Skip to main content

Advertisement

Log in

The multifaceted role of MUC1 in tumor therapy resistance

  • Review
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Tumor therapeutic resistances are frequently linked to the recurrence and poor prognosis of cancers and have been a key bottleneck in clinical tumor treatment. Mucin1 (MUC1), a heterodimeric transmembrane glycoprotein, exhibits abnormally overexpression in a variety of human tumors and has been confirmed to be related to the formation of therapeutic resistance. In this review, the multifaceted roles of MUC1 in tumor therapy resistance are summarized from aspects of pan-cancer principles shared among therapies and individual mechanisms dependent on different therapies. Concretely, the common mechanisms of therapy resistance across cancers include interfering with gene expression, promoting genome instability, modifying tumor microenvironment, enhancing cancer heterogeneity and stemness, and activating evasion and metastasis. Moreover, the individual mechanisms of therapy resistance in chemotherapy, radiotherapy, and biotherapy are introduced. Last but not least, MUC1-involved therapy resistance in different types of cancers and MUC1-related clinical trials are summarized.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

ADCC:

Antibody-dependent cell-mediated cytotoxicity

ADCs:

Antibody-drug conjugates

AML:

Acute myeloid leukemia

APCs:

Antigen-presenting cells

BiTEs:

Bispecific T cell engagers

CAR-NK:

Chimeric antigen receptor NK cell

CAR-T:

Chimeric antigen receptor T cell

CA242:

Cancer antigen 242

CD:

Intracellular segment

CLRs:

C-type lectin receptors

CRC:

Colorectal cancer

CRDs:

Carbohydrate recognition domains

CRPC:

Castration-resistant prostate cancer

CSCs:

Cancer stem cells

CTGF/CCN2:

Connective tissue growth factor

DCs:

Dendritic cells

DC-SIGN:

Dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin

DSB:

Double-strand break

EA:

Esophageal adenocarcinoma

ECM:

Extracellular matrix

ECM1:

Extracellular matrix protein 1

ED:

Extracellular segment

EMT:

Epithelial-mesenchymal transition

ER:

Estrogen receptor

ERK:

Extracellular signal-regulated kinase

ESCC:

Esophageal squamous cell carcinoma

EVs:

Extracellular vesicles

EZH2:

Enhancer of zeste protein-2

FDA:

Food and drug administration

GMLHN:

Genistein-miRNA-29b-loaded hybrid nanoparticles

GSH:

Glutathione

HCC:

Hepatocellular carcinoma

HER2:

Human epidermal growth factor receptor-2

HIF:

Hypoxia-inducible factors

HNSCC:

Head and neck squamous cell carcinoma

HUVECs:

Human umbilical vein endothelial cells

HzMUC1:

Humanized MUC1

ICIs:

Immune checkpoint inhibitors

iDCs:

Immature DCs

IFITM1:

Interferon-induced transmembrane protein 1

IFN:

Inflammatory interferon

LEN:

Lenalidomide

LNM:

Lymph node metastasis

mAb:

Monoclonal antibody

MAFMILHNs:

MUC1-aptamer-functionalized miRNA-29b-loaded hybrid nanoparticles

MDR:

Multi-drug resistance

MDSCs:

Myeloid-derived suppressor cells

MED:

Minimum effective dose

MGL:

Macrophage galactose lectin

MM:

Multiple myeloma

MMAE:

Monomethyl auristatin E

MMP:

Matrix metalloproteinase

MTD:

Maximum tolerated dose

MUC1:

Mucin1

MUC1-C:

MUC1 carboxyl subunit

MUC1-CD:

MUC1 cytoplasmic domain

MUC1-N:

MUC1 amino subunits

NEPC:

Neuroendocrine prostate cancer

NF-κB:

Nuclear factor kappa B

NPC:

Nasopharyngeal cancer

NSCLC:

Non-small cell lung cancer

OT-MUC1:

Onco-tethered MUC1

PC:

Pancreatic cancer

PDA:

Pancreatic ductal adenocarcinoma

PDGFA:

Platelet-derived growth factor-A

PE:

Pseudomonas exotoxin A

PFS:

Progression-free survival

PMI:

Postpartum mammary gland involution

PPI:

Polyphyllin I

PPP:

Phosphonates pathway

PRC1:

Polycomb repressive complex 1

PSCA:

Prostate stem cell antigen

Ptgs2/PTGS2:

Promoter of COX-2 gene

PTX:

Paclitaxel

PUBNs:

Papillary urothelial bladder neoplasms

RHD:

Rel homology domain

SEA:

Sperm protein, enterokinase, and agrin

sialyl-Tn, sTn:

Neu5Acα2,6-GalNAcα-O-Ser/Thr

SREBP1:

Sterol regulatory element binding protein 1

TA:

Tumor-associated

TA MUC1:

Tumor-associated MUC1

TACA:

Tumor-associated carbohydrate antigens

TAMs:

TUMOR-associated macrophages

TCF4:

Transcription factor 4

TF:

Galβ1,3-GalNAcα-O-Ser/Thr

TFs:

Transcription factors

TIME:

Tumor immune microenvironment

TM:

Transmembrane segment

Tn:

GalNAcα-O-Ser/Thr

TNBC:

Triple-negative breast cancer

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

Tregs:

Regulatory T cells

TSGs:

Tumor-suppressor genes

VLPs:

Virus-like particles

VNTR:

Variable-number tandem repeat

xCT:

X-cystine/glutamate transporter

Y-90:

Yttrium-90

References

  1. Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature. 2019;575:299–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Du B, Shim JS. Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules. 2016. https://doi.org/10.3390/molecules21070965.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Narayanan S, et al. Targeting the ubiquitin-proteasome pathway to overcome anti-cancer drug resistance. Drug Resist Updat. 2020;48: 100663.

    Article  PubMed  Google Scholar 

  4. Pistritto G, Trisciuoglio D, Ceci C, Garufi Alessia, D’Orazi G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging. 2016;8:603–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol. 2018;80:50–64.

    Article  CAS  PubMed  Google Scholar 

  6. Calses PC, Crawford JJ, Lill JR, Dey A. Hippo pathway in cancer: aberrant regulation and therapeutic opportunities. Trends in Cancer. 2019;5:297–307.

