Skip to main content
Log in

Evaluation of Retention Range of Extractables Under Linear Gradient Conditions for Reversed-Phase Chromatographic Considerations and Requirements in Extractables Analytical Methods for Chemical Characterization of Medical Devices

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Chromatographic considerations and requirements in developing general RPLC profiling analytical methods for eluting complex medical device extracts are investigated using linear gradient conditions, based on Abraham general solvation model. The focus of the study is not on the development of a specific RPLC method for a particular extract, but on the general considerations and requirements in retention and peak capacity optimization in the separation of complex unknown extracts, possibly with a high number of components and a wide-ranging diversity in hydrophobicity, volatility, and molecular weight (MW). The published representative RPLC gradient conditions, together with nearly 2000 selected compounds as a representation of potential extractables, are used to correlate the gradient retention time and hydrophobicity (\(\mathrm{Log}{P}_{o/w}\)) of extractables, both calculated by Abraham solvation model. The hydrophobicity range that each gradient separation condition of defined run time can cover is determined, and the \(\mathrm{Log}{P}_{o/w}\) values, at which late-eluting and early-eluting issues occur, are computed as well. It is concluded that the complex medical device extraction samples should be separated by RPLC linear gradient elution, and retention time and peak capacity should be optimized to retain and resolve all extractables components for the discovery of extractables components in the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. ISO10993-1:2018, Biological evaluation of medical devices - Part 1: Evaluation and testing within a risk management process

  2. ISO10993-18:2020, Biological evaluation of medical devices — Part 18: Chemical characterization of medical device materials within a risk management process

  3. Jenke D (2018) Identification, analysis and safety assessment of leachables and extractables. Trends Anal Chem 101:56–65. https://doi.org/10.1016/j.trac.2017.10.024

    Article  CAS  Google Scholar 

  4. Kiradzhiyska DD, Mantcheva RD (2019) Overview of biocompatible materials and their use in medicine. Folia Med (Plovdiv) 61:34–40. https://doi.org/10.2478/folmed-2018-0038

    Article  Google Scholar 

  5. Sastri VR (2014) Materials used in medical devices. https://doi.org/10.1016/B978-1-4557-3201-2.00003-3

  6. Marturano V, Cerruti P, Ambrogi V (2017) Polym Additiv Phys Sci Rev 2:1–20. https://doi.org/10.1515/psr-2016-0130

    Article  Google Scholar 

  7. Hahladakis J, Velis C, Weber R et al (2018) An overview of chemical additives present in plastics: migration, release, fate and environmental impact during their use, disposal and recycling. J Hazard Mater 344:179–199. https://doi.org/10.1016/j.jhazmat.2017.10.014

    Article  CAS  PubMed  Google Scholar 

  8. Ügdüler S, Van Geem KM, Roosen M, Delbeke E, Meester SD (2020) Challenges and opportunities of solvent-based additive extraction methods for plastic recycling. Waste Manage 104:148–182. https://doi.org/10.1016/j.wasman.2020.01.003

    Article  CAS  Google Scholar 

  9. Tsakona M, Baker E, Rucevska I, et al. (2021) Drowning in plastics: marine litter and plastic waste vital graphics. https://doi.org/10.13140/RG.2.2.13444.65928

  10. Wiesinger H, Wang Z, Hellweg S (2021) Deep dive into plastic monomers, additives, and processing aids. Environ Sci Technol 55:9339–9351. https://doi.org/10.1021/acs.est.1c00976

    Article  CAS  PubMed  Google Scholar 

  11. Grob K (2014) Work plans to get out of the deadlock for the safety assurance of migration from food contact materials—a proposal. Food Control 46:312–318. https://doi.org/10.1016/j.foodcont.2014.05.044

    Article  Google Scholar 

  12. Basketter DA, Clewell H, Kimber I et al (2012) A roadmap for the development of alternative (non-animal) methods for systemic toxicity testing. ALTEX. 29:3–91. https://doi.org/10.14573/altex.2012.1.003

