Skip to main content
Log in

Concentration, sources, influencing factors and hazards of heavy metals in indoor and outdoor dust: A review

  • Reviewpaper
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Heavy metals are a common class of toxic contaminants in soil, water and air, yet their occurrence in indoor environments is less known. Heavy metals enter people's bodies through ingestion, inhalation and dermal contact, causing various diseases and even cancer. Here we review the concentrations, sources, influencing factors and hazards of heavy metals in indoor and outdoor dust. The average concentration of indoor metals in 23 samples from 19 regions is 509.5 ± 886.2 mg kg−1 for zinc, 149.0 ± 136.2 mg kg−1 for copper, 123.0 ± 438.1 mg kg−1 for lead, 78.3 ± 51.1 mg kg−1 for chromium, 37.8 ± 34.4 mg kg−1 for nickel and 2.3 ± 6.0 mg kg−1 for cadmium. The sources of heavy metals are complex, with industry and transportation as the main likely contributors. Reports on health risk assessment suggest that the impact of chromium and lead on children's health should not be underestimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AAS:

Atomic absorption spectrophotometer

ABS:

Skin absorption factor

ADD:

Average daily dose

AF:

Skin adherence factor

AT:

Average exposure time

BW:

Average body weight

ED:

Exposure duration

EDXRF:

Energy-dispersive x-ray fluorescence

EF:

Enrichment factor

EF':

Exposure frequency

FAAS:

Flame atomic absorption spectrometer

HI:

Hazard index

HQ:

Hazard quotient

ICP-AES:

Inductively coupled plasma-atomic emission spectrometry

ICP-MS:

Inductively coupled plasma mass spectrometry

ICP-OES:

Inductively coupled plasma optical emission spectrometer

I geo :

Geoaccumulation index

IngR:

Frequency of dust ingested by hand or mouth

InhR:

Inhalation rate

PEF:

Particulate emission factor

PLI:

Pollution load index

PM:

Particulate matter

pXRF:

Portable olympus premium delta innov-x x-ray fluorescence

RfD:

Reference dose

SA:

Exposed skin surface area

SF:

Cancer slope factors

US EPA:

United States Environmental Protection Agency

WD-XRF:

Wavelength-dispersive x-ray fluorescence

σ :

Standard deviation

References

  • Abdul-Wahab SA (2006) Indoor and outdoor relationships of atmospheric particulates in Oman. Indoor Built Environ 15:247–255

    Article  CAS  Google Scholar 

  • Abt E, Suh HH, Catalano P, Koutrakis P (2000) Relative contribution of outdoor and indoor particle sources to indoor concentrations. Environ Sci Technol 34(17):3579–3587

    Article  CAS  Google Scholar 

  • Ali N, Eqani SAMAS, Nazar E, Alhakamy NA, Rashid MI, Shahzad K, Zeb J, Shen H, Ismail IqMI, Albar HMSA (2021) Arsenic and lead in the indoor residential settings of different socio-economic status; assessment of human health risk via dust exposure. Environ Sci Pollut R 28(11): 13288–13299 

    Article  CAS  Google Scholar 

  • Ali I, Gupta VK, Aboul-Enein HY (2005) Metal ion speciation and capillary electrophoresis: application in the new millennium. Electrophoresis 26(21):3988–4002

    Article  CAS  Google Scholar 

  • Ali MU, Liu G, Yousaf B, Abbas Q, Ullah H, Munir MAM, Zhang H (2018) Compositional characteristics of black-carbon and nanoparticles in air-conditioner dust from an inhabitable industrial metropolis. J Clean Prod 180:34–42

    Article  CAS  Google Scholar 

  • Ali I, Burakov AE, Melezhik AV, Babkin AV, Burakova IV, Neskomornaya MEA, Kuznetsov DV (2019a) Removal of copper (II) and zinc (II) ions in water on a newly synthesized polyhydroquinone/graphene nanocomposite material: kinetics, thermodynamics and mechanism. Chem Sel 4(43):12708–12718

    CAS  Google Scholar 

  • Ali I, Alharbi OM, ALOthman ZA, Alwarthan A, Al-Mohaimeed AM, (2019b) Preparation of a carboxymethylcellulose-iron composite for uptake of atorvastatin in water. Int J Biol Macromol 132:244–253

    Article  CAS  Google Scholar 

  • Ali MU, Liu G, Yousaf B, Ullah H, Irshad S, Ahmed R et al (2019c) Evaluation of floor-wise pollution status and deposition behavior of potentially toxic elements and nanoparticles in air conditioner dust during urbanistic development. J Hazard Mater 365:186–195

    Article  Google Scholar 

  • Alshetty D, Shiva Nagendra SM (2022) Urban characteristics and its influence on resuspension of road dust, air quality and exposure. Air Qual Atmos Hlth 15(2):273–287

    Article  CAS  Google Scholar 

  • Alves CA, Evtyugina M, Vicente AMP, Vicente ED, Nunes TV, Silva PMA, Duarte AC, Pio CA, Amato F, Querol X (2018) Chemical profiling of PM10 from urban road dust. Sci Total Environ 634:1–51

    Article  Google Scholar 

  • Alves CA, Vicente ED, Vicente AMP et al (2020) Loadings, chemical patterns and risks of inhalable road dust particles in an Atlantic city in the north of Portugal. Sci Total Environ 737:39596

