Skip to main content

Advertisement

Log in

The effect of hyperoxia on muscle sympathetic nerve activity: a systematic review and meta-analysis

  • Review Article
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Purpose

We conducted a meta-analysis to determine the effect of hyperoxia on muscle sympathetic nerve activity in healthy individuals and those with cardio-metabolic diseases.

Methods

A comprehensive search of electronic databases was performed until August 2022. All study designs (except reviews) were included: population (humans; apparently healthy or with at least one chronic disease); exposures (muscle sympathetic nerve activity during hyperoxia or hyperbaria); comparators (hyperoxia or hyperbaria vs. normoxia); and outcomes (muscle sympathetic nerve activity, heart rate, blood pressure, minute ventilation). Forty-nine studies were ultimately included in the meta-analysis.

Results

In healthy individuals, hyperoxia had no effect on sympathetic burst frequency (mean difference [MD] − 1.07 bursts/min; 95% confidence interval [CI] − 2.17, 0.04bursts/min; P = 0.06), burst incidence (MD 0.27 bursts/100 heartbeats [hb]; 95% CI − 2.10, 2.64 bursts/100 hb; P = 0.82), burst amplitude (P = 0.85), or total activity (P = 0.31). In those with chronic diseases, hyperoxia decreased burst frequency (MD − 5.57 bursts/min; 95% CI − 7.48, − 3.67 bursts/min; P < 0.001) and burst incidence (MD − 4.44 bursts/100 hb; 95% CI − 7.94, − 0.94 bursts/100 hb; P = 0.01), but had no effect on burst amplitude (P = 0.36) or total activity (P = 0.90). Our meta-regression analyses identified an inverse relationship between normoxic burst frequency and change in burst frequency with hyperoxia. In both groups, hyperoxia decreased heart rate but had no effect on any measure of blood pressure.

Conclusion

Hyperoxia does not change sympathetic activity in healthy humans. Conversely, in those with chronic diseases, hyperoxia decreases sympathetic activity. Regardless of disease status, resting sympathetic burst frequency predicts the degree of change in burst frequency, with larger decreases for those with higher resting activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be provided following a reasonable request to the corresponding author.

References:

  1. Grou NO (1980) Continuous or nocturnal oxygen therapy in hypoxemic chronic obstructive lung disease. Ann Intern Med 93:391–398. https://doi.org/10.7326/0003-4819-93-3-391

    Article  Google Scholar 

  2. Stuart-Harris C, Bishop JM, Clark TJH et al (1981) Long term domiciliary oxygen therapy in chronic hypoxic cor pulmonale complicating chronic bronchitis and emphysema. Lancet 317:681–686. https://doi.org/10.1016/S0140-6736(81)91970-X

  3. Simpson LL, Busch SA, Oliver SJ et al (2019) Baroreflex control of sympathetic vasomotor activity and resting arterial pressure at high altitude: insight from Lowlanders and Sherpa. J Physiol 597:2379–2390. https://doi.org/10.1113/JP277663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Querido JS, Kennedy PM, Sheel AW (2010) Hyperoxia attenuates muscle sympathetic nerve activity following isocapnic hypoxia in humans. J Appl Physiol 108:906–912. https://doi.org/10.1152/japplphysiol.01228.2009

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hansen J, Sander M (2003) Sympathetic neural overactivity in healthy humans after prolonged exposure to hypobaric hypoxia. J Physiol 546:921–929. https://doi.org/10.1113/jphysiol.2002.031765

    Article  CAS  PubMed  Google Scholar 

  6. Duffin J (1990) The chemoreflex control of breathing and its measurement. Can J Anaesth 37:933–942. https://doi.org/10.1007/BF03006641

    Article  CAS  PubMed  Google Scholar 

  7. Lazović B, Zlatković ŠM, Durmić T et al (2016) The regulation role of carotid body peripheral chemoreceptors in physiological and pathophysiological conditions. Med Pregl 69:385–390. https://doi.org/10.2298/MPNS1612385L

