Skip to main content
Log in

An HPLC Method for the Determination of Amines in Flotation Pulp Based on Derivatization

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Alkyl amines are surfactants used as quartz collectors in the reverse flotation of phosphate ores. It is important in both research and industrial practice to quantify amine concentration in the solution and/or wastewater. A simple and rapid method using high-performance liquid chromatography (HPLC) was developed to quantitatively determine the concentration of amine collectors (including dodecylamine, tetradecylamine, hexadecylamine, and octadecylamine) in a mineral flotation system. The method involved a sample derivatization procedure with 9-fluorenyl methoxycarbonyl chloride (FMOC-Cl) and separation/determination by HPLC coupled with a fluorescence detector. The calibration curves showed good linearity (R2 > 0.9956) in the range of 0.20–5.00 µg/mL, and the recoveries of dodecylamine, tetradecylamine, hexadecylamine, and octadecylamine were in the ranges of 84.93–97.64%, 89.93–101.92%, 85.29–98.37%, and 93.57–103.26%, respectively. The method was successfully used to quantify amines in wastewater from flotation experiments and artificial flotation wastewater (amine solution after activated carbon adsorption). The results from the analysis of four amines in the solution demonstrated that the proposed method is suitable for the simultaneous determination of amines in flotation pulp and wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abouzeid AZM (2008) Physical and thermal treatment of phosphate ores—An overview. Int J Miner Process 85:59–84

    Article  CAS  Google Scholar 

  2. Abouzeid AZM, Negm AT, Elgillani DA (2009) Upgrading of calcareous phosphate ores by flotation: effect of ore characteristics. Int J Miner Process 90:81–89

    Article  CAS  Google Scholar 

  3. Amirech A, Bouhenguel M, Kouachi S (2018) Two-stage reverse flotation process for removal of carbonates and silicates from phosphate ore using anionic and cationic collectors. Arab J Geosci 11:593

    Article  CAS  Google Scholar 

  4. Breitbach ZS, Weatherly CA, Woods RM, Xu C, Vale G, Berthod A, Armstrong DW (2014) Development and evaluation of gas and liquid chromatographic methods for the analysis of fatty amines. J Sep Sci 37:558–565

    Article  CAS  PubMed  Google Scholar 

  5. Chang WY, Wang CY, Jan JL, Lo YS, Wu CH (2012) Vortex-assisted liquid–liquid microextraction coupled with derivatization for the fluorometric determination of aliphatic amines. J Chromatogr A 1248:41–47

    Article  CAS  PubMed  Google Scholar 

  6. Einarsson S (1985) Selective determination of secondary amino acids using precolumn derivatization with 9-fluorenylmethylchloroformate and reversed-phase high-performance liquid chromatography. J Chromatogr A 348:213–220

    Article  CAS  Google Scholar 

  7. Einarsson S, Josefsson B, Lagerkvist S (1983) Determination of amino acids with 9-fluorenylmethyl chloroformate and reversed-phase high-performance liquid chromatography. J Chromatogr A 282:609–618

    Article  CAS  Google Scholar 

  8. El-Shall H, Zhang P, Abdel Khalek N, El-Mofty S (2004) Beneficiation technology of phosphates: challenges and solutions. Miner Metall Process 21:17–26

    CAS  Google Scholar 

  9. Fang G, Jun L (2011) Selective separation of silica from a siliceous–calcareous phosphate rock. Mining Sci Technol (China) 21:135–139

    Article  CAS  Google Scholar 

  10. Fang J, Ge YY, Yu J (2019) Adsorption behavior and mechanism of an ether amine collector on collophane and quartz. Physicochem Prob Min Process 55:301–310

    CAS  Google Scholar 

  11. Han Y, Han S, Kim B, Yang J, Choi J, Kim K, You K, Kim H (2019) Flotation separation of quartz from apatite and surface forces in bubble–particle interactions: Role of pH and cationic amine collector contents. J Ind Eng Chem 70:107–115

    Article  CAS  Google Scholar 

  12. Hao F, Lwin T, Bruckard WJ, Woodcock JT (2004) Determination of aliphatic amines in mineral flotation liquors and reagents by high-performance liquid chromatography after derivatization with 4-chloro-7-nitrobenzofurazan. J Chromatogr A 1055:77–85

    Article  CAS  PubMed  Google Scholar 

  13. Huang XF, Kao SJ, Lin J, Qin XF, Deng CR (2018) Development and validation of a HPLC/FLD method combined with online derivatization for the simple and simultaneous determination of trace amino acids and alkyl amines in continental and marine aerosols. PLoS ONE 13:e0206488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Kima J, Kim S, Lee HS, Kim I, Ahn MY, Ryu AKS (2003) Determination of 1-deoxynojirimycin in Morus alba L. leaves by derivatization with 9-fluorenylmethyl chloroformate followed by reversed-phase high-performance liquid chromatography. J Chromatogr A 1002:93–99