    Article  Google Scholar 

  • Amato F, Querol X, Johansson C, Nagl C, Alastuey A (2010) A review on the effectiveness of street sweeping, washing and dust suppressants as urban PM control methods. Sci Total Environ 408:3070–3084

    Article  CAS  Google Scholar 

  • Barbieri M, Nigro A, Sappa G (2015) Soilcontamination evaluation by enrichmentfactor (EF) and geoaccumulation index (Igeo). Senses Sci 2:94–97

    Google Scholar 

  • Barrio-Parra F, De Miguel E, Lázaro-Navas S, Gómez A, Izquierdo M (2018) Indoor dust metal loadings: a human health risk assessment. Expos Health 10(1):41–50

    Article  CAS  Google Scholar 

  • Basheer AA (2020) Advances in the smart materials applications in the aerospace industries. Aircr Eng Aerosp Tec 92(7):1027–1035

    Article  Google Scholar 

  • Beddows DCS, Harrison RM, Green DC, Fuller GW (2015) Receptor modelling of both particle composition and size distribution from a background site in London. UK Atmos Chem Phys 15(17):10107–10125

    Article  CAS  Google Scholar 

  • Van den Berg R (1994) Human exposure to soil contamination: a qualitative and quantitative analysis towards proposals for human toxicological intervention values (partly revised edition). RIVM Rapport 725201011.

  • Bi X, Li Z, Sun G, Liu J, Han Z (2015) In vitro bioaccessibility of lead in surface dust and implications for human exposure: a comparative study between industrial area and urban district. J Hazard Mater 297:191–197

    Article  CAS  Google Scholar 

  • Brook RD, Rajagopalan S, Pope CA III, Brook JR, Bhatnagar A, Diez-Roux AV, Kaufman JD (2010) Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation 121(21):2331–2378

    Article  CAS  Google Scholar 

  • Butte W, Heinzow B (2002) Pollutants in house dust as indicators of indoor contamination. Rev Environ Contam Toxicol 175:1–46

    CAS  Google Scholar 

  • Cai Y, Li F, Zhang J, Zhu X, Li Y, Fu J, Liu C (2021) Toxic metals in size-fractionated road dust from typical industrial district: Seasonal distribution, bioaccessibility and stochastic-fuzzy health risk management. Environ Technol Inno 23:101643

    Article  CAS  Google Scholar 

  • Calabrese EJ, Stanek EJ (1992) What proportion of household dust is derived from outdoor soil? J Soil Contam 1:253–263

    Article  CAS  Google Scholar 

  • Cao S, Duan X, Zhao X, Ma J, Dong T, Huang N, Sun C, He B, Wei F (2014) Health risks from the exposure of children to As, Se, Pb and other heavy metals near the largest coking plant in China. Sci Total Environ 472:1001–1009

    Article  CAS  Google Scholar 

  • Chao YC, Cheng CC (2002) Source apportionment of Indoor PM2.5 and PM10 in Homes. Indoor Built Environ 11:27–37

    Article  CAS  Google Scholar 

  • Chattopadhyay G, Lin CP, Feitz AJ (2003) Household dust metal levels in the Sydney metropolitan area. Environ Res 93:301–307

    Article  CAS  Google Scholar 

  • Chen XD, Lu XW (2018) Contamination characteristics and source apportionment of heavy metals in topsoil from an area in Xi’an city, China. Ecotox and Environ Safe 151:153–160

    Article  CAS  Google Scholar 

  • Chen Z, Huang Y, Cheng X, Ni S, Wang J, Ren B, Yu Q (2021) Assessment of toxic elements in road dust from Hutou Village, China: implications for the highest incidence of lung cancer. Environ Sci Pollut R 28(2):1850–1865

    Article  CAS  Google Scholar 

  • Cheng Z, Chen LJ, Li HH, Lin JQ, Yang ZB, Yang YX, Xu XX et al (2018) Characteristics and health risk assessment of heavy metals exposure via household dust from urban area in Chengdu. China Sci Total Environ 619:621–629

    Article  Google Scholar 

  • Chu H, Ya Y, Nie X, Zhou Y, Hu J, Dong S (2020) Effects of ethanol and 2, 5-dimethylfuran addition on the morphology and nanostructure evolution of soot in gasoline primary reference fuel-air coflow diffusion flames. Fuel 281:118711

    Article  CAS  Google Scholar 

  • Crilley LR, Lucarelli F, Bloss WJ, Harrison RM, Beddows DC, Calzolai G, Vecchi R (2017) Source apportionment of fine and coarse particles at a roadside and urban background site in London during the 2012 summer ClearfLo campaign. Environ Pollut 220:766–778

    Article  CAS  Google Scholar 

  • Devi U, Taki K, Shukla T, Sarma KP, Hoque RR, Kumar M (2019) Microzonation, ecological risk and attributes of metals in highway road dust traversing through the Kaziranga National Park, Northeast India: implication for confining metal pollution in the national forest. Environ Geochem Hlth 41(3):1387–1403

    Article  CAS  Google Scholar 

  • Doyi INY, Isley CF, Soltani NS, Taylor MP (2019) Human exposure and risk associated with trace element concentrations in indoor dust from Australian homes. Environ Int 133:105125

    Article  CAS  Google Scholar 

  • Doyi INY, Strezov V, Isley CF et al (2020) The relevance of particle size distribution and bioaccessibility on human health risk assessment for trace elements measured in indoor dust. Sci Total Environ 733:137931