    Article  PubMed  Google Scholar 

  13. Blaauboer B J, Clewell HJ, Clothier R, et al. (2001) In vitro methods for assessing acute toxicity: biokinetic determinations. Report of the International Workshop on in vitro methods for assessing acute systemic toxicity, NIEHS; 01- 4499 NIH, 47–60, PMID: 11378685

  14. Polymer additives standard guide (accessed 10 Apr 2022): https://www.accustandard.com/media/assets/Plastic_Add_Guide2018.pdf

  15. Virtual Computational Chemistry Laboratory, ALOGPS 2.1 program (accessed 10 Apr 2022): http://www.vcclab.org/lab/alogps/

  16. Schaefer A, Simat TJ (2004) Migration from can coatings: part 3. Synthesis, identification and quantification of migrating epoxy-based substances below 1000 Da. Food Additiv Contam. 21(4):390–405. https://doi.org/10.1080/02652030310001657388

    Article  CAS  Google Scholar 

  17. Helling R, Mieth A, Altmann S, Simat TJ (2009) Determination of the overall migration from silicone baking moulds into simulants and food using 1H-NMR techniques. Food Addit Contam Part A 26:395–407. https://doi.org/10.1080/02652030802520852

    Article  CAS  Google Scholar 

  18. Chang S, Pummer WJ, Maurey JR (1983) Fat-simulating and accelerating solvents for polyolefins and MWD of solvent extracts of polyethylenes. Polymer 24:1267–1272. https://doi.org/10.1016/0032-3861(83)90057-5

    Article  CAS  Google Scholar 

  19. Zdravkovic SA, Duong CT, Hellenbrand AA, Duff SR, Dreger AL (2018) Establishment of a reference standard database for use in the qualitative and semi-quantitative analysis of pharmaceutical contact materials within an extractables survey by GC-MS. J Pharm Biomed Anal 151:49–60. https://doi.org/10.1016/j.jpba.2017.12.054

    Article  CAS  PubMed  Google Scholar 

  20. Zhang N, Kenion G, Bankmann D, Mezouari S, Hartman TG (2018) Migration studies and chemical characterization of low molecular weight cyclic polyester oligomers from food packaging lamination adhesives. Packag Technol Sci. https://doi.org/10.1002/pts.2367

    Article  Google Scholar 

  21. Buchalla R, Boess C, Bögl KW (2000) Analysis of volatile radiolysis products in gamma-irradiated LDPE and polypropylene films by thermal desorption-gas chromatography-mass spectrometry. Appl Radiat Isot 52:251–269. https://doi.org/10.1016/s0969-8043(99)00125-6

    Article  CAS  PubMed  Google Scholar 

  22. Stults CL, Ansell JM, Shaw AJ, Nagao LM (2015) Evaluation of extractables in processed and unprocessed polymer materials used for pharmaceutical applications. AAPS Pharm Sci Tech 16:150–164. https://doi.org/10.1208/s12249-014-0188-6

    Article  CAS  Google Scholar 

  23. Schaefer A, Mass S, Simat TJ, Steinhart H (2004) Migration from can coatings: Part 1. A size exclusion chromatographic method for the simultaneous determination of overall migration and migrating substances below 1000 Da. Food Addit Contam 21:287–301. https://doi.org/10.1080/02652030310001655498

    Article  CAS  PubMed  Google Scholar 

  24. Wang Z, Qian L, Peng X et al (2021) New aspects of degradation in silicone rubber under UVA and UVB irradiation: a gas chromatography-mass spectrometry study. Polymers (Basel) 13:2215. https://doi.org/10.3390/polym13132215