    Article  CAS  PubMed  Google Scholar 

  7. Gremke N, et al. mTOR-mediated cancer drug resistance suppresses autophagy and generates a druggable metabolic vulnerability. Nat Commun. 2020. https://doi.org/10.1038/s41467-020-18504-7.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lin H, et al. Stanniocalcin 1 is a phagocytosis checkpoint driving tumor immune resistance. Cancer Cell. 2021;39:480-493.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carabias P, et al. Galectin-1 confers resistance to doxorubicin in hepatocellular carcinoma cells through modulation of P-glycoprotein expression. Cell Death Dis. 2022;13:1–14.

    Article  Google Scholar 

  10. Han ES, Goleman D, Boyatzis R, Mckee A. Mucins and cancer. J Chem Inf Model. 2019. https://doi.org/10.1038/s41419-022-04520-6.

    Article  Google Scholar 

  11. Ham SY, et al. Mucin 1-mediated chemo-resistance in lung cancer cells. Oncogenesis. 2016;5:1–8.

    Article  CAS  Google Scholar 

  12. Kufe DW. MUC1-C in chronic inflammation and carcinogenesis; emergence as a target for cancer treatment. Carcinogenesis. 2020. https://doi.org/10.1093/carcin/bgaa082.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lan MS, Batra SK, Qi WN, Metzgar RS, Hollingsworth MA. Cloning and sequencing of a human pancreatic tumor mucin cDNA. J Biol Chem. 1990;265:15294–9.

    Article  CAS  PubMed  Google Scholar 

  14. Batra SK, Kern HF, Worlock AJ, Metzgar RS, Hollingsworth MA. Transfection of the human Muc 1 mucin gene into a poorly differentiated human pancreatic tumor cell line, Panc 1: Integration, expression and ultrastructural changes. J Cell Sci. 1991;100:841–9.

    Article  CAS  PubMed  Google Scholar 

  15. Hollingsworth MA, Swanson BJ. Mucins in cancer: protection and control of the cell surface. Nat Rev Cancer. 2004;4:45–60.

    Article  CAS  PubMed  Google Scholar 

  16. Yamashita, N. & Kufe, D 2022 Addiction of Cancer Stem Cells to MUC1-C in Triple-Negative Breast Cancer Progression. Int. J. Mol. Sci. 23, (2022).

  17. Kharbanda A, et al. MUC1-C confers EMT and KRAS independence in mutant KRAS lung cancer cells. Oncotarget. 2014;5:8893–905.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Liao G, Wang M, Ou Y, Zhao Y. IGF-1-induced epithelial-mesenchymal transition in MCF-7 cells is mediated by MUC1. Cell Signal. 2014;26:2131–7.

    Article  CAS  PubMed  Google Scholar 

  19. Roy LD, et al. MUC1 enhances invasiveness of pancreatic cancer cells by inducing epithelial to mesenchymal transition. Oncogene. 2011;30:1449–59.

    Article  CAS  PubMed  Google Scholar 

  20. David JM, Hamilton DH, Palena C. MUC1 upregulation promotes immune resistance in tumor cells undergoing brachyury-mediated epithelial-mesenchymal transition. Oncoimmunology. 2016. https://doi.org/10.1080/2162402X.2015.1117738.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Maeda T, et al. MUC1-C induces PD-L1 and immune evasion in triple-negative breast cancer. Cancer Res. 2018;78:205–15.

    Article  CAS  PubMed  Google Scholar 

  22. Pyzer AR, et al. MUC1 inhibition leads to decrease in PD-L1 levels via upregulation of miRNAs. Leukemia. 2017;31:2780–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bouillez A, et al. MUC1-C integrates PD-L1 induction with repression of immune effectors in non-small-cell lung cancer. Oncogene. 2017;36:4037–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hiraki M, et al. Targeting MUC1-C suppresses BCL2A1 in triple-negative breast cancer. Signal Transduct Target Ther. 2018;3:1–8.

    Article  CAS  Google Scholar 

  25. Agata N, et al. MUC1 oncoprotein blocks death receptor-mediated apoptosis by inhibiting recruitment of caspase-8. Cancer Res. 2008;68:6136–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wei X, Xu H, Kufe D. Human mucin 1 oncoprotein represses transcription of the p53 tumor suppressor gene. Cancer Res. 2007;67:1853–8.

    Article  CAS  PubMed  Google Scholar 

  27. Hattrup CL, Gendler SJ. MUC1 alters oncogenic events and transcription in human breast cancer cells. Breast Cancer Res. 2006;8:1–10.

    Article  Google Scholar 

  28. Kufe DW. MUC1-C oncoprotein as a target in breast cancer: Activation of signaling pathways and therapeutic approaches. Oncogene. 2013;32:1073–81.

    Article  CAS  PubMed  Google Scholar 

  29. Raina D, et al. Dependence on the MUC1-C oncoprotein in non-small cell lung cancer cells. Mol Cancer Ther. 2011;10:806–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jingchun G, et al. MUC1 is a downstream target of STAT3 and regulates lung cancer cell survival and invasion. Int J Oncol. 2009;35:337–45.

    Google Scholar 

  31. Chen Q, Li D, Ren J, Li C, Xiao Z. MUC1 activates JNK1 and inhibits apoptosis under genotoxic stress. Biochem Biophys Res Commun. 2013;440:179–83.

    Article  CAS  PubMed  Google Scholar 

  32. Kondo S, et al. MUC1 Induced by Epstein-Barr Virus Latent Membrane Protein 1 Causes Dissociation of the Cell-Matrix Interaction and Cellular Invasiveness via STAT Signaling. J Virol. 2007;81:1554–62.

    Article  CAS  PubMed  Google Scholar 

  33. Gronnier C, et al. The MUC1 mucin regulates the tumorigenic properties of human esophageal adenocarcinomatous cells. BBA - Mol Cell Res. 2014;1843:2432–7.

    CAS  Google Scholar 

  34. Tagde A, et al. MUC1-C drives MYC in multiple myeloma. Blood. 2016;127:2587–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Boldrup L, et al. Gene expression changes in tumor free tongue tissue adjacent to tongue squamous cell carcinoma. Oncotarget. 2017;8:19389–402.

    Article  PubMed  Google Scholar 

  36. Mali SB. Review of STAT3 (Signal Transducers and Activators of Transcription) in head and neck cancer. Oral Oncol. 2015;51:565–9.

    Article  CAS  PubMed  Google Scholar 

  37. Li X, et al. Clinicopathological and prognostic significance of cancer antigen 15–3 and carcinoembryonic antigen in breast cancer: a meta-analysis including 12,993 patients. Dis Markers. 2018. https://doi.org/10.1155/2018/9863092.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yin S, Chen F, fang & Yang, G. fang,. Vimentin immunohistochemical expression as a prognostic factor in gastric cancer: a meta-analysis. Pathol Res Pract. 2018;214:1376–80.