    Article  PubMed  Google Scholar 

  8. Niewinski P, Janczak D, Rucinski A et al (2017) Carotid body resection for sympathetic modulation in systolic heart failure: results from first-in-man study. Eur J Heart Fail 19:391–400. https://doi.org/10.1002/ejhf.641

    Article  PubMed  Google Scholar 

  9. Narkiewicz K, Ratcliffe LEK, Hart EC et al (2016) Unilateral carotid body resection in resistant hypertension: a safety and feasibility trial. JACC Basic Transl Sci 1:313–324. https://doi.org/10.1016/j.jacbts.2016.06.004

    Article  PubMed  PubMed Central  Google Scholar 

  10. Tymko MM, Young D, Vergel D et al (2023) The effect of hypoxemia on muscle sympathetic nerve activity and cardiovascular function—a systematic review and meta-analysis. Am J Physiol Regul Integr Comp Physiol. https://doi.org/10.1152/ajpregu.00021.2023

    Article  PubMed  PubMed Central  Google Scholar 

  11. Steinback CD, Salzer D, Medeiros PJ et al (2009) Hypercapnic vs. hypoxic control of cardiovascular, cardiovagal, and sympathetic function. Am J Physiol Regul Integr Comp Physiol 296:R402–R410. https://doi.org/10.1152/ajpregu.90772.2008

    Article  CAS  PubMed  Google Scholar 

  12. Ott EP, Jacob DW, Baker SE et al (2020) Sympathetic neural recruitment strategies following acute intermittent hypoxia in humans. Am J Physiol Regul Integr Comp Physiol 318:R961–R971. https://doi.org/10.1152/ajpregu.00004.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xie A, Skatrud JB, Puleo DS, Morgan BJ (2001) Exposure to hypoxia produces long-lasting sympathetic activation in humans. J Appl Physiol 91:1555–1562. https://doi.org/10.1152/jappl.2001.91.4.1555

    Article  CAS  PubMed  Google Scholar 

  14. Houssière A, Najem B, Cuylits N et al (2006) Hyperoxia enhances metaboreflex sensitivity during static exercise in humans. Am J Physiol Heart Circ Physiol 291:H210–H215. https://doi.org/10.1152/ajpheart.01168.2005

    Article  CAS  PubMed  Google Scholar 

  15. Seals DR, Johnson DG, Fregosi RF (1991) Hyperoxia lowers sympathetic activity at rest but not during exercise in humans. Am J Physiol 260:R873–R878. https://doi.org/10.1152/ajpregu.1991.260.5.R873

    Article  CAS  PubMed  Google Scholar 

  16. Moher D, Liberati A, Tetzlaff J et al (2009) Preferred Reporting Items for Systematic Reviews and Meta-Analyses: the PRISMA statement. Ann Inter Med 151:4. https://www.acpjournals.org/doi/full/10.7326/0003-4819-151-4-200908180-00135. Accessed 2 Mar 2023

  17. Cramond F, O’Mara-Eves A, Doran-Constant L et al (2019) The development and evaluation of an online application to assist in the extraction of data from graphs for use in systematic reviews. Wellcome Open Res 3:157. https://doi.org/10.12688/wellcomeopenres.14738.3

    Article  PubMed  PubMed Central  Google Scholar 

  18. Drevon D, Fursa SR, Malcolm AL (2017) Intercoder reliability and validity of webplotdigitizer in extracting graphed data. Behav Modif 41:323–339. https://doi.org/10.1177/0145445516673998

    Article  PubMed  Google Scholar 

  19. Moola S, Munn Z, Tufanaru C et al (2020) Chapter 7: systematic reviews of etiology and risk. In: Aromataris E, Munn Z (eds) JBI manual for evidence synthesis. JBI, Cham

    Google Scholar 

  20. Higgins JPT, Thomas J, Chandler J et al (2019) Cochrane handbook for systematic reviews of interventions. Wiley, Hoboken

    Book  Google Scholar 

  21. Ciarka A, Najem B, Cuylits N et al (2005) Effects of peripheral chemoreceptors deactivation on sympathetic activity in heart transplant recipients. Hypertension 45:894–900. https://doi.org/10.1161/01.HYP.0000161875.32767.ac

