Skip to main content

Advertisement

Log in

Differentiating drusen and drusenoid deposits subtypes on multimodal imaging and risk of advanced age-related macular degeneration

  • Forefront Review
  • Organizer: Akitaka Tsujikawa, MD
  • Published:
Japanese Journal of Ophthalmology Aims and scope Submit manuscript

Abstract

Drusen are extracellular material considered a precursor lesion to advanced age-related macular degeneration (AMD), located either on the retinal pigment epithelium (RPE) or the sub-RPE; they contain various proteins associated with inflammation and lipids. Previous studies suggest that the lifecycle of drusen varies depending on drusen type and size. In general, conventional drusen grow and aggregate/coalesce in the first stage, and in the second stage, they regress with or without showing RPE atrophy. The risk of advanced AMD also varies depending on the drusen and drusenoid deposit types’ along with their size and RPE abnormalities. In eyes with macular neovascularization (MNV), specific drusen/drusenoid deposits are closely associated with the MNV subtype. Recently, pachychoroid-associated drusen (pachydrusen) were proposed and clinical findings regarding this entity have been accumulating, as more attention is focused on drusen as well as pachychoroid diseases. With the advance in imaging modalities, various modalities can show specific characteristics depending on drusen types. To assess the risk of advanced AMD, it is essential for physicians to have accurate clinical knowledge about each druse/drusenoid lesion and correctly evaluate its imaging characteristics using multimodal imaging. This review summarizes the latest clinical knowledge about each druse/drusenoid lesions and documents their imaging characteristics on multimodal imaging, allowing clinicians to better manage patients and stratify the risk of developing advanced AMD. The most representative cases are illustrated, which can be helpful in the differential diagnosis of drusen and drusenoid deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ivanisevic M. First look into the eye. Eur J Ophthalmol. 2019;29:685–88.

    Article  Google Scholar 

  2. Curcio CA. Antecedents of Soft Drusen, the Specific Deposits of Age-Related Macular Degeneration, in the Biology of Human Macula. Invest Ophthalmol Vis Sci. 2018;59:AMD182–94.

    Article  Google Scholar 

  3. Boon CJ, van de Ven JP, Hoyng CB, den Hollander AI, Klevering BJ. Cuticular drusen: stars in the sky. Prog Retin Eye Res. 2013;37:90–113.

    Article  Google Scholar 

  4. Khan KN, Mahroo OA, Khan RS, Mohamed MD, McKibbin M, Bird A, et al. Differentiating drusen: Drusen and drusen-like appearances associated with ageing, age-related macular degeneration, inherited eye disease and other pathological processes. Prog Retin Eye Res. 2016;53:70–106.

    Article  CAS  Google Scholar 

  5. Fragiotta S, Fernandez-Avellaneda P, Breazzano MP, Scuderi G. Clinical Manifestations of Cuticular Drusen: Current Perspectives. Clin Ophthalmol. 2021;15:3877–87.

    Article  Google Scholar 

  6. Zhang X, Sivaprasad S. Drusen and pachydrusen: the definition, pathogenesis, and clinical significance. Eye (Lond). 2021;35:121–33.

    Article  Google Scholar 

  7. Sadda SR, Guymer R, Holz FG, Schmitz-Valckenberg S, Curcio CA, Bird AC, et al. Consensus Definition for Atrophy Associated with Age-Related Macular Degeneration on OCT: Classification of Atrophy Report 3. Ophthalmology. 2018;125:537–48.

    Article  Google Scholar 

  8. Klein R, Davis MD, Magli YL, Segal P, Klein BE, Hubbard L. The Wisconsin age-related maculopathy grading system. Ophthalmology. 1991;98:1128–34.

    Article  CAS  Google Scholar 

  9. Klein R, Klein BE, Linton KL. Prevalence of age-related maculopathy. The Beaver Dam Eye Study. Ophthalmology. 1992;99:933–43.

    Article  CAS  Google Scholar 

  10. Mitchell P, Smith W, Attebo K, Wang JJ. Prevalence of age-related maculopathy in Australia. The Blue Mountains Eye Study. Ophthalmology. 1995;102:1450–60.

