Skip to main content
Log in

Reconstruction of the 1783 Scilla landslide, Italy: numerical investigations on the flow-like behaviour of landslides

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

This paper presents a mass flow model that includes gravity force, material stresses, drag force and topography effects solving a set of hyperbolic partial differential equations by using a so-called depth-averaged technique. The model is non-linear and general enough to tackle various problems of interest for geophysics and environmental engineering, such as the dynamic evolution of flow-like avalanches, the dam break problem (involving only water flow) and the generation of tsunami waves by landslides. The model is based on a Eulerian fluid solver, using a second-order central scheme with a minmod-like limiter; is tested against a number of typical benchmark cases, including analytical solutions and experimental laboratory data; and also compared with other numerical codes. Through this model, we study a historical tsunamigenic event occurred in 1783 in Scilla, Italy, that resulted to be catastrophic with a toll exceeding 1500 fatalities. The landslide is reconstructed by a mixture debris flow, and results are compared with the observational data and other numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Avolio MV, Lupiano V, Mazzanti P, Di Gregorio S (2009) A cellular automata model for flow-like landslides with numerical simulations of subaerial and subaqueous cases. EnviroInfo 1:131–140

    Google Scholar 

  • Bozzano F, Chiocci F, Mazzanti P, Bosman A, Casalbore D, Giuliani R, Martino S, Prestininzi A, Mugnozza GS (2006) Subaerial and submarine characterization of the landslide responsible for the 1783 Scilla tsunami. In: Geophysical Research Abstracts, vol 8

  • Bozzano F, Lenti L, Martino S, Montagna A, Paciello A (2011) Earthquake triggering of landslides in highly jointed rock masses: reconstruction of the 1783 Scilla rock avalanche (Italy). Geomorphology 129(3–4):294–308

    Article  Google Scholar 

  • Brufau P, Vázquez-Cendón M, García-Navarro P (2002) A numerical model for the flooding and drying of irregular domains. Int J Numer Methods Fluids 39(3):247–275

    Article  Google Scholar 

  • Castro-Orgaz O, Hutter K, Giraldez JV, Hager WH (2015) Nonhydrostatic granular flow over 3-D terrain: new Boussinesq-type gravity waves? J Geophys Res Earth Surf 120(1):1–28

    Article  Google Scholar 

  • Catalano S, De Guidi G, Monaco C, Tortorici G, Tortorici L (2008) Active faulting and seismicity along the Siculo–Calabrian Rift Zone (southern Italy). Tectonophysics 453(1–4):177–192

    Article  Google Scholar 

  • Chen CL (1988) Generalized viscoplastic modeling of debris flow. J Hydraul Eng 114(3):237–258

    Article  Google Scholar 

  • Denlinger RP, Iverson RM (2004) Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation. J Geophys Res Earth Surf 109(F1)

  • Faccanoni G, Mangeney A (2013) Exact solution for granular flows. Int J Numer Anal Methods Geomech 37(10):1408–1433

    Article  Google Scholar 

  • Fagherazzi S, Rasetarinera P, Hussaini MY, Furbish DJ (2004) Numerical solution of the dam-break problem with a discontinuous Galerkin method. J Hydraul Eng 130(6):532–539

    Article  Google Scholar 

  • Fennema RJ, Chaudhry MH (1990) Explicit methods for 2-d transient free surface flows. J Hydraul Eng 116(8):1013–1034

    Article  Google Scholar 

  • Fernández-Nieto ED, Bouchut F, Bresch D, Diaz MC, Mangeney A (2008) A new Savage–Hutter type model for submarine avalanches and generated tsunami. J Comput Phys 227(16):7720–7754

    Article  Google Scholar 

  • George DL, Iverson RM (2011) A two-phase debris-flow model that includes coupled evolution of volume fractions, granular dilatancy, and pore-fluid pressure. Italian J Eng Geol Environ 43:415–424

    Google Scholar 

  • Gray J, Wieland M, Hutter K (1999) Gravity-driven free surface flow of granular avalanches over complex basal topography. Proc R Soc Lond A 455:1841–1874

    Article  Google Scholar 

  • Graziani L, Maramai A, Tinti S (2006) A revision of the 1783–1784 Calabrian (southern Italy) tsunamis. Nat Hazards Earth Syst Sci 6(6):1053–1060

    Article  Google Scholar 

  • Hungr O, McDougall S (2009) Two numerical models for landslide dynamic analysis. Comput Geosci 35(5):978–992

    Article  Google Scholar 

  • Iverson RM (1997) The physics of debris flows. Rev Geophys 35(3):245–296

    Article  Google Scholar 

  • Iverson RM, Denlinger RP (2001) Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory. J Geophys Res Solid Earth 106(B1):537–552

    Article  Google Scholar 

  • Jiang GS, Tadmor E (1998) Nonoscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM J Sci Comput 19(6):1892–1917

    Article  Google Scholar 

  • Kelfoun K, Druitt T (2005) Numerical modeling of the emplacement of Socompa rock avalanche, Chile. J Geophys Res Solid Earth 110(B12)

