Skip to main content
Log in

Microfluidics Engineering: Recent Trends, Valorization, and Applications

  • Review Article - Biological Sciences
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In recent years, microfluidics engineering has gained increasing research interests in assimilation and designing novel constructs for various applications in bio- and non-bio sectors of the modern world. Soft and photolithographic fabricated devices have a potential to control the diffusion and flow of liquids in channels. The fabricated microfluidic devices of unique geometry facilitate excellent control over extracellular microenvironment and soluble factor interactions. The current devices do not only replace the in vitro approaches but also provide a new understanding of biomolecules separation and flow in the network of microchannels. The appropriate physiological responses of cells in biological studies or drug screening analysis require engineering of active cells outside the body to enhance their maximum potential for best cellular therapy. This review work mainly focuses on the current methodologies involved in the fabrication process and limitations of cell array technology. The information is given on considerable advantages of microfluidic devices. Toward the end, potential applications covering microfluidic-based in vitro drug analysis and analytical-based separation/detachment are discussed with potential future viewpoints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Takayama, S.: Engineering in medicine and biology society. In: Annual International Conference of the IEEE, vol. 6374 (2009)

  2. Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Olsson, I.: Tissue-based map of the human proteome. Science 347(6220), 1260419 (2015)

    Article  Google Scholar 

  3. Sackmann, E.K.; Fulton, A.L.; Beebe, D.J.: The present and future role of microfluidics in biomedical research. Nature 507(7491), 181–189 (2014)

    Article  Google Scholar 

  4. Squires, T.M.; Quake, S.R.: Microfluidics: fluid physics at the nanoliter scale. Rev. Mod. Phys. 77(3), 977 (2005)

    Article  Google Scholar 

  5. Yazdi, A.A.; Popma, A.; Wong, W.; Nguyen, T.; Pan, Y.; Xu, J.: 3D printing: an emerging tool for novel microfluidics and lab-on-a-chip applications. Microfluid. Nanofluid. 20(3), 1–18 (2016)

    Article  Google Scholar 

  6. Whitesides, G.M.: The origins and the future of microfluidics. Nature 442(7101), 368–373 (2006)

    Article  Google Scholar 

  7. Herold, K.E.; Rasooly, A.: Lab on a Chip Technology: Fabrication and Microfluidics. Horizon Scientific Press, Poole (2009)

    Google Scholar 

  8. Srinivasan, A.; Lopez-Ribot, J.L.; Ramasubramanian, A.K.: Microscale microbial culture. Fut. Microbiol. 10(2), 143–146 (2015)

    Article  Google Scholar 

  9. Holt, R.A.; Jones, S.J.: The new paradigm of flow cell sequencing. Genome Res. 18(6), 839–846 (2008)

    Article  Google Scholar 

  10. Shendure, J.; Ji, H.: Next-generation DNA sequencing. Nat. Biotechnol. 26(10), 1135–1145 (2008)

    Article  Google Scholar 

  11. Metzker, M.L.: Sequencing technologies—the next generation. Nat. Rev. Genet. 11(1), 31–46 (2010)

    Article  Google Scholar 

  12. Bates, S.R.; Quake, S.R.: Highly parallel measurements of interaction kinetic constants with a microfabricated optomechanical device. Appl. Phys. Lett. 95(7), 073705 (2009)

    Article  Google Scholar 

  13. Delamarche, E.; Juncker, D.; Schmid, H.: Microfluidics for processing surfaces and miniaturizing biological assays. Adv. Mater. 17(24), 2911–2933 (2005)

    Article  Google Scholar 

  14. Christopher, G.F.; Anna, S.L.: Microfluidic methods for generating continuous droplet streams. J. Phys. D Appl. Phys. 40(19), R319 (2007)

    Article  Google Scholar 

  15. Song, H.; Tice, J.D.; Ismagilov, R.F.: A microfluidic system for controlling reaction networks in time. Angew. Chem. 115(7), 792–796 (2003)