    Article  CAS  PubMed  Google Scholar 

  22. Sinski M, Lewandowski J, Przybylski J et al (2012) Tonic activity of carotid body chemoreceptors contributes to the increased sympathetic drive in essential hypertension. Hypertens Res 35:487–491. https://doi.org/10.1038/hr.2011.209

    Article  CAS  PubMed  Google Scholar 

  23. Narkiewicz K, van de Borne PJH, Montano N et al (1998) Contribution of tonic chemoreflex activation to sympathetic activity and blood pressure in patients with obstructive sleep apnea. Circulation 97:943–945. https://doi.org/10.1161/01.CIR.97.10.943

    Article  CAS  PubMed  Google Scholar 

  24. Hering D, Zdrojewski Z, Król E et al (2007) Tonic chemoreflex activation contributes to the elevated muscle sympathetic nerve activity in patients with chronic renal failure. J Hypertens 25:157–161. https://doi.org/10.1097/HJH.0b013e3280102d92

    Article  CAS  PubMed  Google Scholar 

  25. Andreas S, Bingeli C, Mohacsi P et al (2003) Nasal oxygen and muscle sympathetic nerve activity in heart failure. Chest 123:366–371. https://doi.org/10.1378/chest.123.2.366

    Article  PubMed  Google Scholar 

  26. Binggeli C, Sudano I, Corti R et al (2010) Spontanous periodic breathing is associated with sympathetic hyperreactivity and baroreceptor dysfunction in hypertension. J Hypertens 28:985. https://doi.org/10.1097/HJH.0b013e3283370e3d

    Article  CAS  PubMed  Google Scholar 

  27. Ciarka A, Vachièry J-L, Houssière A et al (2007) Atrial septostomy decreases sympathetic overactivity in pulmonary arterial hypertension. Chest 131:1831–1837. https://doi.org/10.1378/chest.06-2903

    Article  PubMed  Google Scholar 

  28. Davy KP, Jones PP, Seals DR (1997) Influence of age on the sympathetic neural adjustments to alterations in systemic oxygen levels in humans. Am J Physiol 273:R690–R695. https://doi.org/10.1152/ajpregu.1997.273.2.R690

    Article  CAS  PubMed  Google Scholar 

  29. Despas F, Detis N, Dumonteil N et al (2009) Excessive sympathetic activation in heart failure with chronic renal failure: role of chemoreflex activation. J Hypertens 27:1849–1854. https://doi.org/10.1097/HJH.0b013e32832e8d0f

    Article  CAS  PubMed  Google Scholar 

  30. Despas F, Lambert E, Vaccaro A et al (2012) Peripheral chemoreflex activation contributes to sympathetic baroreflex impairment in chronic heart failure. J Hypertens 30:753–760. https://doi.org/10.1097/HJH.0b013e328350136c

    Article  CAS  PubMed  Google Scholar 

  31. Engelstein ED, Lerman BB, Somers VK, Rea RF (1994) Role of arterial chemoreceptors in mediating the effects of endogenous adenosine on sympathetic nerve activity. Circulation 90:2919–2926. https://doi.org/10.1161/01.CIR.90.6.2919

    Article  CAS  PubMed  Google Scholar 

  32. Franchitto N, Despas F, Labrunée M et al (2010) Tonic chemoreflex activation contributes to increased sympathetic nerve activity in heart failure-related anemia. Hypertension 55:1012–1017. https://doi.org/10.1161/HYPERTENSIONAHA.109.146779

    Article  CAS  PubMed  Google Scholar 

  33. Haque WA, Boehmer J, Clemson BS et al (1996) Hemodynamic effects of supplemental oxygen administration in congestive heart failure. J Am Coll Cardiol 27:353–357. https://doi.org/10.1016/0735-1097(95)00474-2

    Article  CAS  PubMed  Google Scholar 

  34. Hardy JC, Gray K, Whisler S, Leuenberger U (1994) Sympathetic and blood pressure responses to voluntary apnea are augmented by hypoxemia. J Appl Physiol 77:2360–2365. https://doi.org/10.1152/jappl.1994.77.5.2360

