Skip to main content
Log in

SEBS elastomers for fabrication of microfluidic devices with reduced drug absorption by injection molding and extrusion

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

The majority of microfluidic devices used for cell culture, including Organ-on-a-Chips (Organ Chips), are fabricated using polydimethylsiloxane (PDMS) polymer because it is flexible, optically clear, and easy to mold. However, PDMS possesses significant challenges for high volume manufacturing and its tendency to absorb small hydrophobic compounds limits its usefulness as a material in devices used for drug evaluation studies. Here, we demonstrate that a subset of optically clear, elastomeric, styrenic block copolymers based on styrene-ethylene-butylene-styrene exhibit reduced absorption of small hydrophobic molecules and drug compounds compared to PDMS and that they can be fabricated into microfluidic devices with fine features and the flexibility required for Organ Chips using mass production techniques of injection molding and extrusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32:760–772. doi:10.1038/nbt.2989

    Article  Google Scholar 

  • Boonchareon W, Apisittinet S, Sirikittikul D, Loykulnant S, Fuougfuchat A, Ritvirulh C, Sooknoi T (2007) Structure and Gas Selectivity of PE/Zeolite composite film. In: The 2nd international conference on advanced in petrochemicals and polymers (ICAPP 2007), Bangkok

  • Borysiak MD, Bielawski K, Sniadecki NJ, Jenkel CF, Vogt BD, Posner JD (2013) Simple replica micromolding of biocompatible styrenic elastomers. Lab Chip 13:2773–2784. doi:10.1039/C3LC50426C

    Article  Google Scholar 

  • Brassar D, Clime L, Li K, Geissler M, Miville-Godin C, Roy E, Veres T (2011) 3D thermoplastic elastomer microfluidic devices for biological probe immobilization. Lab Chip 11:4099–4107. doi:10.1039/c1lc20714h

    Article  Google Scholar 

  • Domansky K et al (2013) Clear castable polyurethane elastomer for fabrication of microfluidic devices. Lab Chip 13:3956–3964. doi:10.1039/c3lc50558h

    Article  Google Scholar 

  • Drobny JG (2014) Handbook of thermoplastic elastomers. In: Plastics design library, 2nd edn. Elsevier, Amsterdam, Netherlands

  • Fang L, Wei M, Shang Y, Jimenez L, Kazmer D, Barry C, Mead J (2009) Surface morphology alignment of block copolymers induced by injection molding. Polymer 50:5837–5845. doi:10.1016/j.polymer.2009.09.013

    Article  Google Scholar 

  • Guillemette MD, Roy E, Auger FA, Veres T (2011) Rapid isothermal substrate microfabrication of a biocompatible thermoplastic elastomer for cellular contact guidance. Acta Biomater 7:2492–2498. doi:10.1016/j.actbio.2011.02.019

    Article  Google Scholar 

  • Heo YS, Cabrera LM, Song JW, Futai N, Tung Y-C, Smith GD, Takayama S (2007) Characterization and resolution of evaporation-mediated osmolality shifts that constrain microfluidic cell culture in poly(dimethylsiloxane) devices. Anal Chem 79:1126–1134. doi:10.1021/ac061990v

    Article  Google Scholar 

  • Houston KS, Weinkauf DH, Stewart FF (2002) Gas transport characteristics of plasma treated poly (dimethylsiloxane) and polyphosphazene membrane materials. J Membr Sci 205:103–112. doi:10.1016/s0376-7388(02)00068-6

    Article  Google Scholar 

  • Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662–1668. doi:10.1126/science.1188302

    Article  Google Scholar 

  • Huh D et al (2013) Microfabrication of human organs-on-chips. Nat Protoc 8:2135–2157

    Article  Google Scholar 

  • Kang D, Matsuki S, Tai Y-C (2015) Study of the hybrid parylene/PDMS material. In: 28th IEEE international conference on micro electro mechanical systems (MEMS 2015), Estoril, Portugal, IEEE, pp 397–400

  • Keller A, Pedemont E, Willmout Fm (1970) Macro-lattice from segregated amorphous phases of a 3 block copolymer. Nature 225:538. doi:10.1038/225538a0

    Article  Google Scholar 

  • Kim HJ, Huh D, Hamilton G, Ingber DE (2012) Human gut-on-a-chip inhabited by microbial flora that experiences peristalsis-like motions and flow. Lab Chip 12:2165–2174. doi:10.1039/c2lc40074j

    Article  Google Scholar 

  • Kim M, Lam RHW, Thorsen T, Asada HH (2013) Mathematical analysis of oxygen transfer through polydimethylsiloxane membrane between double layers of cell culture channel and gas chamber in microfluidic oxygenator. Microfluid Nanofluid 15:285–296. doi:10.1007/s10404-013-1142-8

    Article  Google Scholar 

  • Lamberti A, Marasso SL, Cocuzza M (2014) PDMS membranes with tunable gas permeability for microfluidic applications. Rsc Adv 4:61415–61419. doi:10.1039/c4ra12934b

    Article  Google Scholar 

  • Lee HH, Register RA, Hajduk DA, Gruner SM (1996) Orientation of triblock copolymers in planar extension. Polym Eng Sci 36:1414–1424. doi:10.1002/pen.10536

    Article  Google Scholar 

  • Merkel TC, Bondar VI, Nagai K, Freeman BD, Pinnau I (2000) Gas sorption, diffusion, and permeation in poly(dimethylsiloxane). J Polym Sci Part B: Polym Phys 38:415–434