    Article  CAS  Google Scholar 

  • Eqani SAMAS, Kanwal A, Bhowmik AK, Sohail M, Ullah R, Ali SM, Shen H (2016) Spatial distribution of dust–bound trace elements in Pakistan and their implications for human exposure. Environ Pollut 213:213–222

    Article  CAS  Google Scholar 

  • Fan X, Lu X, Yu B, Zuo L, Fan P, Yang Y, Qin Q (2021) Risk and sources of heavy metals and metalloids in dust from university campuses: a case study of Xi’an. China Environ Res 202:111703

    Article  CAS  Google Scholar 

  • Ferreira-Baptista L, De Miguel E (2005) Geochemistry and risk assessment of street dust in Luanda, Angola: a tropical urban environment. Atmos Environ 39:4501–4512

    Article  CAS  Google Scholar 

  • Fromme H, Dietrich S, Twardella D, Heitmann D, Schierl R, Liebl B, Ru¨den H, (2007) Particulate matter in the indoor air of classrooms –exploratory results from Munich and surrounding. Atmos Environ 41:854–866

    Article  CAS  Google Scholar 

  • Fromme H, Diemer J, Dietrich S, Cyrys J, Heinrich J, Lang W, Kiranoglu M, Twardella D (2008) Chemical and morphological properties of particulate matter (PM10 PM2. 5) in school classrooms and outdoor air. Atmos Environ 42(27):6597–6605

    Article  CAS  Google Scholar 

  • Fural Ş, Kükrer S, Cürebal İ, Aykır D (2021) Spatial distribution, environmental risk assessment, and source identification of potentially toxic metals in Atikhisar dam. Turkey Environ Monit Assess 193(5):1–16

    Google Scholar 

  • Getachew B, Amde M, Danno BL (2019) Level of selected heavy metals in surface dust collected from electronic and electrical material maintenance shops in selected Western Oromia towns. Ethiopia Environ Sci Pollut Res 26(18):18593–18603

    Article  CAS  Google Scholar 

  • Glytsos T, Ondrácek J, Dzumbová L, Kopanakis I, Lazaridis M (2010) Characterization of Particulate Matter Concentrations during Controlled Indoor Activities. Atmos Environ 44:1539–1549

    Article  CAS  Google Scholar 

  • Gohain M, Deka P (2020) Trace metals in indoor dust from a university campus in Northeast India: implication for health risk. Environ Monit Assess 192(11):1–14

    Article  Google Scholar 

  • Gokhale S, Khare M (2007) A theoretical framework for the episodic-urban air quality management plan (e-UAQMP). Atmos Environ 41:7887–7894

    Article  CAS  Google Scholar 

  • Grottker M (1987) Runoff quality from a street with medium traffic loading. Sci Total Environ 59:457–466

    Article  CAS  Google Scholar 

  • Gulia S, Goyal P, Goyal SK et al (2019) Re-suspension of road dust: contribution, assessment and control through dust suppressants—a review. International Journal of Environ Sci Technol 16:1717–1728

    Article  Google Scholar 

  • Guo GH, Zhang DG, Wang YT (2021) Source apportionment and source-specific health risk assessment of heavy metals in size-fractionated road dust from a typical mining and smelting area, Gejiu. China Environ Sci Pollut Res 28(8):9313–9326

    Article  CAS  Google Scholar 

  • Gupta VK, Ali I, Khurana U, Dhagarra N (1995) TLC separation of transition metal ions and their quantitative estimation by atomic absorption spectroscopy. J Liq Chromatogr R T 18(8):1671–1681

    Article  CAS  Google Scholar 

  • Gustafsson Å, Krais AM, Gorzsás A, Lundh T, Gerde P (2018) Isolation and characterization of a respirable particle fraction from residential house-dust. Environ Res 161:284–290

    Article  CAS  Google Scholar 

  • Ha¨nninen OO, Lebret E, Ilacqua V, Katsouyanni K, Ku¨nzli N, Sram RJ, Jantunen M (2004) Infiltration of ambient PM 2.5 and levels of indoor enerated non-ETS PM 2.5 in residences of four European cities. Atmos Environ 38:6411–6423

    Article  Google Scholar 

  • Han XF, Lu XW (2017) Spatial distribution, environmental risk and source of heavy metals in street dust from an industrial city in semi-arid area of China. Arch of Environ Prot 43(2):10–19

    Article  Google Scholar 

  • Han XF, Lu XW, Zhang QH (2016) Grain-size distribution and contamination characteristics of heavy metal in street dust of Baotou. China Environ Earth Sci 75(6):468–477

    Article  Google Scholar 

  • Harb MK, Ebqa’ai M, Al-rashidi A, Alaziqi BH, Al Rashdi MS, Ibrahim B (2015) Investigation of selected heavy metals in street and house dust from Al-Qunfudah, Kingdom of Saudi Arabia. Environ Earth Sci 74(2):1755–1763

    Article  CAS  Google Scholar 

  • He CT, Zheng XB, Yan X, Zheng J, Wang MH, Tan X, Mai BX (2017) Organic contaminants and heavy metals in indoor dust from e-waste recycling, rural, and urban areas in South China: spatial characteristics and implications for human exposure. Ecotox Environ Safe 140:109–115

    Article  CAS  Google Scholar 

  • Heal MR, Kumar P, Harrison RM (2012) Particles air quality policy and health. Chem Soc Rev 41:6606–6630