    Article  CAS  PubMed  Google Scholar 

  39. Takada K, et al. Factors predictive of invasive ductal carcinoma in cases preoperatively diagnosed as ductal carcinoma in situ. BMC Cancer. 2020;20:1–9.

    Article  Google Scholar 

  40. Ruys AT, et al. Prognostic biomarkers in patients with resected cholangiocarcinoma: a systematic review and meta-analysis. Ann Surg Oncol. 2014;21:487–500.

    Article  PubMed  Google Scholar 

  41. Li C, et al. Prognostic and clinicopathological significance of MUC family members in colorectal cancer: a systematic review and meta-analysis. Gastroenterol Res Pract. 2019. https://doi.org/10.1155/2019/2391670.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li C, et al. Prognostic and clinicopathological value of MUC1 expression in colorectal cancer: a meta-analysis. Medicine (Baltimore). 2019;98:e14659.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zeng Y, et al. MUC1 predicts colorectal cancer metastasis: a systematic review and meta-analysis of case controlled studies. PLoS ONE. 2015;10:1–17.

    Article  Google Scholar 

  44. Niv Y, Rokkas T. Mucin expression in colorectal cancer (CRC): systematic review and meta-analysis. J Clin Gastroenterol. 2019;53:434–40.

    Article  CAS  PubMed  Google Scholar 

  45. Jing X, Liang H, Hao C, Yang X, Cui X. Overexpression of MUC1 predicts poor prognosis in patients with breast cancer. Oncol Rep. 2019;41:801–10.

    CAS  PubMed  Google Scholar 

  46. Huang X, et al. MUC1 overexpression predicts worse survival in patients with non-small cell lung cancer: Evidence from an updated meta-analysis. Oncotarget. 2017;8:90315–26.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Farahmand L, Merikhian P, Jalili N, Darvishi B, Majidzadeh-A K. Significant role of MUC1 in development of resistance to currently existing anti-cancer therapeutic agents. Curr Cancer Drug Targets. 2017;18:737–48.

    Article  Google Scholar 

  48. Pichinuk E, et al. In vivo anti-MUC1+ tumor activity and sequences of high-affinity anti-MUC1-SEA antibodies. Cancer Immunol Immunother. 2020;69:1337–52.

    Article  CAS  PubMed  Google Scholar 

  49. Xi X, et al. Glycosylated modification of MUC1 maybe a new target to promote drug sensitivity and efficacy for breast cancer chemotherapy. Cell Death Dis. 2022;13:708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Movahedin M, et al. Glycosylation of MUC1 influences the binding of a therapeutic antibody by altering the conformational equilibrium of the antigen. Glycobiology. 2016. https://doi.org/10.1093/glycob/cww131.

    Article  Google Scholar 

  51. Amir, Weber, Beard, Bomyea, T. Mucins in cancer: function, prognosis and therapy. Bone 23, 1–7 (2008).

  52. Takahashi H, et al. MUC1-C activates the TAK1 inflammatory pathway in colon cancer. Oncogene. 2015;34:5187–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ahmad R, et al. MUC1-C oncoprotein functions as a direct activator of the nuclear factor-κB p65 transcription factor. Cancer Res. 2009;69:7013–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang H, Liu Q, Kong L, Xu S. Mucin 1 downregulation impairs the anti-necroptotic effects of glucocorticoids in human bronchial epithelial cells. Life Sci. 2019;221:168–77.

    Article  CAS  PubMed  Google Scholar 

  55. Alam M, Rajabi H, Ahmad R, Jin C, Kufe D. Targeting the MUC1-C oncoprotein inhibits self-renewal capacity of breast cancer cells. Oncotarget. 2014;5:2622–34.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Xiang S, et al. Crosstalk of NF-κB/P65 and LncRNA HOTAIR-mediated repression of MUC1 expression contribute to synergistic inhibition of castration-resistant prostate cancer by polyphyllin 1-enzalutamide combination treatment. Cell Physiol Biochem. 2018;47:759–73.

    Article  CAS  PubMed  Google Scholar 

  57. Vlahopoulos SA. Aberrant control of NF-κB in cancer permits transcriptional and phenotypic plasticity, to curtail dependence on host tissue: molecular mode. Cancer Biol Med. 2017;14:254–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. de Boer HR, et al. Quantitative proteomics analysis identifies MUC1 as an effect sensor of EGFR inhibition. Oncogene. 2019;38:1477–88.

    Article  PubMed  Google Scholar 

  59. Hata T, et al. Targeting MUC1-C inhibits TWIst1 signaling in triple-negative breast cancer. Mol Cancer Ther. 2019;18:1744–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Hiraki M, et al. MUC1-C activates BMI1 in human cancer cells. Oncogene. 2017;36:2791–801.

    Article  CAS  PubMed  Google Scholar 

  61. Bouillez A, et al. Inhibition of MUC1-C suppresses MYC expression and attenuates malignant growth in KRAS mutant lung adenocarcinomas. Cancer Res. 2016;76:1538–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Li Y, et al. The cytoplasmic domain of MUC1 induces hyperplasia in the mammary gland and correlates with nuclear accumulation of β-catenin. PLoS ONE. 2011;6:1–11.

    Google Scholar 

  63. Malhotra V, Perry MC. Classical chemotherapy: mechanisms, toxicities and the therapeutic window. Cancer Biol Ther. 2003;2:1–4.

    Article  Google Scholar 

  64. Ajithkumar TV. Principles of radiotherapy. Special Train Oncol. 2011;74:15–29.

    Article  Google Scholar 

  65. Oldham RK. Cancer biotherapy: more than immunotherapy. Cancer Biother Radiopharm. 2017;32:111–4.

    PubMed  Google Scholar 

  66. Yin L, Li Y, Ren J, Kuwahara H, Kufe D. Human MUC1 carcinoma antigen regulates intracellular oxidant levels and the apoptotic response to oxidative stress *. J Biol Chem. 2003;278:35458–64.

    Article  CAS  PubMed  Google Scholar 

  67. Li Y, et al. MUC1 induces M2 type macrophage influx during postpartum mammary gland involution and triggers breast cancer. Oncotarget. 2018;9:3446–58.

    Article  PubMed  Google Scholar 

  68. Guang W, Czinn SJ, Blanchard TG, Kim KC, Lillehoj EP. Genetic regulation of MUC1 expression by Helicobacter pylori in gastric cancer cells. Biochem Biophys Res Commun. 2014;445:145–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sheng YH, et al. Influence of the MUC1 cell surface mucin on gastric mucosal gene expression profiles in response to helicobacter pylori infection in mice. Front Cell Infect Microbiol. 2020;10:1–19.