    Article  CAS  Google Scholar 

  25. Hoffmann A, Albinus T, Almasi E, Thaxton K (2015) Extractables and leachables analysis of IV bag systems using direct thermal extraction of the materials and stir bar sorptive extraction of aqueous solutions coupled with thermal desorption gas-chromatography with unit mass and high-resolution mass spectrometric detection (accessed 10 Apr 2022), https://anatune.co.uk/wp-content/uploads/2016/01/GSB120.pdf

  26. Abe Y, Mutsuga M, Ohno H, Kawamura Y, Akiyama H (2016) Isolation and quantification of polyamide cyclic oligomers in kitchen utensils and their migration into various food simulants. PLoS ONE 11(7):e0159547. https://doi.org/10.1371/journal.pone.0159547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vera P, Canellas E, Nerín C (2018) Identification of nonvolatile migrant compounds and NIAS in polypropylene films used as food packaging characterized by UPLC-MS/QTOF. Talanta 188:750–762. https://doi.org/10.1016/j.talanta.2018.06.022

    Article  CAS  PubMed  Google Scholar 

  28. Mori S, Takeuchi T (1970) Gel permeation chromatography of the linear monomer and oligomers in polyamides. J Chromatogr A 50:419–428. https://doi.org/10.1016/S0021-9673(00)97967-6

    Article  CAS  Google Scholar 

  29. Kim D, Lee K (2012) Determination of monomers and oligomers in polyethylene terephthalate trays and bottles for food use by using high performance liquid chromatography-electrospray ionization-mass spectrometry. Polym Testing 31:490–499. https://doi.org/10.1016/j.polymertesting.2012.02.001

    Article  CAS  Google Scholar 

  30. Heimrich M, Bönsch M, Nickl H, Simat TJ (2012) Cyclic oligomers in polyamide for food contact material: quantification by HPLC-CLND and single-substance calibration. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 29:846–60. https://doi.org/10.1080/19440049.2011.649496

    Article  CAS  PubMed  Google Scholar 

  31. Hoppe M, de Voogt P, Franz R (2016) Identification and quantification of oligomers as potential migrants in plastics food contact materials with a focus in polycondensates—a review. Trends Food Sci Technol 50:118–130. https://doi.org/10.1016/j.tifs.2016.01.018

    Article  CAS  Google Scholar 

  32. Jenke D, Liu N (2016) Chromatographic considerations in the standardization of liquid chromatographic methods used for extractables screening. J Liq Chromatogr Relat Technol 39:613–619. https://doi.org/10.1080/10826076.2016.1224974

    Article  CAS  Google Scholar 

  33. Martínez-Bueno MJ, Gómez Ramos MJ, Bauer A, Fernández-Alba AR (2019) An overview of non-targeted screening strategies based on high resolution accurate mass spectrometry for the identification of migrants coming from plastic food packaging materials. Trends Anal Chem 110:191–203. https://doi.org/10.1016/j.trac.2018.10.035

    Article  CAS  Google Scholar 

  34. Norwood DL, Jenke D, Manolescu C, Pennino S, Grinberg N (2009) HPLC and LC/MS analysis of pharmaceutical container closure system leachables and extractables. J Liq Chromatogr Relat Technol 32(11–12):1768–1827. https://doi.org/10.1080/10826070902959497

    Article  CAS  Google Scholar 

  35. Wrona M, Nerín C (2020) Analytical approaches for analysis of safety of modern food packaging: a review. Molecules 25:752. https://doi.org/10.3390/molecules25030752

    Article  CAS  PubMed Central  Google Scholar 

  36. Nerín S, Bourdoux S, Faust B et al (2022) Guidance in selecting analytical techniques for identification and quantification of non-intentionally added substances (NIAS) in food contact materials (FCMS). Food Additiv Contam 39:620–643. https://doi.org/10.1080/19440049.2021.2012599

    Article  CAS  Google Scholar 

  37. Cuadros-Rodríguez L, Lazúen-Muros M, Ruiz-Samblás C, Navas-Iglesias N (2020) Leachables from plastic materials in contact with drugs. State of the art and review of current analytical approaches. Int J Pharmaceut 583:119332. https://doi.org/10.1016/j.ijpharm.2020.119332