    Article  Google Scholar 

  16. Johnston, I.D.; McCluskey, D.K.; Tan, C.K.L.; Tracey, M.C.: Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 24(3), 035017 (2014)

    Article  Google Scholar 

  17. Pan, Y.J.; Yang, R.J.: Using epoxy resin to fabricate a master for microfluidic devices in poly (dimethylsiloxane). NSTI-Nanotech 3, 367–370 (2007)

    Google Scholar 

  18. Addae-Mensah, K.; Cheung, Y.K.; Sia, S.K.: Microfluidic flow devices, methods and systems. Google Patents (2015)

  19. Fourkas, J.T.; LaFratta, C.N.: Microfluidic devices and methods of fabrication. Google Patents (2014)

  20. Nilsson, J.; Evander, M.; Hammarström, B.; Laurell, T.: Review of cell and particle trapping in microfluidic systems. Anal. Chim. Acta 649(2), 141–157 (2009)

    Article  Google Scholar 

  21. Abate, A.R.; et al.: Surfaces, including microfluidic channels, with controlled wetting properties. Google Patents (2014)

  22. Millet, L.J.; Stewart, M.E.; Sweedler, J.V.; Nuzzo, R.G.; Gillette, M.U.: Microfluidic devices for culturing primary mammalian neurons at low densities. Lab Chip 7(8), 987–994 (2007)

    Article  Google Scholar 

  23. Matsuura, K.; Naruse, K.: Use of silicone elastomer-based microfluidic devices and systems in reproductive technologies. In: Boczkowska A. (ed.) Advanced Elastomers—Technology, Properties and Applications. IN TECH d.o.o., Rijeka, Croatia (2012). doi:10.5772/47731

  24. Gao, D.; Liu, H.; Jiang, Y.; Lin, J.M.: Recent developments in microfluidic devices for in vitro cell culture for cell-biology research. TrAC Trends Anal. Chem. 35, 150–164 (2012)

    Article  Google Scholar 

  25. Heo, Y.S.; Cabrera, L.M.; Song, J.W.; Futai, N.; Tung, Y.C.; Smith, G.D.; Takayama, S.: Characterization and resolution of evaporation-mediated osmolality shifts that constrain microfluidic cell culture in poly(dimethylsiloxane) devices. Anal. Chem. 79(3), 1126–1134 (2007)

    Article  Google Scholar 

  26. Mehta, G.; Lee, J.; Cha, W.; Tung, Y.C.; Linderman, J.J.; Takayama, S.: Hard top soft bottom microfluidic devices for cell culture and chemical analysis. Anal. Chem. 81(10), 3714–3722 (2009)

    Article  Google Scholar 

  27. Sung, J.H.; Shuler, M.L.: Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap. Biomed. Microdevices 11(4), 731–738 (2009)

    Article  Google Scholar 

  28. Zhou, J.; Ren, K.; Dai, W.; Zhao, Y.; Ryan, D.; Wu, H.: Pumping-induced perturbation of flow in microfluidic channels and its implications for on-chip cell culture. Lab Chip 11(13), 2288–2294 (2011)

    Article  Google Scholar 

  29. Melamed, S.; Elad, T.; Belkin, S.: Microbial sensor cell arrays. Curr. Opin. Biotechnol. 23(1), 2–8 (2012)

    Article  Google Scholar 

  30. Fens, N.; Schee, M.P.; Brinkman, P.; Sterk, P.J.: Exhaled breath analysis by electronic nose in airways disease. Established issues and key questions. Clin. Exp. Allergy 43(7), 705–715 (2013)

    Article  Google Scholar 

  31. Lvova, L.; Pudi, R.; Galloni, P.; Lippolis, V.; Di Natale, C.; Lundström, I.; Paolesse, R.: Multi-transduction sensing films for electronic tongue applications. Sens. Actuators B: Chem. 207(Part B), 1076–1086 (2015)

