady-state free precession: 3D OE-MRI With ufSSFP. Magn Reson Med 79(1):246–255

    Article  CAS  PubMed  Google Scholar 

  13. Couch MJ, Ball IK, Li T, Fox MS, Biman B, Albert MS (2019) 19 F MRI of the lungs using inert fluorinated gases: challenges and new developments: new developments in 19 F MRI of the lungs. J Magn Reson Imaging 49(2):343–354

    Article  PubMed  Google Scholar 

  14. Kovtunov KV, Pokochueva EV, Salnikov OG, Cousin SF, Kurzbach D, Vuichoud B et al (2018) Hyperpolarized NMR spectroscopy: d‑DNP, PHIP, and SABRE techniques. Chem Asian J 13(15):1857–1871

    Article  CAS  Google Scholar 

  15. Mugler JP, Altes TA (2013) Hyperpolarized 129 Xe MRI of the human lung. J Magn Reson Imaging 37(2):313–331

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wild JM, Schmiedeskamp J, Paley MNJ, Filbir F, Fichele S, Kasuboski L et al (2002) MR imaging of the lungs with hyperpolarized helium‑3 gas transported by air. Phys Med Biol 47(13):N185–N190

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Nikolaou P, Coffey AM, Walkup LL, Gust BM, Whiting N, Newton H et al (2013) Near-unity nuclear polarization with an open-source 129Xe hyperpolarizer for NMR and MRI. Proc Natl Acad Sci U S A 110(35):14150–14155

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leawoods JC, Yablonskiy DA, Saam B, Gierada DS, Conradi MS (2001) Hyperpolarized3He gas production and MR imaging of the lung. Concepts Magn Reson 13(5):277–293

    Article  CAS  Google Scholar 

  19. Chan H‑F, Collier GJ, Weatherley ND, Wild JM (2019) Comparison of in vivo lung morphometry models from 3D multiple b‑value 3 He and 129 Xe diffusion-weighted MRI. Magn Reson Med 81(5):2959–2971

    Article  PubMed  Google Scholar 

  20. Hersman FW, Ruset IC, Ketel S, Muradian I, Covrig SD, Distelbrink J et al (2008) Large production system for hyperpolarized 129Xe for human lung imaging studies. Acad Radiol 15(6):683–692

    Article  PubMed  PubMed Central  Google Scholar 

  21. Plummer JW, Emami K, Dummer A, Woods JC, Walkup LL, Cleveland ZI (2020) A semi-empirical model to optimize continuous-flow hyperpolarized 129Xe production under practical cryogenic-accumulation conditions. J Magn Reson 320:106845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Birchall JR, Irwin RK, Nikolaou P, Pokochueva EV, Kovtunov KV, Koptyug IV et al (2020) Pilot multi-site quality assurance study of batch-mode clinical-scale automated xenon-129 hyperpolarizers. J Magn Reson 316:106755

    Article  CAS  PubMed  Google Scholar 

  23. Norquay G, Collier GJ, Rodgers OI, Gill AB, Screaton NJ, Wild J (2022) Standalone portable xenon-129 hyperpolariser for multicentre clinical magnetic resonance imaging of the lungs. BJR 31:20210872

    Article  Google Scholar 

  24. Khan AS, Harvey RL, Birchall JR, Irwin RK, Nikolaou P, Schrank G et al (2021) Enabling clinical technologies for hyperpolarized 129 xenon magnetic resonance imaging and spectroscopy. Angew Chem Intl Edit 60(41):22126–22147

    Article  CAS  Google Scholar 

  25. Oxford BRC Xenon MRI research programme – groundbreaking lung imaging (2015). https://youtu.be/dv3xRWU8_qc

  26. Shukla Y, Wheatley A, Kirby M, Svenningsen S, Farag A, Santyr GE et al (2012) Hyperpolarized 129Xe magnetic resonance imaging. Acad Radiol 19(8):941–951

    Article  PubMed  Google Scholar 

  27. He M, Kaushik SS, Robertson SH, Freeman MS, Virgincar RS, McAdams HP et al (2014) Extending semiautomatic ventilation defect analysis for hyperpolarized 129Xe ventilation MRI. Acad Radiol 21(12):1530–1541