    Article  Google Scholar 

  70. Li W, et al. Novel insights into the roles and therapeutic implications of MUC1 oncoprotein via regulating proteins and non-coding RNAs in cancer. Theranostics. 2022;12:999–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tang Q, et al. Solamargine inhibits the growth of hepatocellular carcinoma and enhances the anticancer effect of sorafenib by regulating HOTTIP-TUG1/miR-4726-5p/MUC1 pathway. Mol Carcinog. 2022;61:417–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wei X, Xu H, Kufe D. Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response. Cancer Cell. 2005;7:167–78.

    Article  CAS  PubMed  Google Scholar 

  73. Hata T, et al. MUC1-C activates the NuRD complex to drive dedifferentiation of triple-negative breast cancer cells. Can Res. 2019. https://doi.org/10.1158/0008-5472.CAN-19-1034.

    Article  Google Scholar 

  74. Kaymaz, E., Ozer, E., Unverdi1, H. & Hucumenoglu, S. Evaluation of MUC1 and P53 expressions in noninvasive papillary urothelial neoplasms of bladder, their relationship with tumor grade and role in the differential diagnosis. INDIAN J. P ATHOLOGY Microbiol. Microbiol. 60, 510–514 (2019).

  75. Ye J, et al. Core 3 mucin-type O-glycan restoration in colorectal cancer cells promotes MUC1/p53/miR-200c-dependent epithelial identity. Oncogene. 2017;36:6391–407.

    Article  CAS  PubMed  Google Scholar 

  76. Caffrey T, et al. The glycoprotein mucin-1 negatively regulates GalNAc transferase 5 expression in pancreatic cancer. FEBS Lett. 2019;593:2751–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li Q, et al. Mucin1 shifts Smad3 signaling from the tumor-suppressive pSmad3C/p21WAF1 pathway to the oncogenic pSmad3L/c-Myc pathway by activating JNK in human hepatocellular carcinoma cells. Oncotarget. 2015;6:4253–65.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Rajabi H, et al. MUC1-C oncoprotein activates the ZEB1/miR-200c regulatory loop and epithelial-mesenchymal transition. Oncogene. 2014;33:1680–9.

    Article  CAS  PubMed  Google Scholar 

  79. Rajabi H, et al. MUC1-C represses the RASSF1A tumor suppressor in human carcinoma cells. Oncogene. 2019;38:7266–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Mohr AM, et al. MUC1 regulates expression of multiple microRNAs involved in pancreatic tumor progression, including the miR-200c/141 cluster. PLoS ONE. 2013;8:1–13.

    Article  Google Scholar 

  81. Alam M, et al. MUC1-C represses the crumbs complex polarity factor CRB3 and downregulates the Hippo pathway. Mol Cancer Res. 2016;14:1266–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Tagde A, et al. Targeting MUC1-C suppresses polycomb repressive complex 1 in multiple myeloma. Oncotarget. 2017;8:69237–49.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Hata T, et al. MUC1-C activates the NuRD complex to drive dedifferentiation of triple-negative breast cancer cells. Cancer Res. 2019;79:5711–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yasumizu, Y. et al. MUC1-C regulates lineage plasticity driving progression to neuroendocrine prostate cancer. Nat. Commun. 11, (2020).

  85. Rajabi H, et al. MUC1-C activates EZH2 expression and function in human cancer cells. Sci Rep. 2017;7:1–13.

    Article  CAS  Google Scholar 

  86. Yamamoto M, et al. MUC1-C integrates chromatin remodeling and PARP1 activity in the DNA damage response of triple-negative breast cancer cells. Cancer Res. 2019;79:2031–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cascio S, et al. Abnormally glycosylated MUC1 establishes a positive feedback circuit of inflammatory cytokines, mediated by NF-κB p65 and EzH2, in colitis-associated cancer. Oncotarget. 2017;8:105284–98.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Ge Y, et al. MUC1 is associated with TFF2 methylation in gastric cancer. Clin Epigen. 2020;12:1–10.

    Article  Google Scholar 

  89. Li Q, et al. Clinical effect of MUC1 and its relevance to BRAF V600E mutation in papillary thyroid carcinoma: a case–control study. Cancer Manag Res. 2018;10:1351–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tagde A, Rajabi H, Stroopinsky D, Gali R. Alam, M,. MUC1-C induces DNA methyltransferase 1 and represses tumor suppressor genes in acute myeloid leukemia. Oncotarget. 2016. https://doi.org/10.18632/oncotarget.9777.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Xu S, et al. STON2 negatively modulates stem-like properties in ovarian cancer cells via DNMT1/MUC1 pathway. J Exp Clin Cancer Res. 2018;37:1–14.

    Article  Google Scholar 

  92. Konowalchuk JD, Agrawal B. MUC1 mucin is expressed on human T-regulatory cells: function in both co-stimulation and co-inhibition. Cell Immunol. 2012;272:193–9.

    Article  CAS  PubMed  Google Scholar 

  93. Agrawal B, Gupta N, Konowalchuk JD. MUC1 mucin: a putative regulatory (checkpoint) molecule of T Cells. Front Immunol. 2018;9:1–11.

    Article  Google Scholar 

  94. Yamashita N, et al. MUC1-C integrates activation of the IFN-γpathway with suppression of the tumor immune microenvironment in triple-negative breast cancer. J Immunother Cancer. 2021;9:1–12.

    Article  Google Scholar 

  95. Monti P, et al. Tumor-Derived MUC1 Mucins Interact with Differentiating Monocytes and Induce IL-10 high IL-12 low regulatory dendritic cell. J Immunol. 2021. https://doi.org/10.4049/jimmunol.172.12.7341.

    Article  Google Scholar 

  96. Pyzer AR, et al. MUC1-mediated induction of myeloid-derived suppressor cells in patients with acute myeloid leukemia. Blood. 2017;129:1791–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ma P, et al. Circulating myeloid derived suppressor cells (MDSC) that accumulate in premalignancy share phenotypic and functional characteristics with MDSC in cancer. Front Immunol. 2019;10:1401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Huang WC, Chan ML, Chen MJ, Tsai TH, Chen YJ. Modulation of macrophage polarization and lung cancer cell stemness by MUC1 and development of a related small-molecule inhibitor pterostilbene. Oncotarget. 2016;7:39363–75.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Badmann S, et al. M2 macrophages infiltrating epithelial ovarian cancer express MDR1: a feature that may account for the poor prognosis. Cells. 2020;9:1–14.