    Article  CAS  PubMed  Google Scholar 

  35. Heindl S, Lehnert M, Criée C-P et al (2001) Marked sympathetic activation in patients with chronic respiratory failure. Am J Respir Crit Care Med 164:597–601. https://doi.org/10.1164/ajrccm.164.4.2007085

    Article  CAS  PubMed  Google Scholar 

  36. Heusser K, Thöne A, Lipp A et al (2020) Efficacy of electrical baroreflex activation is independent of peripheral chemoreceptor modulation. Hypertension 75:257–264. https://doi.org/10.1161/HYPERTENSIONAHA.119.13925

    Article  CAS  PubMed  Google Scholar 

  37. Jendzjowsky NG, Steinback CD, Herman RJ et al (2019) Functional-optical coherence tomography: a non-invasive approach to assess the sympathetic nervous system and intrinsic vascular regulation. Front Physiol 10:1146

    Article  PubMed  PubMed Central  Google Scholar 

  38. Jones PP, Davy S (1999) Influence of gender on the sympathetic neural adjustments to alterations in systemic oxygen levels in humans. Clin Physiol 19:153–160. https://doi.org/10.1046/j.1365-2281.1999.00158.x

    Article  CAS  PubMed  Google Scholar 

  39. Leuenberger U, Jacob E, Sweer L et al (1995) Surges of muscle sympathetic nerve activity during obstructive apnea are linked to hypoxemia. J Appl Physiol 79:581–588. https://doi.org/10.1152/jappl.1995.79.2.581

    Article  CAS  PubMed  Google Scholar 

  40. Leuenberger UA, Hardy JC, Herr MD et al (2001) Hypoxia augments apnea-induced peripheral vasoconstriction in humans. J Appl Physiol 90:1516–1522. https://doi.org/10.1152/jappl.2001.90.4.1516

    Article  CAS  PubMed  Google Scholar 

  41. Leuenberger UA, Hogeman CS, Quraishi S et al (2007) Short-term intermittent hypoxia enhances sympathetic responses to continuous hypoxia in humans. J Appl Physiol 103:835–842. https://doi.org/10.1152/japplphysiol.00036.2007

    Article  PubMed  Google Scholar 

  42. Limberg JK, Johnson BD, Mozer MT et al (2020) Role of the carotid chemoreceptors in insulin-mediated sympathoexcitation in humans. Am J Physiol Regul Integr Comp Physiol 318:R173–R181. https://doi.org/10.1152/ajpregu.00257.2019

    Article  CAS  PubMed  Google Scholar 

  43. Morgan BJ, Denahan T, Ebert TJ (1993) Neurocirculatory consequences of negative intrathoracic pressure vs. asphyxia during voluntary apnea. J Appl Physiol 74:2969–2975. https://doi.org/10.1152/jappl.1993.74.6.2969

    Article  CAS  PubMed  Google Scholar 

  44. Muller MD, Drew RC, Cui J et al (2013) Effect of oxidative stress on sympathetic and renal vascular responses to ischemic exercise. Physiol Rep. https://doi.org/10.1002/phy2.47

    Article  PubMed  PubMed Central  Google Scholar 

  45. Notarius CF, Badrov MB, Tobushi T et al (2023) Cardiovascular reflex contributions to sympathetic inhibition during low intensity dynamic leg exercise in healthy middle-age. Physiol Rep 11:e15821. https://doi.org/10.14814/phy2.15821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ott EP, Baker SE, Holbein WW et al (2019) Effect of varying chemoreflex stress on sympathetic neural recruitment strategies during apnea. J Neurophysiol 122:1386–1396. https://doi.org/10.1152/jn.00319.2019

    Article  PubMed  PubMed Central  Google Scholar 

  47. Phillips DB, Steinback CD, Collins SÉ et al (2018) The carotid chemoreceptor contributes to the elevated arterial stiffness and vasoconstrictor outflow in chronic obstructive pulmonary disease. J Physiol 596:3233–3244. https://doi.org/10.1113/JP275762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Prasad B, Morgan BJ, Gupta A et al (2020) The need for specificity in quantifying neurocirculatory vs. respiratory effects of eucapnic hypoxia and transient hyperoxia. J Physiol 598:4803–4819. https://doi.org/10.1113/JP280515