    Article  Google Scholar 

  • Monprasit P, Ritvirulh C, Sooknoi T, Rukchonlatee S, Fuongfuchat A, Sirikittikul D (2011) Selective ethylene-permeable zeolite composite Double-layered film for novel modified atmosphere packaging. Polym Eng Sci 51:1264–1272. doi:10.1002/pen.21924

    Article  Google Scholar 

  • Panaitescu DM, Gabor RA, Nicolae CA, Ghiurea M, Mihailescu M, Grigorescu RM (2014) Influence of melt processing induced orientation on the morphology and mechanical properties of poly(styrene-b-ethylene/butylene-b-styrene) block copolymers and their composites with graphite. Mater Des 64:694–705. doi:10.1016/j.matdes.2014.08.049

    Article  Google Scholar 

  • Park J, Na S, Kang M, Sim S, Jeon N (2017) PDMS microchannel surface modification with Teflon for algal lipid research BioChip published online 03 March 2017, DOI: 10.1007/s13206-017-1302-0

  • Regehr KJ et al (2009) Biological implications of polydimethylsiloxane-based microfluidic cell culture. Lab Chip 9:2132–2139. doi:10.1039/b903043c

    Article  Google Scholar 

  • Robb WL (1968) Thin silicone membranes–their permeation properties and some applications. Ann N Y Acad Sci 146:119–137. doi:10.1111/j.1749-6632.1968.tb20277.x

    Article  Google Scholar 

  • Roy E, Galas J-C, Veres T (2011a) Thermoplastic elastomers for microfluidics: towards a high-throughput fabrication method of multilayered microfluidic devices. Lab Chip 11:3193–3196. doi:10.1039/c1lc20251k

    Article  Google Scholar 

  • Roy E, Geissler M, Galas J-C, Veres T (2011b) Prototyping of microfluidic systems using a commercial thermoplastic elastomer. Microfluid Nanofluidics 11:235–244. doi:10.1007/s10404-011-0789-2

    Article  Google Scholar 

  • Sakurai S (2008) Progress in control of microdomain orientation in block copolymers—efficiencies of various external fields. Polymer 49:2781–2796. doi:10.1016/j.polymer.2008.03.020

    Article  Google Scholar 

  • Sasaki H, Onoe H, Takeuchi S (2010) Parylene-coating in PDMS microfluidic channels prevents the absorption of fluorescent dyes Sensors and Actuators B. Chemical 150:478–482

    Google Scholar 

  • Shirure V, George S (2017) Design considerations to minimize the impact of drug absorption in polymer-based organ-on-a-chip platforms. Lab Chip 17:681–690. doi:10.1039/C6LC01401A

    Article  Google Scholar 

  • Sipkens K (2000) SEBS-based compounds. Med Device Technol 11:8–13

    Google Scholar 

  • Sudarsan AP, Wang J, Ugaz VM (2004) Novel thermoplastic elastomers for microfluidic device construction. In: Laurell T, Nilsson J, Jensen K, Harrison DJ, Kutter JP (eds) 8th international conference on miniaturized systems for chemictry and life science (MicroTAS). The Royal Society of Chemistry, Malmo, pp 22–24

    Google Scholar 

  • Sudarsan AP, Wang J, Ugaz VM (2005) Microfabrication of 3D structures using novel thermoplastic elastomers. In: NSTI nanotechnology conference and trade show, Anaheim pp 523–525

  • Sudarsan AP, Wang J, Ugaz VM (2005b) Thermoplastic elastomer gels: an advanced substrate for microfluidic chemical analysis systems. Anal Chem 77:5167–5173. doi:10.1021/ac050448o

    Article  Google Scholar 

  • Toepke MW, Beebe DJ (2006) PDMS absorption of small molecules and consequences in microfluidic applications. Lab Chip 6:1484–1486. doi:10.1039/b612140c

    Article  Google Scholar 

  • van Meer B et al (2017) Small molecule absorption by PDMS in the context of drug response bioassays. Biochem Biophys Res Commun 482:323–328. doi:10.1016/j.bbrc.2016.11.062

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Defense Advanced Research Projects Agency (DARPA) under Cooperative Agreement Number W911NF-12-2-0036. The content of the information does not necessarily reflect the position or the policy of DARPA or the US Government, and no official endorsement should be inferred. We also thank the Organ Chips teams at both the Wyss Institute and Emulate Inc. for their input.

Author information

Authors and Affiliations

Authors

Contributions

K.D. designed and executed most of the experiments under the supervision of D.E.I., with the exception of the quantitative compound loss study in Table 1, which was done at Emulate Inc. by J.D.S. with input from G.A.H. and D.L.; J.P.F. and T.H.I. provided technical assistance in the cell culture studies; N.W. performed the optical transmittance characterization; K.D., C.H., and G.T. contributed to the design and development of the 3-layer microfluidic and the SEBS prototype manufacturing methods; K.D. and D.E.I. prepared the manuscript with input from other co-authors.

Corresponding author

Correspondence to Donald E. Ingber.

Ethics declarations

Conflict of interest

D.E.I. holds equity in Emulate, Inc. and chairs its scientific advisory board. G.A.H., D.L., J.D.S., N.W., C.H., and G.T. are all currently employees of Emulate Inc.

Additional information

Karel Domansky and Josiah D. Sliz are joint first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 44,492 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domansky, K., Sliz, J.D., Wen, N. et al. SEBS elastomers for fabrication of microfluidic devices with reduced drug absorption by injection molding and extrusion. Microfluid Nanofluid 21, 107 (2017). https://doi.org/10.1007/s10404-017-1941-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-017-1941-4

Keywords

Navigation