    Article  Google Scholar 

  100. Kvorjak M, et al. Cross-talk between colon cells and macrophages increases ST6GALNAC1 and MUC1-sTn expression in ulcerative colitis and colitis-associated colon cancer. Cancer Immunol Res. 2020;8:167–78.

    Article  CAS  PubMed  Google Scholar 

  101. Qing L, Li Q, Yang Y, Xu W, Dong Z. A prognosis marker MUC1 correlates with metabolism and drug resistance in bladder cancer : a bioinformatics research. BMC Urol. 2022. https://doi.org/10.1186/s12894-022-01067-8.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Chen H, et al. JAK1/2 pathway inhibition suppresses M2 polarization and overcomes resistance of myeloma to lenalidomide by reducing TRIB1, MUC1, CD44, CXCL12, and CXCR4 expression. Br J Haematol. 2020;188:283–94.

    Article  CAS  PubMed  Google Scholar 

  103. Denardo DG. Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol. 2019. https://doi.org/10.1038/s41577-019-0127-6.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Bordon Y. Pro-tumour programming at the macrophage membrane. Nat Rev Immunol. 2019;19:270–1.

    PubMed  Google Scholar 

  105. Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol. 2008;8:726–36.

    Article  CAS  PubMed  Google Scholar 

  106. Bar-Natan M, et al. Bone marrow stroma protects myeloma cells from cytotoxic damage via induction of the oncoprotein MUC1. Br J Haematol. 2017;176:929–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Stroopinsky D, et al. MUC1-C drives myeloid leukaemogenesis and resistance to treatment by a survivin-mediated mechanism. J Cell Mol Med. 2018;22:3887–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Liu X, et al. Mucin-1 is required for Coxsackie Virus B3-induced inflammation in pancreatitis. Sci Rep. 2019;9:1–11.

    Google Scholar 

  109. Nath S, Roy L. Das, Grover P, Rao S, Mukherjee P. Mucin 1 regulates Cox-2 gene in pancreatic cancer. Pancreas. 2015;44:909–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Horm TM, Schroeder JA. MUC1 and metastatic cancer: expression, function and therapeutic targeting. Cell Adh Migr. 2013;7:187–98.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Schöning JP, Monteiro M, Gu W. Drug resistance and cancer stem cells: the shared but distinct roles of hypoxia-inducible factors HIF1α and HIF2α. Clin Exp Pharmacol Physiol. 2017;44:153–61.

    Article  PubMed  Google Scholar 

  112. Beatson R, et al. The mucin MUC1 modulates the tumor immunological microenvironment through engagement of the lectin Siglec-9. Nat Immunol. 2016;17:1273–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Beckwith DM, Cudic M. Tumor-associated O-glycans of MUC1: Carriers of the glyco-code and targets for cancer vaccine design. Semin Immunol. 2020;47: 101389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ju T, et al. Tn and sialyl-Tn antigens, aberrant O-glycomics as human disease markers. Proteomics - Clin Appl. 2013;7:618–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nath S, Mukherjee P. MUC1: a multifaceted oncoprotein with a key role in cancer progression. Trends Mol Med. 2014;20:332–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Kudelka MR, Ju T, Heimburg-Molinaro J, Cummings RD. Simple sugars to complex disease-mucin-type O-glycans in cancer. Advances in cancer research, vol. 126. Armsterdam: Elsevier; 2015.

    Google Scholar 

  117. Wang Y, et al. Cosmc is an essential chaperone for correct protein O-glycosylation. Proc Natl Acad Sci USA. 2010;107:9228–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Hakomori S. Glycosylation defining cancer malignancy: new wine in an old bottle. Proc Natl Acad Sci USA. 2002;99:10231–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Brown GD, Willment JA, Whitehead L. C-type lectins in immunity and homeostasis. Nat Rev Immunol. 2018;18:374–89.

    Article  CAS  PubMed  Google Scholar 

  120. van Kooyk Y, Rabinovich GA. Protein-glycan interactions in the control of innate and adaptive immune responses. Nat Immunol. 2008;9:593–601.

    Article  PubMed  Google Scholar 

  121. Saeland E, et al. The C-type lectin MGL expressed by dendritic cells detects glycan changes on MUC1 in colon carcinoma. Cancer Immunol Immunother. 2007;56:1225–36.

    Article  CAS  PubMed  Google Scholar 

  122. Rabinovich GA, et al. Galectins and their ligands: amplifiers, silencers or tuners of the inflammatory response? Trends Immunol. 2002;23:313–20.

    Article  CAS  PubMed  Google Scholar 

  123. Rubinstein N, et al. Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection: a potential mechanism of tumor-immune privilege. Cancer Cell. 2004;5:241–51.

    Article  CAS  PubMed  Google Scholar 

  124. Johannes L, Jacob R, Leffler H. Galectins at a glance. J Cell Sci. 2018;131:1–9.

    Article  Google Scholar 

  125. Suzuki Y, et al. MUC1 carrying core 2 O-glycans functions as a molecular shield against NK cell attack, promoting bladder tumor metastasis. Int J Oncol. 2012;40:1831–8.

    CAS  PubMed  Google Scholar 

  126. Lee K, min, et al. Extracellular matrix protein 1 regulates cell proliferation and trastuzumab resistance through activation of epidermal growth factor signaling. Breast Cancer Res. 2014;16:1–17.

    Article  Google Scholar 

  127. Tanida S, et al. Binding of the sialic acid-binding lectin, siglec-9, to the membrane mucin, MUC1, induces recruitment of β-catenin and subsequent cell growth. J Biol Chem. 2013;288:31842–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Angata T, Varki A. Discovery, classification, evolution and diversity of Siglecs. Mol Aspects Me. 2020. https://doi.org/10.1016/j.mam.2022.101117.

    Article  Google Scholar 

  129. Jandus C, et al. Interactions between Siglec-7/9 receptors and ligands influence NK cell-dependent tumor immunosurveillance. J Clin Invest. 2014;124:1810–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Napoletano C, et al. Targeting of macrophage galactose-type C-type lectin (MGL) induces DC signaling and activation. Eur J Immunol. 2012;42:936–45.

    Article  CAS  PubMed  Google Scholar 

  131. McDermott KM, et al. Overexpression of MUC1 reconfigures the binding properties of tumor cells. Int J Canc. 2001;94:783–91.