    Article  CAS  Google Scholar 

  • Heidari M, Darijani T, Alipour V (2021) Heavy metal pollution of road dust in a city and its highly polluted suburb; quantitative source apportionment and source-specific ecological and health risk assessment. Chemosphere 273:129656

    Article  CAS  Google Scholar 

  • Hernández-Terrones L, Ayala-Godoy JA, Guerrero E, Varelas-Hernández GH, Sánchez-Toriz DG, Flores-Moreno MF, Pech-Perera CB (2021) Composition and spatial distribution of metals and sulfur in urban roadside dust in Cancun. Mexico Environ Forens 22(3–4):351–363

    Article  Google Scholar 

  • Hu X, Xu X, Ding Z, Chen Y, Lian HZ (2018) In vitro inhalation/ingestion bioaccessibility, health risks, and source appointment of airborne particle-bound elements trapped in room air conditioner filters. Environ Sci Pollut Res 25(26):26059–26068

    Article  CAS  Google Scholar 

  • Huang M, Wang W, Chan CY, Cheung KC, Man YB, Wang X, Wong MH (2014) Contamination and risk assessment (based on bioaccessibility via ingestion and inhalation) of metal (loid) s in outdoor and indoor particles from urban centers of Guangzhou, China. Sci Total Environ 479:117–124

    Article  Google Scholar 

  • Isaxon C, Gudmundsson A, Nordin EZ, Lönnblad L, Dahl A, Wieslander G, Wierzbicka A (2015) Contribution of indoor-generated particles to residential exposure. Atmos Environ 106:458–466

    Article  CAS  Google Scholar 

  • Iwegbue CM, Obi G, Emoyan OO, Odali EW, Egobueze FE, Tesi GO, Martincigh BS (2018) Characterization of metals in indoor dusts from electronic workshops, cybercafés and offices in southern Nigeria: Implications for on-site human exposure. Ecotox Environ Safe 159:342–353

    Article  CAS  Google Scholar 

  • Jan FA, Saleem S, Faisal S, Hussain I, Rauf A, Ullah N (2021) Road dust as a useful tool for the assessment of pollution characteristics and health risks due to heavy metals: a case study from District Charsadda. Pakistan Arab J Geosci 14(19):1–13

    Google Scholar 

  • Jiang Y, Shi L, Guang AL, Mu Z, Zhan H, Wu Y (2018) Contamination levels and human health risk assessment of toxic heavy metals in street dust in an industrial city in Northwest. Environ Geochem Health 40:2007–2020

    Article  CAS  Google Scholar 

  • Jones NC, Thornton CA, Mark D, Harrison RM (2000) Indoor/outdoor relationships of particulate matter in domestic homes with roadside, urban and rural locations. Atmos Environ 34(16):2603–2612

    Article  CAS  Google Scholar 

  • Jose J, Srimuruganandam B (2020) Investigation of road dust characteristics and its associated health risks from an urban environment. Environ Geo Hlth 42(9):2819–2840

    Article  CAS  Google Scholar 

  • Kabir M, Kormoker T, Islam M, Khan R, Shammi RS, Tusher TR, Idris AM (2021) Potentially toxic elements in street dust from an urban city of a developing country: ecological and probabilistic health risks assessment. Environ Sci Pollut R 28(40):57126–57148

    Article  CAS  Google Scholar 

  • Karanasiou A, Moreno T, Amato F, Lumbreras J, Narros A, Borge R, Tobias A, Boldo E, Linares C, Pey J, Reche G, Alastuey A, Querol X (2011) Road dust contribution to PM levels—evaluation of the effectiveness of street washing activities by means of positive matrix factorization. Atmos Environ 45:2193–2201

    Article  CAS  Google Scholar 

  • Kelepertzis E, Argyraki A, Botsou F, Aidona E, Szabó Á, Szabó C (2019) Tracking the occurrence of anthropogenic magnetic particles and potentially toxic elements (PTEs) in house dust using magnetic and geochemical analyses. Environ Pollut 245:909–920

    Article  CAS  Google Scholar 

  • Kluge B, Wessolek G (2012) Heavy metal pattern and solute concentration in soils along the oldest highway of the world–the AVUS Autobahn. Environ Monit Assess 184(11):6469–6481

    Article  CAS  Google Scholar 

  • Kocher B, Wessolek G, Stoffregen H (2005) Water and heavy metal transport in roadside soils. Pedosphere 15:746–753

    CAS  Google Scholar 

  • Kolakkandi V, Sharma B, Rana A, Dey S, Rawat P, Sarkar S (2020) Spatially resolved distribution, sources and health risks of heavy metals in size-fractionated road dust from 57 sites across megacity Kolkata. India Scie Total Environ 705:135805

    Article  CAS  Google Scholar 

  • Krupnova TG, Rakova OV, Gavrilkina SV, Antoshkina EG, Baranov EO, Yakimova ON (2020) Road dust trace elements contamination, sources, dispersed composition, and human health risk in Chelyabinsk. Russ Chemosphere 261:127799

    Article  CAS  Google Scholar 

  • Kurt-Karakus PB (2012) Determination of heavy metals in indoor dust from Istanbul, Turkey: estimation of the health risk. Environ Int 50:47–55

    Article  CAS  Google Scholar 

  • Li H, Qian X, Hu W, Wang Y, Gao H (2013) Chemical speciation and human health risk of trace metals in urban street dusts from a metropolitan city, Nanjing. SE China Sci Total Environ 456:212–221