    Article  CAS  Google Scholar 

  11. Vingerling JR, Dielemans I, Hofman A, Grobbee DE, Hijmering M, Kramer CF, et al. The prevalence of age-related maculopathy in the Rotterdam Study. Ophthalmology. 1995;102:205–10.

    Article  CAS  Google Scholar 

  12. Davis MD, Gangnon RE, Lee LY, Hubbard LD, Klein BE, Klein R, et al. The Age-Related Eye Disease Study severity scale for age-related macular degeneration: AREDS Report No. 17. Arch Ophthalmol. 2005;123:1484–98.

    Article  Google Scholar 

  13. Ferris FL 3rd, Wilkinson CP, Bird A, Chakravarthy U, Chew E, Csaky K, et al. Clinical classification of age-related macular degeneration. Ophthalmology. 2013;120:844–51.

    Article  Google Scholar 

  14. Ferris FL, Davis MD, Clemons TE, Lee LY, Chew EY, Lindblad AS, et al. A simplified severity scale for age-related macular degeneration: AREDS Report No. 18. Arch Ophthalmol. 2005;123:1570–4.

    Article  Google Scholar 

  15. Buch H, Nielsen NV, Vinding T, Jensen GB, Prause JU, la Cour M. 14-year incidence, progression, and visual morbidity of age-related maculopathy: the Copenhagen City Eye Study. Ophthalmology. 2005;112:787–98.

    Article  Google Scholar 

  16. Cukras C, Agron E, Klein ML, Ferris FL 3rd, Chew EY, Gensler G, et al. Natural history of drusenoid pigment epithelial detachment in age-related macular degeneration: Age-Related Eye Disease Study Report No. 28. Ophthalmology. 2010;117:489–99.

    Article  Google Scholar 

  17. Yu JJ, Agron E, Clemons TE, Domalpally A, van Asten F, Keenan TD, et al. Natural History of Drusenoid Pigment Epithelial Detachment Associated with Age-Related Macular Degeneration: Age-Related Eye Disease Study 2 Report No. 17. Ophthalmology. 2019;126:261–73.

    Article  Google Scholar 

  18. Spaide RF, Jaffe GJ, Sarraf D, Freund KB, Sadda SR, Staurenghi G, et al. Consensus Nomenclature for Reporting Neovascular Age-Related Macular Degeneration Data: Consensus on Neovascular Age-Related Macular Degeneration Nomenclature Study Group. Ophthalmology. 2020;127:616–36.

    Article  Google Scholar 

  19. Kim KL, Joo K, Park SJ, Park KH, Woo SJ. Progression from intermediate to neovascular age-related macular degeneration according to drusen subtypes: Bundang AMD cohort study report 3. Acta Ophthalmol. 2022;100:e710-8.

    Article  Google Scholar 

  20. Kim JH, Chang YS, Kim JW, Lee TG, Kim CG. Prevalence of Subtypes of Reticular Pseudodrusen in Newly Diagnosed Exudative Age-Related Macular Degeneration and Polypoidal Choroidal Vasculopathy in Korean Patients. Retina. 2015;35:2604–12.

    Article  Google Scholar 

  21. Christenbury JG, Folgar FA, O’Connell RV, Chiu SJ, Farsiu S, Toth CA, et al. Progression of intermediate age-related macular degeneration with proliferation and inner retinal migration of hyperreflective foci. Ophthalmology. 2013;120:1038–45.

    Article  Google Scholar 

  22. Nassisi M, Fan W, Shi Y, Lei J, Borrelli E, Ip M, et al. Quantity of Intraretinal Hyperreflective Foci in Patients With Intermediate Age-Related Macular Degeneration Correlates With 1-Year Progression. Invest Ophthalmol Vis Sci. 2018;2:59:3431–39.

    Article  Google Scholar 

  23. Fragiotta S, Abdolrahimzadeh S, Dolz-Marco R, Sakurada Y, Gal-Or O, Scuderi G. Significance of Hyperreflective Foci as an Optical Coherence Tomography Biomarker in Retinal Diseases: Characterization and Clinical Implications. J Ophthalmol. 2021;2021:6096017.