    Article  CAS  Google Scholar 

  38. Bridson JH, Gaugler EC, Smith DA, Northcott GL, Gaw S (2021) Leaching and extraction of additives from plastic pollution to inform environmental risk: a multidisciplinary review of analytical approaches. J Hazard Mater 414:125571. https://doi.org/10.1016/j.jhazmat.2021.125571

    Article  CAS  PubMed  Google Scholar 

  39. Sendón R, Sanches-Silva A, Cooper I, Franz R, Losada PP (2006) Revision of analytical strategies to evaluate different migrants from food packaging materials. Trends Food Sci Technol 17:354–366. https://doi.org/10.1016/j.tifs.2006.01.005

    Article  CAS  Google Scholar 

  40. Vas G, Fleck L, Comstock K, Cole J (2020) Extractable and leachable testing for pharmaceutical packaging, finished pharmaceutical products, and medical devices: an analytical perspective. Spectrosc Suppl 18(3):5–14 (Special Issues)

    CAS  Google Scholar 

  41. Paseiro P, Simoneau C, Franz R (2006) Compilation of analytical methods for model migrants in foodstuffs: Review of analytical methodologies, Publication Office of the European Union, Luxembourg. JRC Scientific and Technical Report EUR 22552 EN

  42. Paseiro-Cerrato R, De Quirós AR, Sendón R et al (2010) Chromatographic methods for the determination of polyfunctional amines and related compounds used as monomers and additives in food packaging materials: a state-of-the-art review. Compr Rev Food Sci Food Saf 9:676–694. https://doi.org/10.1111/j.1541-4337.2010.00133.x

    Article  CAS  PubMed  Google Scholar 

  43. Russo MV, Avino P, Perugini L, Notardonatoa I (2015) Extraction and GC-MS analysis of phthalate esters in food matrices: a review. RSC Adv 5:37023. https://doi.org/10.1039/C5RA01916H

    Article  CAS  Google Scholar 

  44. Jenke D, Poss M, Story J et al (2004) Development and validation of chromatographic methods for the identification and quantitation of organic compounds leached from a laminated polyolefin material. J Chromatogr Sci 42:388–395. https://doi.org/10.1093/chromsci/42.7.388

    Article  CAS  PubMed  Google Scholar 

  45. Hua Y, Jenke D (2012) Increasing the sensitivity of an LC/MS method for screening material extracts for organic extractables via mobile phase optimization. J Chromatogr Sci 50:213–227. https://doi.org/10.1093/chromsci/bmr049

    Article  CAS  PubMed  Google Scholar 

  46. Gill M, Garber MJ, Hua Y, Jenke D (2010) Development and validation of an HPLC-MS-MS method for quantitating bis(2,2,6,6-tetramethyl-4-piperidyl) sebacate (Tinuvin 770) and a related substance in aqueous extracts of plastic materials. J Chromatogr Sci 48:200–207. https://doi.org/10.1093/chromsci/48.3.200

    Article  CAS  PubMed  Google Scholar 

  47. Legrand P, Desdion A, Boccadifuoco G et al (2018) Development of an HPLC/UV method for the evaluation of extractables and leachables in plastic: application to a plastic-packaged calcium gluconate glucoheptonate solution. J Pharm Biomed Anal 155:298–305. https://doi.org/10.1016/j.jpba.2018.03.044

    Article  CAS  PubMed  Google Scholar 

  48. Scherer N, Marcseková K, Posset T, Winter G (2019) New studies on leachables in commercial scale protein drug filling lines using stir bar sorptive extraction coupled with TD-GC-MS and UPLC/QTOF-MS/MS analytics. Int J Pharm 555:404–419. https://doi.org/10.1016/j.ijpharm.2018.11.033