    Article  CAS  PubMed  Google Scholar 

  49. Reed EL, Worley ML, Sackett J et al (2020) Muscle sympathetic nerve activity during thermoneutral head-out water immersion with and without hyperoxia. FASEB J 34:1–1. https://doi.org/10.1096/fasebj.2020.34.s1.06426

    Article  Google Scholar 

  50. Rongen GA, Senn BL, Ando S et al (1997) Comparison of hemodynamic and sympathoneural responses to adenosine and lower body negative pressure in man. Can J Physiol Pharmacol 75:128–134

    Article  CAS  PubMed  Google Scholar 

  51. Sayegh ALC, Fan J-L, Vianna LC et al (2022) Sex differences in the sympathetic neurocirculatory responses to chemoreflex activation. J Physiol 600:2669–2689. https://doi.org/10.1113/JP282327

    Article  CAS  PubMed  Google Scholar 

  52. Siddiqi L, Oey PL, Blankestijn PJ (2010) Aliskiren reduces sympathetic nerve activity in chronic kidney disease patients: PP.24.467. J Hypertens 28:e386. https://doi.org/10.1097/01.hjh.0000379393.42415.72

    Article  Google Scholar 

  53. Smorschok MP, Sobierajski FM, Purdy GM et al (2019) Peripheral chemoreceptor deactivation attenuates the sympathetic response to glucose ingestion. Appl Physiol Nutr Metab 44:389–396. https://doi.org/10.1139/apnm-2018-0062

    Article  CAS  PubMed  Google Scholar 

  54. Steele AR, Berthelsen LF, Fraser GM et al (2021) Blunted sympathetic neurovascular transduction is associated to the severity of obstructive sleep apnea. Clin Auton Res 31:443–451. https://doi.org/10.1007/s10286-021-00784-8

    Article  PubMed  Google Scholar 

  55. Stickland MK, Morgan BJ, Dempsey JA (2008) Carotid chemoreceptor modulation of sympathetic vasoconstrictor outflow during exercise in healthy humans: carotid chemoreceptor and sympathetic activation during exercise. J Physiol 586:1743–1754. https://doi.org/10.1113/jphysiol.2007.147421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Trzebski A, Smith ML, Beightol LA et al (1995) Modulation of human sympathetic periodicity by mild, brief hypoxia and hypercapnia. J Physiol Pharmacol 46:17–35

    CAS  PubMed  Google Scholar 

  57. van de Borne P, Oren R, Anderson EA et al (1996) Tonic chemoreflex activation does not contribute to elevated muscle sympathetic nerve activity in heart failure. Circulation 94:1325–1328. https://doi.org/10.1161/01.CIR.94.6.1325

    Article  PubMed  Google Scholar 

  58. Velez-Roa S, Ciarka A, Najem B et al (2004) Increased sympathetic nerve activity in pulmonary artery hypertension. Circulation 110:1308–1312. https://doi.org/10.1161/01.CIR.0000140724.90898.D3

    Article  PubMed  Google Scholar 

  59. Yamauchi K, Tsutsui Y, Endo Y et al (2002) Sympathetic nervous and hemodynamic responses to lower body negative pressure in hyperbaria in men. Am J Physiol-Regul Integr Comp Physiol 282:R38–R45. https://doi.org/10.1152/ajpregu.2002.282.1.R38

    Article  CAS  PubMed  Google Scholar 

  60. Saboune J, Schwende B, Usselman CW, Davenport MH, Steinback CD (2023) Effect of sex on sympatho-inhibitors and non-inhibitors during acute hyperoxia. J Physiol (in press)

  61. Franchitto N, Despas F, Labrunee M et al (2013) Cardiorenal anemia syndrome in chronic heart failure contributes to increased sympathetic nerve activity. Int J Cardiol 168:2352–2357. https://doi.org/10.1016/j.ijcard.2013.01.023