    Article  Google Scholar 

  • Li Z, Ma Z, van der Kuijp TJ, Yuan Z, Huang L (2014) A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci Total Environ 468–469:843–853

    Article  Google Scholar 

  • Li WJ, Sun JX, Xu L, Shi ZB, Riemer N, Sun YL et al (2016) A conceptual framework for mixing structures in individual aerosol particles. J Geophys Res Atmos 121(22):13–784

    Article  Google Scholar 

  • Li F, Qiu ZZ, Zhang JD, Liu CY, Cai Y, Xiao MS (2017a) Spatial distribution and fuzzy health risk assessment of trace elements in surface water from Honghu Lake. Inter J Environ Res Pub Heal 14:1011

    Article  Google Scholar 

  • Li HH, Chen LJ, Yu L, Guo ZB, Shan CQ, Lin JQ, Cheng Z (2017b) Pollution characteristics and risk assessment of human exposure to oral bioaccessibility of heavy metals via urban street dusts from different functional areas in Chengdu, China. Sci Total Environ 586:1076–1084

    Article  CAS  Google Scholar 

  • Li N, Han W, Tang J, Bian J, Sun S, Song T (2018) Pollution characteristics and human health risks of elements in road dust in Changchun, China. Int J Environ Res Pub Health. 9:1843

    Article  Google Scholar 

  • Liu R, Wang M, Chen WP et al (2016) Spatial pattern of heavy metals accumulation risk in urban soils of Beijing and its influencing factors. Environ Pollut 210:174–181

    Article  CAS  Google Scholar 

  • Liu X, Ouyang W, Shu Y, Tian Y, Feng Y, Zhang T, Chen W (2019) Incorporating bioaccessibility into health risk assessment of heavy metals in particulate matter originated from different sources of atmospheric pollution. Environ Pollut 254:113113

    Article  CAS  Google Scholar 

  • Liu B, Huang F, Yu Y, Li X, He Y, Gao L, Hu X (2021) Heavy metals in indoor dust across china: occurrence, sources and health risk assessment. Arch Environ Con Tox 81(1):67–76

    Article  CAS  Google Scholar 

  • Lu X, Wang L, Lei K, Huang J, Zhai Y (2009) Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji. NW China J Hazard Mater 161(2–3):1058–1062

    Article  CAS  Google Scholar 

  • Ma JJ, Yan Y, Chen XJ, Niu ZR, Yu RL, Hu GR (2021) Incorporating bioaccessibility and source apportionment into human health risk assessment of heavy metals in urban dust of Xiamen. China Ecotox Environ Safe 228:112985

    Article  CAS  Google Scholar 

  • Marcazzan GM, Vaccaro S, Valli G, Vecchi R (2001) Characterisation of PM10 and PM2. 5 particulate matter in the ambient air of Milan (Italy). Atmos Environ 35(27):4639–4650

    Article  CAS  Google Scholar 

  • McDonald LT, Rasmussen PE, Chénier M, Levesque C (2010) Wipe sampling methodologies to assess exposures to lead and cadmium in urban Canadian homes. Proceed Ann Int Conf Soils Sediment Water Energy 15(1):6

    Google Scholar 

  • Melymuk L, Demirtepe H, Jílková SR (2020) Indoor dust and associated chemical exposures. Curr Opin Environ Sci Health 15:1–6

    Article  Google Scholar 

  • Men C, Wang Y, Liu R, Wang Q, Miao Y, Jiao L, Shen Z (2021) Temporal variations of levels and sources of health risk associated with heavy metals in road dust in Beijing from May 2016 to April 2018. Chemosphere 270:129434

    Article  CAS  Google Scholar 

  • Meng QY, Spector D, Colome S, Turpin B (2009) Determinants of indoor and personal exposure to PM(2.5) of indoor and outdoor origin during the RIOPA study. Atmos Environ 43(36):5750–5758

    Article  CAS  Google Scholar 

  • Meng J, Mi Z, Yang H, Shan Y, Guan D, Liu J (2017) The consumption-based black carbon emissions of China’s megacities. J Clean Prod 161:1275–1282

    Article  CAS  Google Scholar 

  • Mihankhah T, Saeedi M, Karbassi A (2020) A comparative study of elemental pollution and health risk assessment in urban dust of different land-uses in Tehran’s urban area. Chemosphere 241:124984

    Article  CAS  Google Scholar 

  • Minguillón MC, Querol X, Baltensperger U, Prévôt ASH (2012) Fine and coarse PM composition and sources in rural and urban sites in Switzerland: local or regional pollution? Sci Total Environ 427:191–202

    Article  Google Scholar 

  • Mondal S, Singh G (2021) Pollution evaluation, human health effect and tracing source of trace elements on road dust of Dhanbad, a highly polluted industrial coal belt of India. Environ Geochem Hlth 43(5):2081–2103

    Article  CAS  Google Scholar 

  • Muller G (1969) Index of geoaccumulation in sediments of the Rhine River. Geo Journal 2:108–118

    Google Scholar 

  • Nie X, Qi J, Feng S, Liu Y, Qiu B, Chu H (2022) Soot formation in n-heptane/air laminar diffusion flames: effect of toluene addition. Fuel Process Technol 234:107324