    Article  Google Scholar 

  24. Chen L, Messinger JD, Ferrara D, Freund KB, Curcio CA. Stages of Drusen-Associated Atrophy in Age-Related Macular Degeneration Visible via Histologically Validated Fundus Autofluorescence. Ophthalmol Retina. 2021;5:730–42.

    Article  Google Scholar 

  25. Kawasaki R, Yasuda M, Song SJ, Chen SJ, Jonas JB, Wang JJ, et al. The prevalence of age-related macular degeneration in Asians: a systematic review and meta-analysis. Ophthalmology. 2010;117:921–7.

    Article  Google Scholar 

  26. Varma R, Fraser-Bell S, Tan S, Klein R, Azen SP. Los Angeles Latino Eye Study G. Prevalence of age-related macular degeneration in Latinos: the Los Angeles Latino eye study. Ophthalmology. 2004;111:1288–97.

    Article  Google Scholar 

  27. Nakata I, Yamashiro K, Nakanishi H, Akagi-Kurashige Y, Miyake M, Tsujikawa A, et al. Prevalence and characteristics of age-related macular degeneration in the Japanese population: the Nagahama study. Am J Ophthalmol. 2013;156:1002–09 e2.

    Article  Google Scholar 

  28. Xu L, Li Y, Zheng Y, Jonas JB. Associated factors for age related maculopathy in the adult population in China: the Beijing eye study. Br J Ophthalmol. 2006;90:1087–90.

    Article  CAS  Google Scholar 

  29. Kawasaki R, Wang JJ, Aung T, Tan DT, Mitchell P, Sandar M, et al. Prevalence of age-related macular degeneration in a Malay population: the Singapore Malay Eye Study. Ophthalmology. 2008;115:1735–41.

    Article  Google Scholar 

  30. Suzuki M, Curcio CA, Mullins RF, Spaide RF. Refractile drusen: clinical imaging and candidate histology. Retina. 2015;35:859–65.

    Article  Google Scholar 

  31. Oishi A, Thiele S, Nadal J, Oishi M, Fleckenstein M, Schmid M, et al. Prevalence, natural course, and prognostic role of refractile drusen in age-related macular degeneration. Invest Ophthalmol Vis Sci. 2017 r 1;58:2198 – 206.

  32. Tan ACS, Pilgrim MG, Fearn S, Bertazzo S, Tsolaki E, Morrell AP, et al. Calcified nodules in retinal drusen are associated with disease progression in age-related macular degeneration. Sci Transl Med. 2018 Nov 7;10(466):eaat4544.

  33. Fragiotta S, Fernandez-Avellaneda P, Breazzano MP, Curcio CA, Leong BCS, Kato K, et al. The Fate and Prognostic Implications of Hyperreflective Crystalline Deposits in Nonneovascular Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci. 2019;1:60:3100–9.

    Article  Google Scholar 

  34. Gass JD. Stereoscopic Atlas of Macular Diseases. Diagnosis and Treatment. Mosby CV, 2nd ed StLouis. 1977, pp. 46–50.

  35. Russell SR, Mullins RF, Schneider BL, Hageman GS. Location, substructure, and composition of basal laminar drusen compared with drusen associated with aging and age-related macular degeneration. Am J Ophthalmol. 2000;129:205–14.

    Article  CAS  Google Scholar 

  36. Sakurada Y, Tanaka K, Miki A, Matsumoto H, Kawamura A, Mukai R, et al. Clinical characteristics of cuticular drusen in the Japanese population. Jpn J Ophthalmol. 2019;63:448–56.

    Article  CAS  Google Scholar 

  37. Shin DH, Kong M, Han G, Han JC, Ham DI. Clinical manifestations of cuticular drusen in Korean patients. Sci Rep. 2020;10:10:11469.

    Article  CAS  Google Scholar 

  38. Terao R, Matsuda A, Ogawa A, Shimizu K, Azuma K, Inoue T, et al. Optical Coherence Tomography Angiography Study of Choroidal Neovascularization Associated with Early-Onset Drusen. Retin Cases Brief Rep. 2021;15:581–7.