    Article  CAS  Google Scholar 

  15. Li G, Cao Y, Liu J, Wang D (2012) Cyclonic flotation column of siliceous phosphate ore. Int J Miner Process 110–111:6–11

    Article  CAS  Google Scholar 

  16. Li XB, Zhang Q, Hou B, Ye JJ, Mao S, Li XH (2017) Flotation separation of quartz from collophane using an amine collector and its adsorption mechanisms. Powder Technol 318:224–229

    Article  CAS  Google Scholar 

  17. Li XB, Ye JJ, Qiu YQ, Li LJ, Mao S, Liu ZH, Zhang Q (2017) Adsorption of residual amine collector HAY from aqueous solution by refined carbon from coal fly ash and activated carbon. J Cent South Univ 24:30–38

    Article  CAS  Google Scholar 

  18. Lkhagva A, Shen C, Leung Y, Tai H (2020) Comparative study of five different amine-derivatization methods for metabolite analyses by liquid chromatography-tandem mass spectrometry. J Chromatogr A 1610:460536

    Article  CAS  PubMed  Google Scholar 

  19. Medeirosa ARSD, Baltar CAM (2018) Importance of collector chain length in flotation of fine particles. Miner Eng 122:179–184

    Article  CAS  Google Scholar 

  20. Moye HA, Boning AJ (1979) A versatile fluorogenic labelling reagent for primary and secondary amines: 9-fluorenylmethyl chloroformate. Anal Lett 12:25–35

    Article  CAS  Google Scholar 

  21. Nunes APL, Peres AEC, Chaves AP, Ferreira WR (2019) Effect of alkyl chain length of amines on fluorapatite and aluminium phosphates floatabilities. J Mater Res Technol 8:3623–3634

    Article  CAS  Google Scholar 

  22. Paul CH (2005) HPLC of amines as 9-fluorenyimethyl chloroformate derivatives. J Chromatogr Libr 70:471–501

    Article  Google Scholar 

  23. Rodríguez López M, González Alvarez MJ, Miranda Ordieres AJ, Tuñón Blanco P (1996) Determination of dimethylamine in groundwater by liquid chromatography and precolumn derivatization with 9-fluorenylmethylchloroformate. J Chromatogr A 721:231–239

    Article  Google Scholar 

  24. Ruan Y, He D, Chi R (2019) Review on beneficiation techniques and reagents used for phosphate ores. Minerals 9:253

    Article  CAS  Google Scholar 

  25. Ruiz-Jiménez J, Hautala S, Parshintsev J, Laitinen T, Hartonen K, Petäjä T, Kulmala M, Riekkola M (2012) Aliphatic and aromatic amines in atmospheric aerosol particles: comparison of three ionization techniques in liquid chromatography-mass spectrometry and method development. Talanta 97:55–62

    Article  PubMed  CAS  Google Scholar 

  26. Schwarz EL, Roberts WL, Pasquali M (2005) Analysis of plasma amino acids by HPLC with photodiode array and fluorescence detection. Clin Chim Acta 354:83–90

    Article  CAS  PubMed  Google Scholar 

  27. Siddiqi Z, Pathania D (2003) Rapid, selective and direct spectrophotometeric determination of aliphatic amines with m-dinitrobenzene. Talanta 60:1197–1203

    Article  CAS  PubMed  Google Scholar 

  28. Smith LL, Francis KA, Johnson JT, Gaskill CL (2017) Quantitation of fumonisin B 1 and B 2 in feed using FMOC pre-column derivatization with HPLC and fluorescence detection. Food Chem 234:174–179

    Article  CAS  PubMed  Google Scholar 

  29. Snow R, Zhang P (2002) Surface modification for improved phosphate flotation. J Colloid Interface Sci 256:132–136

    Article  CAS  Google Scholar 

  30. Suman SK, Kumar S (2020) Reverse flotation studies on iron ore slime by the synergistic effect of cationic collectors. Sep Sci Technol 55:1702–1714

    Article  CAS  Google Scholar 

  31. Tandy S, Schulin R, Suter MJF, Nowack B (2005) Determination of [S, S’]-ethylenediamine disuccinic acid (EDDS) by high performance liquid chromatography after derivatization with FMOC. J Chromatogr A 1077:37–43

    Article  CAS  PubMed  Google Scholar 

  32. Thyabat AS, Zoubi AH (2012) Purification of phosphate beneficiation wastewater: Separation of phosphate from Eshydia Mine (Jordan) by column-DAF flotation process. Int J Miner Process 110–111:18–24