    Article  CAS  Google Scholar 

  • Othman M, Latif MT, Matsumi Y (2019) The exposure of children to PM2. 5 and dust in indoor and outdoor school classrooms in Kuala Lumpur City Centre. Ecotox Environ Safe 170:739–749

    Article  CAS  Google Scholar 

  • Ott WR, Siegmann HC (2006) Using multiple continuous fine particle monitors to characterize tobacco, in-cense, candle, cooking, wood burning, and vehicular sources in indoor, outdoor, and in transit settings. Atmos-Pheric Environ 40:821–843

    Article  CAS  Google Scholar 

  • Pan Y, Tian S, Li X, Sun Y, Li Y, Wentworth GR et al (2015) Trace elements in particulate matter from metropolitan regions of Northern China: Sources, concentrations and size distributions. Sci Total Environ 537:9–22

    Article  CAS  Google Scholar 

  • Parra FB, Miguel ED, Navas SL et al (2018) Indoor dust metal loadings: a human health risk assessment. Expo Health 10:41–50

    Article  Google Scholar 

  • Pérez G, López-Mesas M, Valiente M (2008) Assessment of heavy metals remobilization by fractionation: comparison of leaching tests applied to roadside sediments. Environ Sci Technol 42(7):2309–2315

    Article  Google Scholar 

  • Pipal AS, Jan R, Satsangi PG, Tiwari S, Taneja A (2014) Study of surface morphology, elemental composition and origin of atmospheric aerosols (PM2. 5 and PM10) over Agra. India. Aerosol Air Qual Res 14(6):1685–1700

    Article  CAS  Google Scholar 

  • Rahman MS, Khan MDH, Jolly YN, Kabir J, Akter S, Salam A (2019) Assessing risk to human health for heavy metal contamination through street dust in the southeast Asian megacity: Dhaka Bangladesh. Sci Total Environ 660:1610–1622

    Article  Google Scholar 

  • Rahman MS, Jolly YN, Akter S et al (2021) Sources of toxic elements in indoor dust sample at export processing zone (EPZ) area: Dhaka, Bangladesh; and their impact on human health. Environ Sci Pollut Res 28:39540–39557

    Article  CAS  Google Scholar 

  • Ramírez O, de la Campa AMS, Amato F, Moreno T, Silva LF, Jesús D (2019) Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity. Sci Total Environ 652:434–446

    Article  Google Scholar 

  • Rasmussen PE, Levesque C, Chénier M, Gardner HD, Jones-Otazo H, Petrovic S (2013) Canadian house dust study: population-based concentrations, loads and loading rates of arsenic, cadmium, chromium, copper, nickel, lead, and zinc inside urban homes. Sci Total Environ 443:520–529

    Article  CAS  Google Scholar 

  • Saeedi M, Li Y, Salmanzadeh M (2012) Heavy metals and polycyclic aromatic hydrocarbons: pollution and ecological risk assessment in street dust of Tehran. J Hazard Mater 227:9–17

    Article  Google Scholar 

  • Shabanda IS, Koki IB, Low KH, Zain SM, Khor SM, Abu Bakar NK (2019) Daily exposure to toxic metals through urban road dust from industrial, commercial, heavy traffic, and residential areas in Petaling Jaya, Malaysia: a health risk assessment. Environ Sci Pollut Res 26(36):37193–37211

    Article  CAS  Google Scholar 

  • Shabbaj II, Alghamdi MA, Shamy M, Hassan SK, Alsharif MM, Khoder MI (2018) Risk assessment and implication of human exposure to road dust heavy metals in Jeddah, Saudi Arabia. Int J Environ Res Public Health 15:36

    Article  Google Scholar 

  • Shahab A, Zhang H, Ullah H, Rashid A, Rad S, Li J, Xiao H (2020) Pollution characteristics and toxicity of potentially toxic elements in road dust of a tourist city, Guilin, China: ecological and health risk assessment. Environ Pollut 266:115419

    Article  CAS  Google Scholar 

  • Shi J, Zhang G, An H, Yin W, Xia X (2017) Quantifying the particulate matter accumulation on leaf surfaces of urban plants in Beijing China. Atmos Pollut Res 8(5):836–842

    Article  Google Scholar 

  • Siddiqui Z, Khillare PS, Jyethi DS (2020) Pollution characteristics and human health risk from trace metals n roadside soil and road dust around major urban parks in Delhi city. Air Qual, Atmos Hlth 13:1271–1286

    Article  CAS  Google Scholar 

  • Simon E, Baranyai E, Braun M, Cserháti C, Fábián I, Tóthmérész B (2014) Elemental concentrations in deposited dust on leaves along an urbanization gradient. Sci Total Environ 490:514–520

    Article  CAS  Google Scholar 

  • Škrbić B, Milovac S, Matavulj M (2012) Multielement profiles of soil, road dust, tree bark and wood-rotten fungi collected at various distances from high-frequency road in urban area. Ecol Indic 13(1):168–177

    Article  Google Scholar 

  • Soltani N, Keshavarzi B, Moore F, Tavakol T, Lahijanzadeh AR, Jaafarzadeh N, Kermani M (2015) Ecological and human health hazards of heavy metals and polycyclic aromatic hydrocarbons (PAHs) in road dust of Isfahan metropolis. Iran Sci Total Environ 505:712–723

    Article  CAS  Google Scholar 

  • Song F, Gao Y (2011) Size distributions of trace elements associated with ambient particular matter in the affinity of a major highway in the New Jersey-New York metropolitan area. Atmos Environ 45(37):6714–6723