    Article  Google Scholar 

  39. Guigui B, Leveziel N, Martinet V, Massamba N, Sterkers M, Coscas G, et al. Angiography features of early onset drusen. Br J Ophthalmol. 2011;95:238–44.

    Article  Google Scholar 

  40. Gass JD, Bressler SB, Akduman L, Olk J, Caskey PJ, Zimmerman LE. Bilateral idiopathic multifocal retinal pigment epithelium detachments in otherwise healthy middle-aged adults: a clinicopathologic study. Retina. 2005;25:304–10.

    Article  Google Scholar 

  41. Roberti NC, Dias JRO, Novais EA, Regatieri CS, Belfort R. Jr. Large colloid drusen analyzed with structural en face optical coherence tomography. Arq Bras Oftalmol. 2017;80:122–24.

    Article  Google Scholar 

  42. Veronese C, Maiolo C, Mora LD, Morara M, Armstrong GW, Ciardella AP. Bilateral Large Colloid Drusen in a Young Adult. Retina. 2017;37:e132-e34.

    Article  Google Scholar 

  43. Sakurada Y, Parikh R, Gal-Or O, Balaratnasingam C, Leong BCS, Tanaka K, et al. CUTICULAR DRUSEN: Risk of Geographic Atrophy and Macular Neovascularization. Retina. 2020;40:257–65.

    Article  Google Scholar 

  44. Vella G, Sacconi R, Borrelli E, Bandello F, Querques G. Polypoidal choroidal vasculopathy in a patient with early-onset large colloid drusen. Am J Ophthalmol Case Rep. 2021;22:101085.

    Article  Google Scholar 

  45. Balaratnasingam C, Cherepanoff S, Dolz-Marco R, Killingsworth M, Chen FK, Mendis R, et al. Cuticular Drusen: Clinical Phenotypes and Natural History Defined Using Multimodal Imaging. Ophthalmology. 2018;125:100–18.

    Article  Google Scholar 

  46. Fragiotta S, Kaden TR, Freund KB. Cuticular drusen associated with aneurysmal type 1 neovascularization (polypoidal choroidal vasculopathy). Int J Retina Vitreous. 2018;4:44.

    Article  Google Scholar 

  47. Lima LH, Laud K, Freund KB, Yannuzzi LA, Spaide RF. Acquired vitelliform lesion associated with large drusen. Retina. 2012;32:647–51.

    Article  Google Scholar 

  48. Sakurada Y, Parikh R, Yannuzzi LA. Cuticular Drusen presenting with Subretinal Drusenoid Deposits (Pseudodrusen). Ophthalmol Retina. 2018;2:815.

    Article  Google Scholar 

  49. Yoon JM, Shin DH, Kong M, Ham DI. Age-related macular degeneration eyes presenting with cuticular drusen and reticular pseudodrusen. Sci Rep. 2022;12:5681.

    Article  CAS  Google Scholar 

  50. van de Ven JP, Boon CJ, Smailhodzic D, Lechanteur YT, den Hollander AI, Hoyng CB, et al. Short-term changes of Basal laminar drusen on spectral-domain optical coherence tomography. Am J Ophthalmol. 2012;154:560–7.

    Article  Google Scholar 

  51. Spaide RF, Curcio CA. Drusen characterization with multimodal imaging. Retina. 2010;30:1441–54.

    Article  Google Scholar 

  52. Mimoun G, Soubrane G, Coscas G. [Macular drusen]. J Fr Ophtalmol. 1990;13:511–30.

    CAS  Google Scholar 

  53. Smith RT, Sohrab MA, Busuioc M, Barile G. Reticular macular disease. Am J Ophthalmol. 2009;148:733 – 43 e2.

  54. Zweifel SA, Imamura Y, Spaide TC, Fujiwara T, Spaide RF. Prevalence and significance of subretinal drusenoid deposits (reticular pseudodrusen) in age-related macular degeneration. Ophthalmology. 2010;117:1775–81.

    Article  Google Scholar 

  55. Suzuki M, Sato T, Spaide RF. Pseudodrusen subtypes as delineated by multimodal imaging of the fundus. Am J Ophthalmol. 2014;157:1005–12.