    Article  Google Scholar 

  32. Paguirigan, A.L.; Beebe, D.J.: From the cellular perspective: exploring differences in the cellular baseline in macroscale and microfluidic cultures. Integr. Biol. 1(2), 182–195 (2009)

    Article  Google Scholar 

  33. Velve-Casquillas, G.; Le Berre, M.; Piel, M.; Tran, P.T.: Microfluidic tools for cell biological research. Nano Today 5(1), 28–47 (2010)

    Article  Google Scholar 

  34. Popova, A.A.; Demir, K.; Hartanto, T.G.; Schmitt, E.; Levkin, P.A.: Droplet-microarray on superhydrophobic–superhydrophilic patterns for high-throughput live cell screenings. RSC Adv. 6(44), 38263–38276 (2016)

    Article  Google Scholar 

  35. Zhang, X.; Li, H.; Burnett, J.C.; Rossi, J.J.: The role of antisense long noncoding RNA in small RNA-triggered gene activation. RNA 20(12), 1916–1928 (2014)

    Article  Google Scholar 

  36. Maillard, P.V.; Ciaudo, C.; Marchais, A.; Li, Y.; Jay, F.; Ding, S.W.; Voinnet, O.: Antiviral RNA interference in mammalian cells. Science 342, 235–238 (2013)

    Article  Google Scholar 

  37. Wang, J.; Liu, W.; Li, L.; Tu, Q.; Wang, J.; Ren, L.; et al.: Microfluidics-based cell manipulation and analysis. In: Pramatarova L. (ed.) On Biomimetics. IN TECH d.o.o., Rijeka, Croatia (2011). doi:10.5772/22215

  38. Der Meer, V.; Roelof, J.; Tropel, D.; Jaspers, M.: Illuminating the detection chain of bacterial bioreporters. Environ. Microbiol. 6(10), 1005–1020 (2004)

    Article  Google Scholar 

  39. Wen, Y.; Yang, S.T.: The future of microfluidic assays in drug development. Expert Opin. Drug Discov. 3(10), 1237–1253 (2008)

    Article  Google Scholar 

  40. Wu, M.H.; Huang, S.B.; Lee, G.B.: Microfluidic cell culture systems for drug research. Lab Chip 10(8), 939–956 (2010)

    Article  Google Scholar 

  41. Huh, D.; Hamilton, G.A.; Ingber, D.E.: From 3D cell culture to organs-on-chips. Trends Cell Biol. 21(12), 745–754 (2011)

    Article  Google Scholar 

  42. Esch, M.B.; Smith, A.S.; Prot, J.M.; Oleaga, C.; Hickman, J.J.; Shuler, M.L.: How multi-organ microdevices can help foster drug development. Adv. Drug Deliv. Rev. 69–70, 158–169 (2014)

    Article  Google Scholar 

  43. Hung, P.J.; Lee, P.J.; Lee, L.P.: U.S. Patent 20,160,075,984. U.S. Patent and Trademark Office, Washington (2016)

  44. Du, G.; Fang, Q.; den Toonder, J.M.: Microfluidics for cell-based high throughput screening platforms—a review. Anal. Chim. Acta 903, 36–50 (2016)

    Article  Google Scholar 

  45. Su, X.; Young, E.W.; Underkofler, H.A.; Kamp, T.J.; January, C.T.; Beebe, D.J.: Microfluidic cell culture and its application in high-throughput drug screening: cardiotoxicity assay for hERG channels. J. Biomol. Screen. 16(1), 101–111 (2011)

    Article  Google Scholar 

  46. Barbulovic-Nad, I.; Au, S.H.; Wheeler, A.R.: A microfluidic platform for complete mammalian cell culture. Lab Chip 10(12), 1536–1542 (2010)

    Article  Google Scholar 

  47. Forry, S.P.; Locascio, L.E.: On-chip CO\(_2\) control for microfluidic cell culture. Lab Chip 11(23), 4041–4046 (2011)