    Article  CAS  Google Scholar 

  • Song Y, Maher BA, Li F, Wang X, Sun X, Zhang H (2015) Particulate matter deposited on leaf of five evergreen species in Beijing, China: source identification and size distribution. Atmos Environ 105:53–60

    Article  CAS  Google Scholar 

  • Stranger M, Potgieter-Vermaak SS, Van Grieken R (2007) Comparative overview of indoor air quality in Antwerp. Belgium Environ Int 33:789–797

    Article  CAS  Google Scholar 

  • Su L, Nan B, Craig NJ, Pettigrove V (2020) Temporal and spatial variations of microplastics in roadside dust from rural and urban Victoria, Australia: implications for diffuse pollution. Chemosphere 252:126567–126567

    Article  CAS  Google Scholar 

  • Tang ZW, Chai M, Cheng JL, Jin J, Huang QF (2017) Contamination and health risks of heavy metals in street dust from a coal- mining city in eastern China. Ecotox Environ Safe 138(2017):83–91

    Article  CAS  Google Scholar 

  • Tian S, Liang T, Li K (2019) Fine road dust contamination in a mining area presents a likely air pollution hotspot and threat to human health. Environ Int 128:201–209

    Article  CAS  Google Scholar 

  • Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy-metal levelsinestuariesand the formation of a pollution index. Helgol Meeresun 33:566–575

    Article  Google Scholar 

  • Trombulak SC, Frissell CA (2000) Review of ecological effects of roads on terrestrial and aquatic communities. Conserv Biol 14:18–30

    Article  Google Scholar 

  • Turner A (2011) Oral bioaccessibility of trace metals in household dust: a review. Environ Geochem Hlth 33(4):331–341

    Article  CAS  Google Scholar 

  • Turner A, Simmonds L (2006) Elemental concentrations and metal bioaccessibility in UK household dust. Sci Total Environ 371:74–81

    Article  CAS  Google Scholar 

  • Ugwu KE, Ofomatah AC (2021) Concentration and risk assessment of toxic metals in indoor dust in selected schools in Southeast. Niger SN Appl Sci 3(1):1–13

    Google Scholar 

  • US DOE (2011) The risk assessment information system (RAIS). Oak Ridge, TN, US Department of Energy’s Oak Ridge Operations Office (ORO)

  • US EPA (1989) Risk assessment guidance for superfund. human health evaluation manual, vol. I. office of solid waste and emergency response; (EPA/540/1–89/002)

  • US EPA (1996) Soil Screening guidance technical background document, office of solid waste and emergency response. EPA/540/R-95/128

  • US EPA (2001). Supplemental guidance for developing soil screening levels for Superfund sites. Office of Solid Waste and Emergency Response, 9355:20014–24 (OSWER)

  • US EPA (2011) Integrated risk information system. Washington, DC, Available online at. http://www.epa.gov/IRIS/.

  • Viana M, Díez S, Reche C (2011) Indoor and outdoor sources and infiltration processes of PM1 and black carbon in an urban environment. Atmos Environ 45(35):6359–6367

    Article  CAS  Google Scholar 

  • Wan MP, Wu CL, To GNS (2011) Ultrafine particles, and PM 2.5, generated from cooking in homes. Atmos Environ 45:6141–6148

    Article  CAS  Google Scholar 

  • Wang S, Wei W, Li D, Kristin A, Hao J (2010) Air pollutants in rural homes in Guizhou, China—Concen-trations, speciation, and size distribution. Atmos Environ 44:4575–4581

    Article  CAS  Google Scholar 

  • Wang J, Hu ZM, Chen YY, Chen ZL, Xu SY (2013) Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai. China Atmos Environ 68:221–229

    Article  CAS  Google Scholar 

  • Wang X, Zhang Y, Cheng X (2014) Lung cancer risk assessment of cooking oil fume for Chinese nonsmoking women. Wit Trans Built Environ 145:243–250

    Article  CAS  Google Scholar 

  • Wang J, Li S, Cui X, Li H, Qian X, Wang C, Sun Y (2016) Bioaccessibility, sources and health risk assessment of trace metals in urban park dust in Nanjing, Southeast China. Ecotox Environ Safe 128:161–170

    Article  CAS  Google Scholar 

  • Wang L, Xiang Z, Stevanovic S, Ristovski Z, Salimi F, Gao J, Li L (2017) Role of Chinese cooking emissions on ambient air quality and human health. Sci Total Environ 589:173–181

    Article  CAS  Google Scholar 

  • Wang Y, Fang FM, Lin YS (2020) Pollution and influencing factors of heavy metals from rural kitchen dust in Anhui Province, China. Atmos Pollut Res 11:1211–1216

    Article  CAS  Google Scholar 

  • Wang Y, Qian P, Li D, Chen H, Zhou X (2021) Assessing risk to human health for heavy metal contamination from public point utility through ground dust: a case study in Nantong China. Environ Sci Pollut Res 28(47):67234–67247

    Article  CAS  Google Scholar 

  • Werkenthin M, Kluge B, Wessołek G (2014) Metals in European roadside soils and soil solution e a review. Environ Pollut 189:98–110

    Article  CAS  Google Scholar 

  • Xiao Q, Zong YT, Lu SG (2015) Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China. Ecotox Environ Safe 120:377–385