    Article  Google Scholar 

  56. Zhou Q, Daniel E, Maguire MG, Grunwald JE, Martin ER, Martin DF, et al. Pseudodrusen and Incidence of Late Age-Related Macular Degeneration in Fellow Eyes in the Comparison of Age-Related Macular Degeneration Treatments Trials. Ophthalmology. 2016;123:1530–40.

    Article  Google Scholar 

  57. Elfandi S, Ooto S, Ueda-Arakawa N, Takahashi A, Yoshikawa M, Nakanishi H, et al. Clinical and Genetic Characteristics of Japanese Patients with Age-Related Macular Degeneration and Pseudodrusen. Ophthalmology. 2016;123:2205–12.

    Article  Google Scholar 

  58. Lee MY, Yoon J, Ham DI. Clinical characteristics of reticular pseudodrusen in Korean patients. Am J Ophthalmol. 2012;153:530–5.

    Article  Google Scholar 

  59. Ueda-Arakawa N, Ooto S, Nakata I, Yamashiro K, Tsujikawa A, Oishi A, et al. Prevalence and genomic association of reticular pseudodrusen in age-related macular degeneration. Am J Ophthalmol. 2013;155:260 – 69 e2.

  60. Yoneyama S, Sakurada Y, Mabuchi F, Imasawa M, Sugiyama A, Kubota T, et al. Genetic and clinical factors associated with reticular pseudodrusen in exudative age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2014;252:1435–41.

    Article  CAS  Google Scholar 

  61. Sakurada Y, Yoneyama S, Sugiyama A, Tanabe N, Kikushima W, Mabuchi F, et al. Prevalence and Genetic Characteristics of Geographic Atrophy among Elderly Japanese with Age-Related Macular Degeneration. PLoS ONE. 2016;11:e0149978.

    Article  Google Scholar 

  62. Shijo T, Sakurada Y, Tanaka K, Miki A, Yoneyama S, Machida Y, et al. Drusenoid Pigment Epithelial Detachment: Genetic and Clinical Characteristics. Int J Mol Sci. 2021;22:4074.

    Article  Google Scholar 

  63. Tsujikawa A, Takahashi K, Obata R, Iida T, Yanagi Y, Koizumi H, et al. Dry age-related macular degeneration in the Japanese population. Jpn J Ophthalmol. 2021;66:8–13.

    Article  Google Scholar 

  64. Lee MY, Yoon J, Ham DI. Clinical features of reticular pseudodrusen according to the fundus distribution. Br J Ophthalmol. 2012;96:1222–6.

    Article  Google Scholar 

  65. Shijo T, Sakurada Y, Yoneyama S, Sugiyama A, Kikushima W, Tanabe N, et al. Prevalence and characteristics of pseudodrusen subtypes in advanced age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol. 2017;255:1125–31.

    Article  CAS  Google Scholar 

  66. Sakurada Y, Sugiyama A, Kikushima W, Yoneyama S, Tanabe N, Matsubara M, et al. Pseudodrusen pattern and development of late age-related macular degeneration in the fellow eye of the unilateral case. Jpn J Ophthalmol. 2019;63:374–81.

    Article  CAS  Google Scholar 

  67. Kikushima W, Sakurada Y, Sugiyama A, Tanabe N, Kume A, Iijima H. Factors Predictive of Visual Outcome 1 Year After Intravitreal Aflibercept Injection for Typical Neovascular Age-Related Macular Degeneration. J Ocul Pharmacol Ther. 2016;32:376–82.

    Article  CAS  Google Scholar 

  68. Nghiem-Buffet S, Giocanti-Auregan A, Jung C, Dubois L, Dourmad P, Galbadon L, et al. Reticular Pseudodrusen Are Not a Predictive Factor for the 1-Year Response to Intravitreal Ranibizumab in Neovascular Age-Related Macular Degeneration. Retina. 2017;37:53–9.

    Article  CAS  Google Scholar 

  69. Reiter GS, Told R, Schranz M, Baumann L, Mylonas G, Sacu S, et al. Subretinal Drusenoid Deposits and Photoreceptor Loss Detecting Global and Local Progression of Geographic Atrophy by SD-OCT Imaging. Invest Ophthalmol Vis Sci. 2020;61:11.