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ebner L, He M, Virgincar RS, Heacock T, Kaushik SS, Freemann MS et al (2017) Hyperpolarized 129xenon magnetic resonance imaging to quantify regional ventilation differences in mild to moderate asthma: a prospective comparison between Semiautomated ventilation defect percentage calculation and pulmonary function tests. Invest Radiol 52(2):120–127

    Article  PubMed  PubMed Central  Google Scholar 

  29. Svenningsen S, Kirby M, Starr D, Leary D, Wheatley A, Maksym GN et al (2013) Hyperpolarized 3 he and 129 Xe MRI: differences in asthma before bronchodilation: MRI of asthma. J Magn Reson Imaging 38(6):1521–1530

    Article  PubMed  Google Scholar 

  30. Walkup LL, Woods JC (2014) Translational applications of hyperpolarized 3 He and 129 Xe. NMR Biomed 27(12):1429–1438

    Article  CAS  PubMed  Google Scholar 

  31. Willmering MM, Niedbalski PJ, Wang H, Walkup LL, Robison RK, Pipe JG et al (2020) Improved pulmonary 129 Xe ventilation imaging via 3D-spiral UTE MRI. Magn Reson Med 84(1):312–320

    Article  PubMed  Google Scholar 

  32. Collier GJ, Hughes PJC, Horn FC, Chan H, Tahir B, Norquay G et al (2019) Single breath-held acquisition of coregistered 3D 129 Xe lung ventilation and anatomical proton images of the human lung with compressed sensing. Magn Reson Med 82(1):342–347

    Article  CAS  PubMed  Google Scholar 

  33. Driehuys B, Martinez-Jimenez S, Cleveland ZI, Metz GM, Beaver DM, Nouls JC et al (2012) Chronic obstructive pulmonary disease: safety and tolerability of hyperpolarized 129 Xe MR imaging in healthy volunteers and patients. Radiology 262(1):279–289

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hall CS, Quirk JD, Goss CW, Lew D, Kozlowski J, Thomen RP et al (2020) Single-session bronchial thermoplasty guided by 129 Xe magnetic resonance imaging. A pilot randomized controlled clinical trial. Am J Respir Crit Care Med 202(4):524–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lin NY, Roach DJ, Willmering MM, Walkup LL, Hossain MM, Desirazu P et al (2021) 129Xe MRI as a measure of clinical disease severity for pediatric asthma. J Allergy Clin Immunol 147(6):2146–2153.e1

    Article  CAS  PubMed  Google Scholar 

  36. Thomen RP, Walkup LL, Roach DJ, Higano N, Schapiro A, Brody A et al (2020) Regional structure-function in cystic fibrosis lung disease using hyperpolarized 129 Xe and ultrashort echo magnetic resonance imaging. Am J Respir Crit Care Med 202(2):290–292

    Article  PubMed  PubMed Central  Google Scholar 

  37. Duan C, Deng H, Xiao S, Xie J, Li H, Zhao X et al (2022) Accelerate gas diffusion-weighted MRI for lung morphometry with deep learning. Eur Radiol 32(1):702–713

    Article  PubMed  Google Scholar 

  38. Zanette B, Santyr G (2019) Accelerated interleaved spiral-IDEAL imaging of hyperpolarized 129 Xe for parametric gas exchange mapping in humans. Magn Reson Med 82:1113–1119

    Article  PubMed  Google Scholar 

  39. Stewart NJ, Horn FC, Norquay G, Collier GJ, Yates DP, Lawson R et al (2017) Reproducibility of quantitative indices of lung function and microstructure from 129 Xe chemical shift saturation recovery (CSSR) MR spectroscopy: Reproducibility of 129 Xe CSSR Spectroscopy. Magn Reson Med 77(6):2107–2113