    Article  Google Scholar 

  48. Hamon, M.; Hong, J.W.: New tools and new biology: recent miniaturized systems for molecular and cellular biology. Mol. Cells 36(6), 485–506 (2013)

    Article  Google Scholar 

  49. Syromotina, D.S.; Surmenev, R.A.; Surmeneva, M.A.; Boyandin, A.N.; Nikolaeva, E.D.; Prymak, O.; Volova, T.G.: Surface wettability and energy effects on the biological performance of poly-3-hydroxybutyrate films treated with RF plasma. Mater. Sci. Eng. C 62, 450–457 (2016)

    Article  Google Scholar 

  50. Volova, T.G.; Tarasevich, A.A.; Golubev, A.I.; Boyandin, A.N.; Shumilova, A.A.; Nikolaeva, E.D.; Shishatskaya, E.I.: Laser processing of polymer constructs from poly(3-hydroxybutyrate). J. Biomater. Sci. Polym. Ed. 26(16), 1210–1228 (2015)

    Article  Google Scholar 

  51. Hernández-Romano, I.; Cruz-Garcia, M.A.; Moreno-Hernández, C.; Monzón-Hernández, D.; López-Figueroa, E.O.; Paredes-Gallardo, O.E.; Villatoro, J.: Optical fiber temperature sensor based on a microcavity with polymer overlay. Opt. Express 24(5), 5654–5661 (2016)

    Article  Google Scholar 

  52. Kim, E.J.; Fleischman, A.J.; Kostov, Y.; Muschler, G.F.; Roy, S.: Growth characteristics of human bone marrow derived osteoprogenitor cells on surface microtextured substrates. J. Biomater. Tissue Eng. 4(2), 107–117 (2014)

    Article  Google Scholar 

  53. Shah, F.A.; Trobos, M.; Thomsen, P.; Palmquist, A.: Commercially pure titanium (cp-Ti) versus titanium alloy (Ti6Al4V) materials as bone anchored implants—Is one truly better than the other? Mater. Sci. Eng. C 62, 960–966 (2016)

    Article  Google Scholar 

  54. Yi, C.; Li, C.W.; Ji, S.; Yang, M.: Microfluidics technology for manipulation and analysis of biological cells. Anal. Chim. Acta 560(1–2), 1–23 (2006)

    Article  Google Scholar 

  55. Andersson, H.; van den Berg, A.: Microfluidic devices for cellomics: a review. Sens. Actuators B: Chem. 92(3), 315–325 (2003)

    Article  Google Scholar 

  56. Lee, K.G.; Park, K.J.; Seok, S.; Shin, S.; Park, J.Y.; Heo, Y.S.; Lee, T.J.: 3D printed modules for integrated microfluidic devices. RSC Adv. 4(62), 32876–32880 (2014)

    Article  Google Scholar 

  57. Lisowski, P.; Zarzycki, P.K.: Microfluidic paper-based analytical devices (\(\mu \)PADs) and micro total analysis systems (\(\mu \)TAS): development. Appl. Future Trends Chromatogr. 76(19), 1201–1214 (2013)

    Google Scholar 

  58. Reyes, D.R.; Iossifidis, D.; Auroux, P.A.; Manz, A.: Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem. 74(12), 2623–2636 (2002)

    Article  Google Scholar 

  59. Vilkner, T.; Janasek, D.; Manz, A.: Micro total analysis systems. Recent developments. Anal. Chem. 76(12), 3373–3386 (2004)

    Article  Google Scholar 

  60. Sia, S.K.; Whitesides, G.M.: Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24, 3563–3576 (2003)

    Article  Google Scholar 

  61. Huh, D.; Gu, W.; Kamotani, Y.; Grotberg, J.B.; Takayama, S.: Microfluidics for flow cytometric analysis of cells and particles. Physiol. Meas. 26(3), R73 (2005)

    Article  Google Scholar 

  62. Park, T.H.; Shuler, M.L.: Integration of cell culture and microfabrication technology. Biotechnol. Prog. 19(2), 243–253 (2003)