    Article  PubMed  Google Scholar 

  62. Reyes LM, Usselman CW, Khurana R et al (1985) (2021) Preeclampsia is not associated with elevated muscle sympathetic reactivity. J Appl Physiol 130:139–148. https://doi.org/10.1152/japplphysiol.00646.2020

    Article  CAS  Google Scholar 

  63. Reyes LM, Khurana R, Usselman CW et al (2020) Sympathetic nervous system activity and reactivity in women with gestational diabetes mellitus. Physiol Rep 8:e14504. https://doi.org/10.14814/phy2.14504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Simmons GH, Manson JM, Halliwill JR (2007) Mild central chemoreflex activation does not alter arterial baroreflex function in healthy humans: central chemoreflex does not alter arterial baroreflex function. J Physiol 583:1155–1163. https://doi.org/10.1113/jphysiol.2007.137216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Notarius CF, Keir DA, Badrov MB et al (2020) Contrasting reflex neural modulation of muscle sympathetic nerve activity at rest and during one-leg dynamic exercise in subjects with and without heart failure. FASEB J 34:1–1. https://doi.org/10.1096/fasebj.2020.34.s1.06063

    Article  Google Scholar 

  66. Andreas S, Haarmann H, Klarner S et al (2014) Increased sympathetic nerve activity in COPD is associated with morbidity and mortality. Lung 192:235–241. https://doi.org/10.1007/s00408-013-9544-7

    Article  CAS  PubMed  Google Scholar 

  67. Barretto ACP, Santos AC, Munhoz R et al (2009) Increased muscle sympathetic nerve activity predicts mortality in heart failure patients. Int J Cardiol 135:302–307. https://doi.org/10.1016/j.ijcard.2008.03.056

    Article  PubMed  Google Scholar 

  68. Ciarka A, Doan V, Velez-Roa S et al (2010) Prognostic significance of sympathetic nervous system activation in pulmonary arterial hypertension. Am J Respir Crit Care Med 181:1269–1275. https://doi.org/10.1164/rccm.200912-1856OC

    Article  PubMed  Google Scholar 

  69. Dejours P (1962) Chemoreflexes in breathing. Physiol Rev 42:335–358. https://doi.org/10.1152/physrev.1962.42.3.335

    Article  CAS  PubMed  Google Scholar 

  70. Grassi G, Pisano A, Bolignano D et al (2018) Sympathetic nerve traffic activation in essential hypertension and its correlates. Hypertension 72:483–491. https://doi.org/10.1161/HYPERTENSIONAHA.118.11038

    Article  CAS  PubMed  Google Scholar 

  71. Badrov MB, Keir DA, Tomlinson G et al (2023) Normal and excessive muscle sympathetic nerve activity in heart failure: implications for future trials of therapeutic autonomic modulation. Eur J Heart Fail 25:201–210. https://doi.org/10.1002/ejhf.2749

    Article  CAS  PubMed  Google Scholar 

  72. Smit B, Smulders YM, van der Wouden JC et al (2018) Hemodynamic effects of acute hyperoxia: systematic review and meta-analysis. Crit Care 22:45. https://doi.org/10.1186/s13054-018-1968-2

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mattos JD, Campos MO, Rocha MP et al (2019) Human brain blood flow and metabolism during isocapnic hyperoxia: the role of reactive oxygen species. J Physiol 597:741–755. https://doi.org/10.1113/JP277122

    Article  CAS  PubMed  Google Scholar 

  74. Fernandes IA, Mattos JD, Campos MO et al (2021) Reactive oxygen species play a modulatory role in the hyperventilatory response to poikilocapnic hyperoxia in humans. J Physiol 599:3993–4007. https://doi.org/10.1113/JP281635

    Article  CAS  PubMed  Google Scholar 

  75. Teboul J-L, Scheeren T (2017) Understanding the haldane effect. Intensive Care Med 43:91–93. https://doi.org/10.1007/s00134-016-4261-3

    Article  PubMed  Google Scholar 

  76. Dean JB, Mulkey DK, Henderson RA et al (2004) Hyperoxia, reactive oxygen species, and hyperventilation: oxygen sensitivity of brain stem neurons. J Appl Physiol 96:784–791. https://doi.org/10.1152/japplphysiol.00892.2003