    Article  CAS  PubMed  Google Scholar 

  40. Wang Z, Rankine L, Bier EA, Mummy D, Lu J, Church A et al (2021) Using hyperpolarized 129 Xe gas-exchange MRI to model the regional airspace, membrane, and capillary contributions to diffusing capacity. J Appl Physiol 130(5):1398–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang JM, Robertson SH, Wang Z, He M, Virgincar RS, Schrank GM et al (2018) Using hyperpolarized 129 Xe MRI to quantify regional gas transfer in idiopathic pulmonary fibrosis. Thorax 73(1):21–28

    Article  PubMed  Google Scholar 

  42. Qing K, Ruppert K, Jiang Y, Mata JF, Miller GW, Shim YM et al (2014) Regional mapping of gas uptake by blood and tissue in the human lung using hyperpolarized xenon-129 MRI: Lung MRI of Xe129 Uptake by Blood and Tissue. J Magn Reson Imaging 39(2):346–359

    Article  PubMed  Google Scholar 

  43. Xiao Q, Stewart NJ, Willmering MM, Gunatilaka CC, Thomen RP, Schuh A et al (2021) Human upper-airway respiratory airflow: In vivo comparison of computational fluid dynamics simulations and hyperpolarized 129Xe phase contrast MRI velocimetry. PLoS ONE 16(8):e256460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Torkian P, Rajebi H, Zamani T, Ramezani N, Kiani P, Akhlaghpoor S (2021) Magnetic resonance imaging features of coronavirus disease 2019 (COVID-19) pneumonia: the first preliminary case series. Clin Imaging 69:261–265

    Article  PubMed  Google Scholar 

  45. Yang S, Zhang Y, Shen J, Dai Y, Ling Y, Lu H et al (2020) Clinical potential of UTE-MRI for assessing COVID-19: patient- and lesion-based comparative analysis. J Magn Reson Imaging 52(2):397–406

    Article  PubMed  PubMed Central  Google Scholar 

  46. Huang Y, Tan C, Wu J, Chen M, Wang Z, Luo L et al (2020) Impact of coronavirus disease 2019 on pulmonary function in early convalescence phase. Respir Res 21(1):163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Grist JT, Chen M, Collier GJ, Raman B, Abueid G, McIntyre A et al (2021) Hyperpolarized 129 Xe MRI abnormalities in dyspneic patients 3 months after COVID-19 pneumonia: preliminary results. Radiology 301(1):E353–60

    Article  PubMed  Google Scholar 

Download references

Danksagung

Diese Arbeit wird durch den Sonderforschungsbereich/Transregio 287 BULK-REACTION, das Graduiertenkolleg „Materialien für das Gehirn“ (GRK 2154/1-2019), das Bundesministerium für Bildung und Forschung (BMBF) im Rahmen des Förderkonzepts (01ZX1915C), das Emmy Noether-Programm „Metabolische und molekulare MR“ (HO 4604/2-2) unterstützt. MOIN CC wurde mit Hilfe eines Zuschusses des Europäischen Fonds für regionale Entwicklung (EFRE) und des Zukunftsprogramms Wirtschaft des Landes Schleswig-Holstein (Projekt Nr. 122-09-053) gegründet.

M. Anikeeva dankt E. Peschke, F. Ellermann, P. Saul, K. Them, J. Kuhn für die Hilfe beim Erstellen des Manuskriptes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mariia Anikeeva or Jan-Bernd Hövener.

Ethics declarations

Interessenkonflikt

G. Norquay ein Co-Autor dieses Beitrags, ist derzeit bei POLARIS (Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, UK) beschäftigt. M. Anikeeva, M. Sangal, O. Speck, M. Zuhayra, U. Lützen, J. Peters, O. Jansen und J.-B. Hövener geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Erstveröffentlichung in Radiologe (2022)62: 130–139. https://doi.org/10.1007/s00117-021-00955-8

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anikeeva, M., Sangal, M., Speck, O. et al. Nichtinvasive funktionelle Lungenbildgebung mit hyperpolarisiertem Xenon. Z Pneumologie 21, 38–48 (2024). https://doi.org/10.1007/s10405-024-00544-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10405-024-00544-1

Schlüsselwörter

Keywords

Navigation