    Article  CAS  Google Scholar 

  70. Bui PTA, Reiter GS, Fabianska M, Waldstein SM, Grechenig C, Bogunovic H, et al. Fundus autofluorescence and optical coherence tomography biomarkers associated with the progression of geographic atrophy secondary to age-related macular degeneration. Eye (Lond). 2021. doi:https://doi.org/10.1038/s41433-021-01747-z.

    Article  Google Scholar 

  71. Spaide RF. Outer retinal atrophy after regression of subretinal drusenoid deposits as a newly recognized form of late age-related macular degeneration. Retina. 2013;33:1800–8.

    Article  Google Scholar 

  72. Zweifel SA, Spaide RF, Yannuzzi LA. Acquired vitelliform detachment in patients with subretinal drusenoid deposits (reticular pseudodrusen). Retina. 2011;31:229–34.

    Article  Google Scholar 

  73. Ueda-Arakawa N, Ooto S, Tsujikawa A, Yamashiro K, Oishi A, Yoshimura N. Sensitivity and specificity of detecting reticular pseudodrusen in multimodal imaging in Japanese patients. Retina. 2013;33:490–7.

    Article  Google Scholar 

  74. Buitendijk GH, Hooghart AJ, Brussee C, de Jong PT, Hofman A, Vingerling JR, et al. Epidemiology of Reticular Pseudodrusen in Age-Related Macular Degeneration: The Rotterdam Study. Invest Ophthalmol Vis Sci. 2016;57:5593–601.

    Article  CAS  Google Scholar 

  75. Gabrielle PH, Seydou A, Arnould L, Acar N, Devilliers H, Baudin F, et al. Subretinal Drusenoid Deposits in the Elderly in a Population-Based Study (the Montrachet Study). Invest Ophthalmol Vis Sci. 2019;60:4838–48.

    Article  Google Scholar 

  76. Spaide RF. Disease Expression in Nonexudative Age-Related Macular Degeneration Varies with Choroidal Thickness. Retina. 2018;38:708–16.

    Article  Google Scholar 

  77. Kang SW, Lee H, Bae K, Shin JY, Kim SJ, Kim JM, et al. Investigation of precursor lesions of polypoidal choroidal vasculopathy using contralateral eye findings. Graefes Arch Clin Exp Ophthalmol. 2017;255:281–91.

    Article  CAS  Google Scholar 

  78. Baek J, Lee JH, Chung BJ, Lee K, Lee WK. Choroidal morphology under pachydrusen. Clin Exp Ophthalmol. 2019;47:498–504.

    Article  Google Scholar 

  79. Yanagi Y. Pachychoroid disease: a new perspective on exudative maculopathy. Jpn J Ophthalmol. 2020;64:323–37.

    Article  Google Scholar 

  80. Fukuda Y, Sakurada Y, Yoneyama S, Kikushima W, Sugiyama A, Matsubara M, et al. Clinical and genetic characteristics of pachydrusen in patients with exudative age-related macular degeneration. Sci Rep. 2019;9:11906.

    Article  Google Scholar 

  81. Lee J, Byeon SH. PREVALENCE AND CLINICAL CHARACTERISTICS OF PACHYDRUSEN. IN POLYPOIDAL CHOROIDAL VASCULOPATHY: Multimodal Image Study. Retina. 2019;39:670–8.

    Article  Google Scholar 

  82. Matsumoto H, Mukai R, Morimoto M, Tokui S, Kishi S, Akiyama H. Clinical characteristics of pachydrusen in central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. 2019;257:1127–32.

    Article  CAS  Google Scholar 

  83. Fukuda Y, Sakurada Y, Sugiyama A, Yoneyama S, Matsubara M, Kikushima W, et al. Pachydrusen in Fellow Eyes Predict Response to Aflibercept Monotherapy in Patients with Polypoidal Choroidal Vasculopathy. J Clin Med. 2020;9:2459.