    Article  CAS  Google Scholar 

  132. Francis LW, et al. Highly glycosylated MUC1 mediates high affinity L-selectin binding at the human endometrial surface. J Nanobiotechnol. 2021;19:1–13.

    Article  Google Scholar 

  133. Valverde P, Martínez JD, Cañada FJ, Ardá A, Jiménez-Barbero J. Molecular recognition in C-Type lectins: the cases of DC-SIGN, Langerin, MGL, and L-Sectin. ChemBioChem. 2020;21:2999–3025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Unger WWJ, et al. Glycan-modified liposomes boost CD4 + and CD8 + T-cell responses by targeting DC-SIGN on dendritic cells. J Contr Rel. 2012;160:88–95.

    Article  CAS  Google Scholar 

  135. Monti P, et al. Tumor-Derived MUC1 Mucins Interact with differentiating monocytes and Induce IL-10 high IL-12 low regulatory dendritic cell. J Immunol. 2004;172:7341–9.

    Article  CAS  PubMed  Google Scholar 

  136. Nath D, et al. Macrophage-tumour cell interactions: Identification of MUC1 on breast cancer cells as a potential counter-receptor for the macrophage-restricted receptor, sialoadhesin. Immunology. 1999;98:213–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sun Y, et al. Modified apple polysaccharide influences MUC-1 expression to prevent ICR mice from colitis-associated carcinogenesis. Int J Biol Macromol. 2018;120:1387–95.

    Article  CAS  PubMed  Google Scholar 

  138. Ye Q, et al. MUC1 induces metastasis in esophageal squamous cell carcinoma by upregulating matrix metalloproteinase 13. Lab Investig. 2011;91:778–87.

    Article  CAS  PubMed  Google Scholar 

  139. Kitamoto S, et al. MUC1 enhances hypoxia-driven angiogenesis through the regulation of multiple proangiogenic factors. Oncogene. 2013;32:4614–21.

    Article  CAS  PubMed  Google Scholar 

  140. Zhou R, et al. A novel association of neuropilin-1 and MUC1 in pancreatic ductal adenocarcinoma: Role in induction of VEGF signaling and angiogenesis. Oncogene. 2016;35:5608–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Jiang L, et al. Differential gene expression identifies KRT7 and MUC1 as potential metastasis-specific targets in sarcoma. Cancer Manag Res. 2019;11:8209–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Sun L, Yuan Y, Chen J, Ma C, Xu Y. Brahma related gene 1 (BRG1) regulates breast cancer cell migration and invasion by activating MUC1 transcription. Biochem Biophys Res Commun. 2019;511:536–43.

    Article  CAS  PubMed  Google Scholar 

  143. Gnemmi V, et al. MUC1 drives epithelial-mesenchymal transition in renal carcinoma through Wnt/β-catenin pathway and interaction with SNAIL promoter. Cancer Lett. 2014;346:225–36.

    Article  CAS  PubMed  Google Scholar 

  144. Lee KM, et al. ECM1 regulates tumor metastasis and CSC-like property through stabilization of β-catenin. Oncogene. 2015;34:6055–65.

    Article  CAS  PubMed  Google Scholar 

  145. Mao Y, et al. GALNT6 promotes tumorigenicity and metastasis of breast cancer cell via β-catenin/MUC1-C signaling pathway. Int J Biol Sci. 2019;15:169–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhao Q, et al. Interaction between circulating galectin-3 and cancer-associated MUC1 enhances tumour cell homotypic aggregation and prevents anoikis. Mol Cancer. 2010;9:1–12.

    Article  CAS  Google Scholar 

  147. Cao Z, et al. Endogenous and exogenous galectin-3 promote the adhesion of tumor cells with low expression of MUC1 to HUVECs through upregulation of N-cadherin and CD44. Lab Investig. 2018;98:1642–56.

    Article  CAS  PubMed  Google Scholar 

  148. Rambaruth NDS, Dwek MV. Cell surface glycan-lectin interactions in tumor metastasis. Acta Histochem. 2011;113:591–600.

    Article  CAS  PubMed  Google Scholar 

  149. Zhao Q, et al. Circulating galectin-3 promotes metastasis by modifying MUC1 localization on cancer cell surface. Cancer Res. 2009;69:6799–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Xin M, Dong X, Guo X. ScienceDirect Role of the interaction between galectin-3 and cell adhesion molecules in cancer metastasis. Biomed Pharmacother. 2015;69:179–85.

    Article  CAS  PubMed  Google Scholar 

  151. Ren J, et al. Human MUC1 carcinoma-associated protein confers resistance to genotoxic anticancer agents. Cancer Cell. 2004;5:163–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Koh H, et al. MicroRNA-128 suppresses paclitaxel-resistant lung cancer by inhibiting MUC1-C and BMI-1 in cancer stem cells. Oncotarget. 2017;8:110540–51.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Shigeta K, et al. Role of the MUC1-C oncoprotein in the acquisition of cisplatin resistance by urothelial carcinoma. Cancer Sci. 2020. https://doi.org/10.1111/cas.14574.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Yamashita N, et al. Targeting MUC1-C suppresses chronic activation of cytosolic nucleotide receptors and STING in triple-negative breast cancer. Cancers (Basel). 2022;14:2580.

    Article  CAS  PubMed  Google Scholar 

  155. Nath S, et al. MUC1 induces drug resistance in pancreatic cancer cells via upregulation of multidrug resistance genes. Oncogenesis. 2013;2:e51–e51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Jin W, et al. MUC1 induces acquired chemoresistance by upregulating ABCB1 in EGFR-dependent manner. Cell Death Dis. 2017;8: e2980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Lv Y, et al. Erlotinib overcomes paclitaxel-resistant cancer stem cells by blocking the EGFR-CREB/GRβ-IL-6 axis in MUC1-positive cervical cancer. Oncogenesis. 2019. https://doi.org/10.1038/s41389-019-0179-2.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Gebregiworgis T, et al. Glucose limitation alters glutamine metabolism in MUC1- overexpressing pancreatic cancer cells. J Proteome Res. 2017;16:3536–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Huang L, et al. MUC1-C oncoprotein interacts directly with ATM and promotes the DNA damage response to ionizing radiation. Genes Canc. 2010;1:239–50.

    Article  CAS  Google Scholar 

  160. Huang T, Bi Y, Cui Z, Guan J, Huang Y. MUC1 confers radioresistance in head and neck squamous cell carcinoma (HNSCC) cells. Bioengineered. 2020;11:769–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. GUNDA, V., et al. Abstract 459: Targeting MUC1 mediated nucleotide metabolism sensitizes pancreatic tumors to radiation therapy. Canc Res. 2017. https://doi.org/10.1158/1538-7445.am2017-459.