    Article  PubMed  Google Scholar 

  77. Yamada Y, Miyajima E, Tochikubo O et al (1989) Age-related changes in muscle sympathetic nerve activity in essential hypertension. Hypertension 13:870–877. https://doi.org/10.1161/01.HYP.13.6.870

    Article  CAS  PubMed  Google Scholar 

  78. Abdala AP, McBryde FD, Marina N et al (2012) Hypertension is critically dependent on the carotid body input in the spontaneously hypertensive rat. J Physiol 590:4269–4277. https://doi.org/10.1113/jphysiol.2012.237800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Atanasova DY, Dandov AD, Lazarov NE (2023) Neurochemical plasticity of the carotid body in hypertension. Anat Rec 306:2366–2377. https://doi.org/10.1002/ar.24997

    Article  CAS  Google Scholar 

  80. Paton JFR, Sobotka PA, Fudim M, et al (2013) The carotid body as a therapeutic target for the treatment of sympathetically mediated diseases. Hypertension 61(1):5-13. https://www.ahajournals.org/doi/epub/10.1161/HYPERTENSIONAHA.111.00064

  81. Edwards BA, Sands SA, Owens RL et al (2014) Effects of hyperoxia and hypoxia on the physiological traits responsible for obstructive sleep apnoea. J Physiol 592:4523–4535. https://doi.org/10.1113/jphysiol.2014.277210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Niewinski P, Engelman ZJ, Fudim M et al (2013) Clinical predictors and hemodynamic consequences of elevated peripheral chemosensitivity in optimally treated men with chronic systolic heart failure. J Card Fail 19:408–415. https://doi.org/10.1016/j.cardfail.2013.03.013

    Article  CAS  PubMed  Google Scholar 

  83. Ponikowski P, Chua TP, Anker SD et al (2001) Peripheral chemoreceptor hypersensitivity: an ominous sign in patients with chronic heart failure. Circulation 104:544–549. https://doi.org/10.1161/hc3101.093699

    Article  CAS  PubMed  Google Scholar 

  84. Tubek S, Niewinski P, Paleczny B et al (2021) Acute hyperoxia reveals tonic influence of peripheral chemoreceptors on systemic vascular resistance in heart failure patients. Sci Rep 11:20823. https://doi.org/10.1038/s41598-021-99159-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hoeper MM, Benza RL, Corris P et al (2019) Intensive care, right ventricular support and lung transplantation in patients with pulmonary hypertension. Eur Respir J. https://doi.org/10.1183/13993003.01906-2018

    Article  PubMed  PubMed Central  Google Scholar 

  86. Olsson KM, Frank A, Fuge J et al (2015) Acute hemodynamic effects of adaptive servoventilation in patients with pre-capillary and post-capillary pulmonary hypertension. Respir Res 16:137. https://doi.org/10.1186/s12931-015-0298-z

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the authors who clarified aspects of their published data that were included in our meta-analysis.

Funding

This study was funded by a National Sciences and Engineering Research Council Discovery Grant (Craig Steinback: RGPIN–2020–05385). Margie Davenport is supported by the Christenson Professorship in Healthy Active Living.

Author information

Authors and Affiliations

Authors

Contributions

Desmond Young, Craig Steinback, and Margie Davenport conceptualized the project. Allison Sivak performed the literature search. Desmond Young, Paris Jones, Brittany Matenchuk, and Craig Steinback performed data analysis. Desmond Young drafted the manuscript, and all authors critically revised the work.

Corresponding author

Correspondence to Craig D. Steinback.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical approval

The manuscript does not contain clinical studies or patient data.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 7193 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Young, D.A., Jones, P.A.T., Matenchuk, B.A. et al. The effect of hyperoxia on muscle sympathetic nerve activity: a systematic review and meta-analysis. Clin Auton Res 34, 233–252 (2024). https://doi.org/10.1007/s10286-024-01033-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10286-024-01033-4

Keywords

Navigation