    Article  CAS  Google Scholar 

  84. Matsubara M, Sakurada Y, Sugiyama A, Fukuda Y, Parikh R, Kashiwagi K. Response to photodynamic therapy combined with intravitreal aflibercept for polypoidal choroidal vasculopathy depending on fellow-eye condition:2-year results. PLoS ONE. 2020;15:e0237330.

    Article  CAS  Google Scholar 

  85. Notomi S, Shiose S, Ishikawa K, Fukuda Y, Kano K, Mori K, et al. Drusen and pigment abnormality predict the development of neovascular age-related macular degeneration in Japanese patients. PLoS ONE. 2021;16:e0255213.

    Article  CAS  Google Scholar 

  86. Takahashi A, Hosoda Y, Miyake M, Miyata M, Oishi A, Tamura H, et al. Clinical and Genetic Characteristics of Pachydrusen in Eyes with Central Serous Chorioretinopathy and General Japanese Individuals. Ophthalmol Retina. 2021;5:910–17.

    Article  Google Scholar 

  87. Lee J, Choi S, Lee CS, Kim M, Kim SS, Koh HJ, et al. Neovascularization in Fellow Eye of Unilateral Neovascular Age-related Macular Degeneration According to Different Drusen Types. Am J Ophthalmol. 2019;208:103–10.

    Article  Google Scholar 

  88. Teo KYC, Cheong KX, Ong R, Hamzah H, Yanagi Y, Wong TY, et al. Macular neovascularization in eyes with pachydrusen. Sci Rep. 2021;11:7495.

    Article  CAS  Google Scholar 

  89. Yamashiro K, Hosoda Y, Miyake M, Takahashi A, Ooto S, Tsujikawa A. Hypothetical pathogenesis of age-related macular degeneration and pachychoroid diseases derived from their genetic characteristics. Jpn J Ophthalmol. 2020;64:555–67.

    Article  CAS  Google Scholar 

  90. Curcio CA, Johnson M, Rudolf M, Huang JD. The oil spill in ageing Bruch membrane. Br J Ophthalmol. 2011;95:1638–45.

    Article  Google Scholar 

  91. Curcio CA. Soft Drusen in Age-Related Macular Degeneration: Biology and Targeting Via the Oil Spill Strategies. Invest Ophthalmol Vis Sci. 2018;59:AMD160–81.

    Article  Google Scholar 

  92. Kang HG, Han JY, Kim M, Byeon SH, Kim SS, Koh HJ, et al. Pachydrusen, choroidal vascular hyperpermeability, and punctate hyperfluorescent spots. Graefes Arch Clin Exp Ophthalmol. 2021;259:2391–400.

    Article  CAS  Google Scholar 

  93. Sasaki M, Ito Y, Yamasaki T, Yanagi Y, Gemmy Cheung CM, Motomura K, et al. Association of Choroidal Thickness with Intermediate Age-Related Macular Degeneration in a Japanese Population. Ophthalmol Retina. 2021;5:528–35.

    Article  Google Scholar 

  94. Sato-Akushichi M, Kinouchi R, Ishiko S, Hanada K, Hayashi H, Mikami D, et al. Population-Based Prevalence and 5-Year Change of Soft Drusen, Pseudodrusen, and Pachydrusen in a Japanese Population. Ophthalmol Sci. 2021;1:100081.

    Article  Google Scholar 

  95. Lee JH, Kim JY, Jung BJ, Lee WK. Focal Disruptions in Ellipsoid Zone and Interdigitation Zone on Spectral-Domain Optical Coherence Tomography in Pachychoroid Pigment Epitheliopathy. Retina. 2019;39:1562–70.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Sakurada.

Ethics declarations

Conflict of interest

Y. Sakurada, None; K. Tanaka, None; S. Fragiotta, None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Organizer: Akitaka Tsujikawa, MD

Corresponding Author: Yoichi Sakurada.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakurada, Y., Tanaka, K. & Fragiotta, S. Differentiating drusen and drusenoid deposits subtypes on multimodal imaging and risk of advanced age-related macular degeneration. Jpn J Ophthalmol 67, 1–13 (2023). https://doi.org/10.1007/s10384-022-00943-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10384-022-00943-y

Keywords

Navigation