    Article  CAS  PubMed  Google Scholar 

  49. Akapo SO, McCrea CM (2008) SPME-GC determination of potential volatile organic leachables in aqueous-based pharmaceutical formulations packaged in overwrapped LDPE vials. J Pharm Biomed Anal 47:526–534. https://doi.org/10.1016/j.jpba.2008.02.004

    Article  CAS  PubMed  Google Scholar 

  50. Garber MJ, Gill M, Hua Y, Jenke D (2011) Development and characterization of an LC-MS method for quantitating aqueous extractables, including bisphenol A, 1 -formylpiperidine, and Bis-(pentamethylene)-urea, from plastic materials. J Chromatogr Sci 49:214–220. https://doi.org/10.1093/chrsci/49.3.214

    Article  CAS  Google Scholar 

  51. Miralles P, Yusà V, Sanchís Y, Coscollà C (2021) Determination of 60 migrant substances in plastic food contact materials by vortex-assisted liquid–liquid extraction and GC-Q-Orbitrap HRMS. Molecules 26:7640. https://doi.org/10.3390/molecules26247640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schellinger AP, Carr PW (2006) Isocratic and gradient elution chromatography: a comparison in terms of speed, retention reproducibility and quantitation. J Chromatogr A 1109:253–266. https://doi.org/10.1016/j.chroma.2006.01.047

    Article  CAS  PubMed  Google Scholar 

  53. Li J (2002) Elimination of polymer interference in chromatographic analysis of estradiol degradation products in a transdermal drug delivery formulation by proper selection of extraction solvents. J Pharm Sci 91:1873–1879. https://doi.org/10.1002/jps.10187

    Article  CAS  PubMed  Google Scholar 

  54. Snyder LR, Dolan JW (1998) The linear-solvent-strength model of gradient elution. Adv Chromatogr 38:115–187. https://doi.org/10.1201/9781003210313-4

    Article  CAS  Google Scholar 

  55. Snyder LR, Dolan JW (2006) Method development. In: High-performance gradient elution: the practical application of the linear-solvent-strength model, Chapter 3, ISBN: 978-0-471-70646-5

  56. Poole CF (2003) The column in liquid chromatography. In: The essence of chromatography, Chapter 4, pages 267–413 (accessed 10 Apr 2022) https://www.sciencedirect.com/topics/chemistry/gradient-elution-chromatography

  57. Beyaz A, Fan W, Carr PW, Schellinger AP (2014) Instrument parameters controlling retention precision in gradient elution reversed-phase liquid chromatography. J Chromatogr A 1371:90–105. https://doi.org/10.1016/j.chroma.2014.09.085

    Article  CAS  PubMed Central  Google Scholar 

  58. Soliven A, Haidar Ahmad I, Filgueira MR, Carr PW (2013) Optimization of gradient reversed phase chromatographic peak capacity for low molecular weight solutes. J Chromatogr A 1273:57–65. https://doi.org/10.1016/j.chroma.2012.11.068

    Article  CAS  PubMed  Google Scholar 

  59. Shen Y, Smith RD, Unger KK, Kumar D, Lubda D (2005) Ultrahigh-throughput proteomics using fast RPLC separations with ESI-MS/MS. Anal Chem 77:6692–6701. https://doi.org/10.1021/ac050876u

    Article  CAS  PubMed  Google Scholar 

  60. MacNair JE, Patel KD, Jorgenson JW (1999) Ultrahigh-pressure reversed-phase capillary liquid chromatography: isocratic and gradient elution using columns packed with 1.0-micron particles. Anal Chem 71:700–708. https://doi.org/10.1021/ac9807013

    Article  CAS  PubMed  Google Scholar 

  61. Wang X, Stoll DR, Schellinger AP, Carr PW (2006) Peak capacity optimization of peptide separations in reversed-phase gradient elution chromatography: fixed column format. Anal Chem 78:3406–3416. https://doi.org/10.1021/ac0600149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Schoenmakers PJ, Billiet HAH, Tijssen R, De Galan L (1978) Gradient selection in reversed-phase liquid chromatography. J Chromatogr 149:519–537. https://doi.org/10.1016/S0021-9673(00)81008-0