    Article  Google Scholar 

  162. Gunda V, et al. MUC1-mediated metabolic alterations regulate response to radiotherapy in pancreatic cancer. Clin Canc Res. 2017;23:5881–91.

    Article  CAS  Google Scholar 

  163. Woo JK, et al. Mucin 1 enhances the tumor angiogenic response by activation of the AKT signaling pathway. Oncogene. 2012;31:2187–98.

    Article  CAS  PubMed  Google Scholar 

  164. Koukourakis M. Tumour angiogenesis and response to radiotherapy. Anticancer Res. 2001;21:4285–300.

    CAS  PubMed  Google Scholar 

  165. Xu T, et al. MUC1 downregulation inhibits non-small cell lung cancer progression in human cell lines. Exp Ther Med. 2017;14:4443–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  166. Sahraei M, et al. MUC1 regulates PDGFA expression during pancreatic cancer progression. Oncogene. 2012;31:4935–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Yao M, et al. Overexpression of MUC1 enhances proangiogenic activity of non-small-cell lung cancer cells through activation of Akt and extracellular signal-regulated kinase pathways. Lung. 2011;189:453–60.

    Article  CAS  PubMed  Google Scholar 

  168. Zanetti JS, et al. The role of tumor hypoxia in MUC1-positive breast carcinomas. Virchows Arch. 2011;459:367–75.

    Article  CAS  PubMed  Google Scholar 

  169. Ruan J, Duan Y, Li F, Wang Z. Enhanced synergistic anti-Lewis lung carcinoma effect of a DNA vaccine harboring a MUC1-VEGFR2 fusion gene used with GM-CSF as an adjuvant. Clin Exp Pharmacol Physiol. 2017;44:71–8.

    Article  CAS  PubMed  Google Scholar 

  170. Zhang H, et al. Utilizing VEGF165b mutant as an effective immunization adjunct to augment antitumor immune response. Vaccine. 2019;37:2090–8.

    Article  CAS  PubMed  Google Scholar 

  171. Behrens ME, et al. The reactive tumor microenvironment: MUC1 signaling directly reprograms transcription of CTGF. Oncogene. 2010;29:5667–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kharbanda A, et al. Targeting the oncogenic MUC1-C protein inhibits mutant EGFR-mediated signaling and survival in non-small cell lung cancer cells. Clin Cancer Res. 2014;20:5423–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Engel BJ, Bowser JL, Broaddus RR, Carson DD. MUC1 stimulates EGFR expression and function in endometrial cancer. Oncotarget. 2016;7:32796–809.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Piyush T, et al. Interaction of galectin-3 with MUC1 on cell surface promotes EGFR dimerization and activation in human epithelial cancer cells. Cell Death Differ. 2017;24:1931–47.

    Article  Google Scholar 

  175. Hosseinzadeh A, Merikhian P, Naseri N, Eisavand MR, Farahmand L. MUC1 is a potential target to overcome trastuzumab resistance in breast cancer therapy. Cancer Cell Int. 2022;22:1–14.

    Article  Google Scholar 

  176. Raina D, et al. Targeting the MUC1-C oncoprotein downregulates HER2 activation and abrogates trastuzumab resistance in breast cancer cells. Oncogene. 2014;33:3422–31.

    Article  CAS  PubMed  Google Scholar 

  177. Sand A, et al. WEE1 inhibitor, AZD1775, overcomes trastuzumab resistance by targeting cancer stem-like properties in HER2-positive breast cancer. Cancer Lett. 2020;472:119–31.

    Article  CAS  PubMed  Google Scholar 

  178. Namba M, et al. Anti-KL-6/MUC1 monoclonal antibody reverses resistance to trastuzumab-mediated antibody-dependent cell-mediated cytotoxicity by capping MUC1. Cancer Lett. 2019;442:31–9.

    Article  CAS  PubMed  Google Scholar 

  179. Kharbanda A, Rajabi H, Jin C, Raina D, Kufe D. Oncogenic MUC1-C promotes tamoxifen resistance in human breast cancer. Mol Cancer Res. 2013;11:714–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Pitroda SP, Khodarev NN, Beckett MA, Kufe DW, Weichselbaum RR. MUC1-induced alterations in a lipid metabolic gene network predict response of human breast cancers to tamoxifen treatment. Proc Natl Acad Sci. 2009;106:5837–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Ojo D, et al. Polycomb complex protein BMI1 confers resistance to tamoxifen in estrogen receptor positive breast cancer. Cancer Lett. 2018;426:4–13.

    Article  CAS  PubMed  Google Scholar 

  182. Escher TE, et al. Interaction between MUC1 and STAT1 drives IFITM1 overexpression in aromatase inhibitor–resistant breast cancer cells and mediates estrogen-induced apoptosis. Mol Cancer Res. 2019;17:1180–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Uchida Y, Raina D, Kharbanda S, Kufe D. Inhibition of the MUC1-C oncoprotein is synergistic with cytotoxic agents in the treatment of breast cancer cells. Cancer Biol Ther. 2013;14:127–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Hiraki M, et al. MUC1-C stabilizes MCL-1 in the oxidative stress response of triple-negative breast cancer cells to BCL-2 inhibitors. Sci Rep. 2016;6:1–11.

    Article  Google Scholar 

  185. Fu X, Tang N, Xie WQ, Mao L, Qiu YD. MUC1 promotes glycolysis through inhibiting BRCA1 expression in pancreatic cancer. Chin J Nat Med. 2020;18:178–85.

    CAS  PubMed  Google Scholar 

  186. Shukla SK, et al. MUC1 and HIF-1alpha signaling crosstalk induces anabolic glucose metabolism to impart gemcitabine resistance to pancreatic cancer. Cancer Cell. 2017;32:71-87.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Olou AA, King RJ, Yu F, Singh PK. MUC1 oncoprotein mitigates ER stress via CDA-mediated reprogramming of pyrimidine metabolism. Oncogene. 2020;39:3381–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Liu X, et al. Acquired resistance to HSP90 inhibitor 17-AAG and increased metastatic potential are associated with MUC1 expression in colon carcinoma cells. Anticancer Drugs. 2016;27:417–26.

    Article  PubMed  Google Scholar 

  189. Liu B, et al. LINC01296/miR-26a/GALNT3 axis contributes to colorectal cancer progression by regulating O-glycosylated MUC1 via PI3K/AKT pathway. J Exp Clin Cancer Res. 2018;37:1–15.