  • Kurganov A, Tadmor E (2000) New high-resolution central schemes for nonlinear conservation laws and convection–diffusion equations. J Comput Phys 160(1):241–282

    Article  Google Scholar 

  • La Rocca M, Montessori A, Prestininzi P, Succi S (2015) A multispeed discrete Boltzmann model for transcritical 2D shallow water flows. J Comput Phys 284:117–132

    Article  Google Scholar 

  • Lax PD (1954) Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun Pure Appl Math 7(1):159–193

    Article  Google Scholar 

  • Liang Q, Marche F (2009) Numerical resolution of well-balanced shallow water equations with complex source terms. Adv Water Resour 32(6):873–884

    Article  Google Scholar 

  • Liu W, He S, Li X (2016) A finite volume method for two-phase debris flow simulation that accounts for the pore-fluid pressure evolution. Environ Earth Sci 75(3):206

    Article  Google Scholar 

  • Louaked M, Hanich L (1998) TVD scheme for the shallow water equations. J Hydraul Res 36(3):363–378

    Article  Google Scholar 

  • Mangeney A, Vilotte JP, Bristeau MO, Perthame B, Bouchut F, Simeoni C, Yerneni S (2003) Numerical modeling of avalanches based on Saint Venant equations using a kinetic scheme. J Geophys Res Solid Earth 108(B11)

  • Mao J, Zhao L, Bai X, Guo B, Liu Z, Li T (2016) A novel well-balanced scheme for modeling of dam break flow in drying-wetting areas. Comput Fluids 136:324–330

    Article  Google Scholar 

  • Mazzanti P, Bozzano F (2011) Revisiting the February 6th 1783 Scilla (Calabria, Italy) landslide and tsunami by numerical simulation. Mar Geophys Res 32(1–2):273–286

    Article  Google Scholar 

  • Meng X, Wang Y (2016) Modelling and numerical simulation of two-phase debris flows. Acta Geotech 11(5):1027–1045

    Article  Google Scholar 

  • Meng X, Wang Y, Wang C, Fischer JT (2017) Modeling of unsaturated granular flows by a two-layer approach. Acta Geotech 12(3):677–701

    Article  Google Scholar 

  • Minasi G (1785) Continuazione ed appendice sopra i tremuoti descritti nella relazione colla data di Scilla de 30 settembre 1783, con altro che accadde in progresso. Messina, IT

  • Nessyahu H, Tadmor E (1990) Non-oscillatory central differencing for hyperbolic conservation laws. J Comput Phys 87(2):408–463

    Article  Google Scholar 

  • Ouyang C, He S, Xu Q, Luo Y, Zhang W (2013) A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain. Comput Geosci 52:1–10

    Article  Google Scholar 

  • Pastor M, Haddad B, Sorbino G, Cuomo S, Drempetic V (2009) A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int J Numer Anal Methods Geomech 33(2):143–172

    Article  Google Scholar 

  • Pitman EB, Le L (2005) A two-fluid model for avalanche and debris flows. Philos Trans R Soc Lond A 363(1832):1573–1601

    Article  Google Scholar 

  • Porfido S, Esposito E, Violante C, Molisso F, Sacchi M, Spiga E (2011) Earthquakes-induced environmental effects in coastal area: some example in Calabria and Sicily (Southern Italy). Marine Research at CNR Dta

  • Pudasaini SP (2012) A general two-phase debris flow model. J Geophys Res Earth Surf 117(F3)

  • Rovida A, Camassi R, Gasperini P, Stucchi M (2011) The 2011 version of the parametric catalogue of Italian earthquakes. Milano, Bologna

  • Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215

    Article  Google Scholar 

  • Stoker JJ (1957) Water waves: the mathematical theory with applications. Interscience, New York 2:5

    Google Scholar 

  • Tai YC, Noelle S, Gray J, Hutter K (2002) Shock-capturing and front-tracking methods for granular avalanches. J Comput Phys 175(1):269–301

    Article  Google Scholar 

  • Tinti S, Bortolucci E, Vannini C (1997) A block-based theoretical model suited to gravitational sliding. Nat Hazards 16(1):1–28

    Article  Google Scholar 

  • Xia X, Liang Q (2018) A new depth-averaged model for flow-like landslides over complex terrains with curvatures and steep slopes. Eng Geol 234:174–191

    Article  Google Scholar 

  • Zaniboni F, Armigliato A, Tinti S (2016) A numerical investigation of the 1783 landslide-induced catastrophic tsunami in Scilla, Italy. Nat Hazards 84(2):455–470

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Lanhao Zhao of the Hohai University, China, for handing over the EU CADAM experiment data.

Funding

This author Liang Wang thanks the China Scholarship Council (CSC) for the financial support from the cooperation agreement between the University of Bologna and the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zaniboni, F., Tinti, S. et al. Reconstruction of the 1783 Scilla landslide, Italy: numerical investigations on the flow-like behaviour of landslides. Landslides 16, 1065–1076 (2019). https://doi.org/10.1007/s10346-019-01151-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-019-01151-5

Keywords

Navigation