    Article  CAS  Google Scholar 

  63. Ahmed Al-Haj M, Kaliszan R, Buszewski B (2001) Quantitative structure-retention relationships with model analytes as a means of an objective evaluation of chromatographic columns. J Chromatogr Sci 39:29–38. https://doi.org/10.1093/chromsci/39.1.29

    Article  CAS  PubMed  Google Scholar 

  64. Héberger K (2007) Quantitative structure-(chromatographic) retention relationships. J Chromatogr A 1158:273–305. https://doi.org/10.1016/j.chroma.2007.03.108

    Article  CAS  PubMed  Google Scholar 

  65. Poole CF, Lenca N (2017) Applications of the solvation parameter model in reversed-phase liquid chromatography. J Chromatogr A 1486:2–19. https://doi.org/10.1016/j.chroma.2016.05.099

    Article  CAS  PubMed  Google Scholar 

  66. Poole CF (2020) Evaluation of the solvation parameter model as a quantitative structure-retention relationship model for gas and liquid chromatography. J Chromatogr A 1626:461308. https://doi.org/10.1016/j.chroma.2020.461308

    Article  CAS  PubMed  Google Scholar 

  67. den Uijl MJ, Schoenmakers PJ, Pirok BWJ, van Bommel MR (2021) Recent applications of retention modelling in liquid chromatography. J Sep Sci 44:88–114. https://doi.org/10.1002/jssc.202000905

    Article  CAS  Google Scholar 

  68. Qian E, Acree WE Jr, Abraham MH (2020) Determination of Abraham model correlations for describing solute transfer into the methyl butyrate mono-solvent at 298 K. Phys Chem Liq 58:792–802. https://doi.org/10.1080/00319104.2019.1660983

    Article  CAS  Google Scholar 

  69. Ulrich N, Endo S, Brown TN, et al. UFZ-LSER database v 3.2.1 [Internet], Leipzig, Germany, Helmholtz Centre for Environmental Research-UFZ. (accessed on 10 Apr 2022). Available from http://www.ufz.de/lserd

  70. Clarke JED, Mallon L (2012) The determination of abraham descriptors and their application to crop protection research, In: Jeschke P, Krämer W, Schirmer U, Witschel M (Eds) Modern methods in crop protection research, Wiley-VCH Verlag GmbH & Co

  71. Predict solvation-associated properties from chemical structure by ACD/Labs (accessed on 10 Apr 2022): https://www.acdlabs.com/products/percepta/predictors/absolv/index.php

  72. Liang Y, Xiong R, Sandler SI et al (2017) Quantum chemically estimated abraham solute parameters using multiple solvent-water partition coefficients and molecular polarizability. Environ Sci Technol 51:9887–9898. https://doi.org/10.1021/acs.est.7b01737

    Article  CAS  PubMed  Google Scholar 

  73. Chung Y, Vermeire FH, Wu H, Walker PJ, Abraham MH, Green WH (2021) Group contribution and machine learning approaches to predict Abraham solute parameters, solvation free energy, and solvation enthalpy. ChemRxiv [Internet] pp1–39 (accessed on 10 Apr 2022): Available from: https://chemrxiv.org/engage/chemrxiv/article-details/61d33656d6dcc267874e59e0

  74. Li J, Cai B (2001) Evaluation of the retention dependence on the physicochemical properties of solutes in reversed-phase liquid chromatographic linear gradient elution based on linear solvation energy relationships. J Chromatogr A 905:35–46. https://doi.org/10.1016/s0378-4347(00)00527-2

    Article  CAS  PubMed  Google Scholar 

  75. Chu Y, Poole CF (2003) Possibility of calculating system maps using gradient elution reversed-phase liquid chromatography. Chromatographia 58:683–690. https://doi.org/10.1365/s10337-003-0113-8