    Article  CAS  Google Scholar 

  33. Titti E, Cecilia G (2005) Determination of polyamines in human tissues by precolumn derivatization with 9-fluorenylmethyl chloroformate and high-performance liquid chromatography. Anal Biochem 338:179–185

    Article  CAS  Google Scholar 

  34. Tripathy SK, Angadi SI, Patra NK, Rao DS (2018) Comparative separation analysis of direct and reverse flotation of dolomite fines. Miner Process Extr Metall Rev 39:339–350

    Article  CAS  Google Scholar 

  35. Tuo B, Yang J, Han L, Wang J, Yao Y (2016) Flotation experimental research of calcareous–siliceous phosphorite. Int J Miner Process 146:10–14

    Article  CAS  Google Scholar 

  36. Verdú-Andrés J, Campíns-Falcó P, Herráez-Hernández R (2002) Liquid chromatographic determination of aliphatic amines in water using solid support assisted derivatization with 9-fluorenylmethyl chloroformate. Chromatographia 55:129–134

    Article  Google Scholar 

  37. Vidyadhar A, Kumari N, Bhagat RP (2014) Adsorption mechanism of mixed cationic/anionic collectors in quartz-hematite flotation system. Miner Process Extr Metall Rev 35:117–125

    Article  CAS  Google Scholar 

  38. Wang CY, Tung SY, Lo YS, Huang HL, Ko CH, Wu CH (2016) Sensitivity enhancement in the fluorometric determination of aliphatic amines using naphthalene-2,3-dicarboxaldehyde derivatization followed by vortex-assisted liquid–liquid microextraction. Talanta 152:475–481

    Article  CAS  PubMed  Google Scholar 

  39. Wang L, Sun W, Hu YH, Xu LH (2014) Adsorption mechanism of mixed anionic/cationic collectors in Muscovite – Quartz flotation system. Miner Eng 64:44–50

    Article  CAS  Google Scholar 

  40. Wang XM, Lu Y (2018) Development of surface analytical techniques and their application in mineral engineering—atomic force microscopy. J Guizhou Univ (Nat Sci) 35:1–12

    Google Scholar 

  41. Westerholm R, Li H, Almén J (1993) Estimation of aliphatic amine emissions in automobile exhausts. Chemosphere 27:1381–1384

    Article  CAS  Google Scholar 

  42. Xia LJ, Guo XF, Ji Y, Chen L, Wang H (2018) A long-wavelength fluorescent probe for amino compounds and its application in the determination of aliphatic amines. Anal Methods 10:3188–3196

    Article  CAS  Google Scholar 

  43. Xie J, Li Y, Zhang J, Zeng L, Lu D, Liu Y, Yang Y, Sun C (2014) Simultaneous determination of four aliphatic amines in aquatic products by ultrasound-assisted dispersive liquid–liquid microextraction coupled with high performance capillary electrophoresis. Anal Methods 6:5140–5146

    Article  CAS  Google Scholar 

  44. Ye J, Wang X, Li X, Mao S, Shen Z, Zhang Q (2018) Effect of dispersants on dispersion stability of collophane and quartz fines in aqueous suspensions. J Dispersion Sci Technol 39:1655–1663

    Article  CAS  Google Scholar 

  45. Zhang L, Ping GC, Yu XM, Zhang LH, Zhang WB, Zhang YK (2004) Analysis of aliphatic amines by RP-HPLC with pre-column derivatization by 9-fluorenylmethylchloroformate. Mod Instr Med Treatment 14–16:18

    Google Scholar 

  46. Zhao YY, Cai LS, Jing ZZ, Wang H, Yu JX, Zhang HS (2003) Determination of aliphatic amines using N-succinimidyl benzoate as a new derivatization reagent in gas chromatography combined with solid-phase microextraction. J Chromatogr A 1021:175–218

    Article  CAS  PubMed  Google Scholar 

  47. Ziegler J, Abel S (2014) Analysis of amino acids by HPLC/electrospray negative ion tandem mass spectrometry using 9-fluorenylmethoxycarbonyl chloride (Fmoc-Cl) derivatization. Amino Acids 46:2799–2808

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (Grant No. 2018YFE0110300)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Zhang.

Ethics declarations

Conflict of Interest

The author(s) declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Zhang, Q., Li, X. et al. An HPLC Method for the Determination of Amines in Flotation Pulp Based on Derivatization. Chromatographia 84, 463–471 (2021). https://doi.org/10.1007/s10337-021-04020-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-021-04020-3

Keywords

Navigation