    Article  Google Scholar 

  63. Micheletti, M.; Lye, G.J.: Microscale bioprocess optimisation. Curr. Opin. Biotechnol. 17(6), 611–618 (2006)

    Article  Google Scholar 

  64. Khademhosseini, A.; Langer, R.; Borenstein, J.; Vacanti, J.P.: Microscale technologies for tissue engineering and biology. Proc. Nat. Acad. Sci. USA 103(8), 2480–2487 (2006)

    Article  Google Scholar 

  65. Jeong, H.H.; Lee, S.H.; Kim, J.M.; Kim, H.E.; Kim, Y.G.; Yoo, J.Y.; Lee, C.S.: Microfluidic monitoring of Pseudomonas aeruginosa chemotaxis under the continuous chemical gradient. Biosens. Bioelectron. 26(2), 351–356 (2010)

    Article  Google Scholar 

  66. Blow, N.: Microfluidics: in search of a killer application. Nat. Methods 4(8), 665–672 (2007)

    Article  Google Scholar 

  67. Vyawahare, S.; Griffiths, A.D.; Merten, C.A.: Miniaturization and parallelization of biological and chemical assays in microfluidic devices. Chem. Biol. 17(10), 1052–1065 (2010)

    Article  Google Scholar 

  68. Kortmann, H.; Blank, L.M.; Schmid, A.: Single cell analysis reveals unexpected growth phenotype of S. cerevisiae. Cytom. Part A 75A(2), 130–139 (2009)

    Article  Google Scholar 

  69. Lucchetta, E.M.; Lee, J.H.; Fu, L.A.; Patel, N.H.; Ismagilov, R.F.: Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434(7037), 1134–1138 (2005)

    Article  Google Scholar 

  70. Bennett, M.R.; Pang, W.L.; Ostroff, N.A.; Baumgartner, B.L.; Nayak, S.; Tsimring, L.S.; Hasty, J.: Metabolic gene regulation in a dynamically changing environment. Nature 454(7208), 1119–1122 (2008)

    Article  Google Scholar 

  71. Melin, J.; Quake, S.R.: Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu. Rev. Biophys. Biomol. Struct. 36, 213–231 (2007)

    Article  Google Scholar 

  72. Paliwal, S.; Iglesias, P.A.; Campbell, K.; Hilioti, Z.; Groisman, A.; Levchenko, A.: MAPK-mediated bimodal gene expression and adaptive gradient sensing in yeast. Nature 446(7131), 46–51 (2007)

  73. Armani, A.M.; Kulkarni, R.P.; Fraser, S.E.; Flagan, R.C.; Vahala, K.J.: Single-molecule detection with optical microcavities. Science 317, 783–787 (2007)

    Article  Google Scholar 

  74. Hierlemann, A.; Brand, O.; Hagleitner, C.; Baltes, H.: Microfabrication techniques for chemical/biosensors. Proc. IEEE 91(6), 839–863 (2003)

    Article  Google Scholar 

  75. McKendry, R.; Zhang, J.; Arntz, Y.; Strunz, T.; Hegner, M.; Lang, H.P.; Gerber, C.: Multiple label-free biodetection and quantitative DNA-binding assays on a nanomechanical cantilever array. Proc. Nat. Acad. Sci. 99(15), 9783–9788 (2002)

    Article  Google Scholar 

  76. Maerkl, S.J.: Integration column: microfluidic high-throughput screening. Integr. Biol. 1(1), 19–29 (2009)

    Article  Google Scholar 

  77. Abgrall, P.; Nguyen, N.T.: Nanofluidic devices and their applications. Anal. Chem. 80(7), 2326–2341 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ishtiaq Ahmed or Hafiz M. N. Iqbal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, I., Iqbal, H.M.N. & Akram, Z. Microfluidics Engineering: Recent Trends, Valorization, and Applications. Arab J Sci Eng 43, 23–32 (2018). https://doi.org/10.1007/s13369-017-2662-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-017-2662-4

Keywords

Navigation