    Article  CAS  Google Scholar 

  76. Fatemi MH, Abraham MH, Poole CF (2008) Combination of artificial neural network technique and linear free energy relationship parameters in the prediction of gradient retention times in liquid chromatography. J Chromatogr A 1190:241–252. https://doi.org/10.1016/j.chroma.2008.03.021

    Article  CAS  PubMed  Google Scholar 

  77. Du CM, Valko K, Bevan C, Reynolds D, Abraham MH (2000) Characterizing the selectivity of stationary phases and organic modifiers in reversed-phase high-performance liquid chromatographic systems by a general solvation equation using gradient elution. J Chromatogr Sci 38:503–511. https://doi.org/10.1093/chromsci/38.11.503

    Article  CAS  PubMed  Google Scholar 

  78. Karunasekara T, Atapattu SN, Poole CF (2012) Determination of descriptors for plasticizers by chromatography and liquid–liquid partition. Chromatographia 75:1135–1146. https://doi.org/10.1007/s10337-012-2288-3

    Article  CAS  Google Scholar 

  79. Atapattu SN, Poole CF (2009) Determination of descriptors for semivolatile organosilicon compounds. J Chromatogr A 1216:7882–7888. https://doi.org/10.1016/j.chroma.2009.09.010

    Article  CAS  PubMed  Google Scholar 

  80. Abraham MH, Gola JRM, Gil-Lostes J, Acree W (2013) Determination of solvation descriptors for terpene hydrocarbons. J Chromatogr A 1293:133–141. https://doi.org/10.1016/j.chroma.2013.03.068

    Article  CAS  PubMed  Google Scholar 

  81. Vitha M, Carr PW (2006) The chemical interpretation and practice of linear solvation energy relationships in chromatography. J Chromatogr A 1126:143–94. https://doi.org/10.1016/j.chroma.2006.06.074

    Article  CAS  PubMed  Google Scholar 

  82. Poole CF (2021) Solvation parameter model: Tutorial on its application to separation systems for neutral compounds. J Chromatogr A 1645:462108. https://doi.org/10.1016/j.chroma.2021.462108

    Article  CAS  PubMed  Google Scholar 

  83. Poole CF (2020) Wayne State University experimental descriptor database for use with the solvation parameter model. J Chromatogr A 1617:460841. https://doi.org/10.1016/j.chroma.2019.460841

    Article  CAS  PubMed  Google Scholar 

  84. Abraham MH, Acree WE (2013) Descriptors for the prediction of partition coefficients and solubilities of organophosphorus compounds. Separat Sci Technol 48:884–897. https://doi.org/10.1080/01496395.2012.721043

    Article  CAS  Google Scholar 

  85. Martel S (2008) Chromatographic approaches for measuring Log P, In: Mannhold R (Ed) Molecular drug properties. measurement and prediction, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-31755-4

  86. García-Alvarez-Coque MC, Ramis-Ramos G, Torres-Lapasió JR, Ortiz-Bolsico C (2015) Modeling of retention in reversed phase liquid chromatography, In: Analytical separation science 2015, Chapter 9

  87. McEachran AD, Mansouri K, Newton SR, Beverly BEJ, Sobus JR, Williams AJ (2018) A comparison of three liquid chromatography (LC) retention time prediction models. Talanta 182:371–379. https://doi.org/10.1016/j.talanta.2018.01.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Li.

Ethics declarations

Conflict of interest

The author reports no conflicts of interest in this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J. Evaluation of Retention Range of Extractables Under Linear Gradient Conditions for Reversed-Phase Chromatographic Considerations and Requirements in Extractables Analytical Methods for Chemical Characterization of Medical Devices. Chromatographia 85, 755–771 (2022). https://doi.org/10.1007/s10337-022-04185-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-022-04185-5

Keywords

Navigation