    Article  Google Scholar 

  • Xu N, Yu X, Yu S, Zhang T, Han Y, Chu H (2022) Characterization of electrodeposited porous structured composite layers and their unconventional wettability properties. Colloid Surf A 654:130074

    Article  CAS  Google Scholar 

  • Xue H, Liu G, Zhang H, Hu R, Wang X (2019) Similarities and differences in PM10 and PM2.5 concentrations, chemical compositions and sources in Hefei City. China Chemos 220:760–765

    Article  CAS  Google Scholar 

  • Yadav IC, Devi NL, Singh VK, Li J, Zhang G (2019) Spatial distribution, source analysis, and health risk assessment of heavy metals contamination in house dust and surface soil from four major cities of Nepal. Chemosphere 218:1100–1113

    Article  CAS  Google Scholar 

  • Yang Q, Chen H, Li B (2015) Source identification and health risk assessment of metals in indoor dust in the vicinity of phosphorus mining, Guizhou Province. China Arch Eviron Con Tox 68(1):20–30

    Article  CAS  Google Scholar 

  • Yang J, Teng Y, Song L, Zuo R (2016) Tracing sources and contamination assessments of heavy metals in road and foliar dusts in a typical mining city China. PLoS ONE 11(12):e0168528

    Article  Google Scholar 

  • Yesilkanat CM, Kobya Y (2021) Spatial characteristics of ecological and health risks of toxic heavy metal pollution from road dust in the Black Sea coast of Turkey. Geoderma Reg 25:e00388

    Article  Google Scholar 

  • Yiin LM, Rhoads GG, Rich DQ et al (2002) Comparison of techniques to reduce residential lead dust on carpet and upholstery: the New Jersey assessment of cleaning techniques trial. Environ Health Perspect 110:1233–1237

    Article  CAS  Google Scholar 

  • Yu B, Lu X, Fan X, Fan P, Zuo L, Yang Y, Wang L (2021) Analyzing environmental risk, source and spatial distribution of potentially toxic elements in dust of residential area in Xi’an urban area. China Ecotox Environ Safe 208:111679

    Article  CAS  Google Scholar 

  • Zhang J, Wu L, Zhang YJ, Li FH, Fang XZ, Mao HJ (2019) Elemental composition and risk assessment of heavy metals in the PM 10 fractions of road dust and roadside soil. Particuology 44:146–152

    Article  CAS  Google Scholar 

  • Zhao Y, Zhao B (2018) Emissions of air pollutants from Chinese cooking: a literature review Springer. Berlin Heidelb 11(5):977–995

    Google Scholar 

  • Zhao H, Li X, Wang X, Tian D (2010) Grain size distribution ofroad-depositedsediment and its contribution to heavy metal pollution in urban runoff in Beijing China. J Hazard Mater 183:203–210

    Article  CAS  Google Scholar 

  • Zhao N, Lu XW, Chao SG (2014) Level and contamination assessment of environmentally sensitive elements in smaller than 100 lm street dust particles from Xining, China. Int J Environ Res Publ Health 11:2536–2549

    Article  CAS  Google Scholar 

  • Zheng N, Liu J, Wang Q, Liang Z (2010) Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Sci Total Environ 408:726–733

    Article  CAS  Google Scholar 

  • Zhou L, Liu G, Shen M, Hu R, Sun M, Liu Y (2019) Characteristics and health risk assessment of heavy metals in indoor dust from different functional areas in Hefei, China. Environ Pollut 251:839–849

    Article  CAS  Google Scholar 

  • Zhou L, Liu G, Shen M, Hu R, Liu Y (2020) Source identification of heavy metals and stable carbon isotope in indoor dust from different functional areas in Hefei. China Sci Total Environ 710:135599

    Article  CAS  Google Scholar 

  • Zhu HN, Liu XL, Xu CH, Zhang LB, Chen HY, Shi F, Li Y, Liu YZ, Zhang BZ (2021a) The health risk assessment of Heavy Metals (HMs) in road dust based on Monte Carlo simulation and bio-toxicity: a case study in Zhengzhou, China. Environ Geochem Health 43:5135–5156

    Article  CAS  Google Scholar 

  • Zhu X, Yu W, Li F, Liu C, Ma J, Yan J, Tian R et al (2021b) Spatio-temporal distribution and source identification of heavy metals in particle size fractions of road dust from a typical industrial district. Sci Total Environ 780:146357

    Article  CAS  Google Scholar 

  • Zhuang S, Lu X, Yu B, Fan X, Yang Y (2021) Ascertaining the pollution, ecological risk and source of metal (loid) s in the upstream sediment of Danjiang River. China Ecol Indic 125:107502

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52176095), Anhui Provincial Natural Science Foundation (No. 2008085J25), Natural Science Research Project of Colleges and Universities in Anhui Province (KJ2020ZD29), and Open Project of State Key Laboratory of Clean Energy Utilization, Zhejiang University (Grant No. ZJU-CEU2020001).

Funding

Funding is provided by National Natural Science Foundation of China (Grant no. 52176095)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huaqiang Chu, Nian Xu or Junchao Xu.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 252 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, H., Liu, Y., Xu, N. et al. Concentration, sources, influencing factors and hazards of heavy metals in indoor and outdoor dust: A review. Environ Chem Lett 21, 1203–1230 (2023). https://doi.org/10.1007/s10311-022-01546-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-022-01546-2

Keywords

Navigation