    Article  PubMed  PubMed Central  Google Scholar 

  190. Yin L, et al. MUC1-C is a target in lenalidomide resistant multiple myeloma. Br J Haematol. 2017;178:914–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Yi FT, Lu QP. Mucin 1 promotes radioresistance in hepatocellular carcinoma cells through activation of JAK2/STAT3 signaling. Oncol Lett. 2017;14:7571–6.

    PubMed  PubMed Central  Google Scholar 

  192. Huang HZ, et al. Up-regulation of microRNA-136 induces apoptosis and radiosensitivity of esophageal squamous cell carcinoma cells by inhibiting the expression of MUC1. Exp Mol Pathol. 2019;110: 104278.

    Article  CAS  PubMed  Google Scholar 

  193. Li W, et al. MUC1-C drives stemness in progression of colitis to colorectal cancer. JCI Insight. 2020. https://doi.org/10.1172/jci.insight.137112.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Wu G, et al. A Mucin1 C-terminal subunit-directed monoclonal antibody targets overexpressed mucin1 in breast cancer. Theranostics. 2018;8:78–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wu G, et al. A novel monoclonal antibody targets mucin1 and attenuates growth in pancreatic cancer model. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19072004.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Danielczyk A, et al. PankoMab: a potent new generation anti-tumour MUC1 antibody. Cancer Immunol Immunother. 2006;55:1337–47.

    Article  CAS  PubMed  Google Scholar 

  197. Engebraaten O, Sivam G, Juell S, Fodstad O. Systemic immunotoxin treatment inhibits formation of human breast cancer metastasis and tumor growth in nude rats. Int J Cancer. 2000;88:970–6.

    Article  CAS  PubMed  Google Scholar 

  198. Ocean AJ, et al. Fractionated radioimmunotherapy with 90Y-clivatuzumab tetraxetan and low-dose gemcitabine is active in advanced pancreatic cancer: a phase 1 trial. Cancer. 2012;118:5497–506.

    Article  CAS  PubMed  Google Scholar 

  199. Ochsenreither S, et al. Safety and preliminary activity results of the GATTO study, a phase Ib study combining the anti-TA-MUC1 antibody gatipotuzumab with the anti-EGFR tomuzotuximab in patients with refractory solid tumors. ESMO Open. 2022;7: 100447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Lee DH, Choi S, Park Y, Jin HS. Mucin1 and mucin16: therapeutic targets for cancer therapy. Pharmaceuticals. 2021;14:1–26.

    Article  CAS  Google Scholar 

  201. Posey AD, et al. Engineered CAR T Cells targeting the cancer-associated Tn-glycoform of the membrane mucin MUC1 control adenocarcinoma. Immunity. 2016;44:1444–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Mei Z, et al. MUC1 as a target for CAR-T therapy in head and neck squamous cell carinoma. Cancer Med. 2020;9:640–52.

    Article  CAS  PubMed  Google Scholar 

  203. Zhou R, et al. CAR T cells targeting the tumor MUC1 glycoprotein reduce triple-negative breast cancer growth. Front Immunol. 2019;10:1149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. You F, et al. Phase 1 clinical trial demonstrated that MUC1 positive metastatic seminal vesicle cancer can be effectively eradicated by modified Anti-MUC1 chimeric antigen receptor transduced T cells. Sci China Life Sci. 2016;59:386–97.

    Article  CAS  PubMed  Google Scholar 

  205. Mitchell PLR, et al. A phase 2, single-arm study of an autologous dendritic cell treatment against mucin 1 in patients with advanced epithelial ovarian cancer. J Immunother Canc. 2014;2(1):1–9.

    Google Scholar 

  206. Gray HJ, et al. Progression-free and overall survival in ovarian cancer patients treated with CVac, a mucin 1 dendritic cell therapy in a randomized phase 2 trial. J Immunothe Canc. 2016. https://doi.org/10.1186/s40425-016-0137-x.

    Article  Google Scholar 

  207. Carmon L, et al. Phase I/II study exploring ImMucin, a pan-major histocompatibility complex, anti-MUC1 signal peptide vaccine in multiple myeloma patients. Br J haematol. 2015;1:44–56.

    Article  Google Scholar 

  208. Kovjazin R, et al. ImMucin: a novel therapeutic vaccine with promiscuous MHC binding for the treatment of MUC1-expressing tumors. Vaccine. 2011;29:4676–86.

    Article  CAS  PubMed  Google Scholar 

  209. Chen M, et al. Study on the relationship between microsatellite status and clinicopathological characteristics of colorectal cancer patients after surgery. Chinese J Clin Oncol. 2018;45:131–6.

    CAS  Google Scholar 

  210. Quoix E, et al. TG4010 immunotherapy and fi rst-line chemotherapy for advanced non-small-cell lung cancer (TIME): results from the phase 2b part of a randomised, double-blind, placebo-controlled, phase 2b/3 trial. Lanc Oncol. 2016. https://doi.org/10.1016/S1470-2045(15)00483-0.

    Article  Google Scholar 

  211. Lepisto AJ, et al. A phase I/II study of a MUC1 peptide pulsed autologous dendritic cell vaccine as adjuvant therapy in patients with resected pancreatic and biliary tumors. Cancer Ther. 2008;6:955–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Ramanathan RK, et al. Phase I study of a MUC1 vaccine composed of different doses of MUC1 peptide with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer. Canc Immunol. 2005. https://doi.org/10.1007/s00262-004-0581-1.

    Article  Google Scholar 

  213. Pestano LA, et al. ONT-10, a liposomal vaccine targeting hypoglycosylated MUC1, induces a potent cellular and humoral response and suppresses the growth of MUC1 expressing tumors. Cancer Res. 2011. https://doi.org/10.1158/1538-7445.AM2011-762.

    Article  Google Scholar 

  214. Nemunaitis J, Bedell C, Klucher K, Vo A, Whiting S. Phase 1 dose escalation of ONT-10, a therapeutic MUC1 vaccine, in patients with advanced cancer. J Immunother Cancer. 2013;1:P240.

    Article  PubMed Central  Google Scholar 

  215. Gatti-Mays ME, et al. A phase I trial using a multitargeted recombinant adenovirus 5 (CEA/MUC1/Brachyury)-based immunotherapy vaccine regimen in patients with advanced cancer. Oncologist. 2020;25:479-e899.

    Article  CAS  PubMed  Google Scholar 

  216. Bilusic M, et al. Phase i study of a multitargeted recombinant Ad5 PSA/MUC-1/brachyury-based immunotherapy vaccine in patients with metastatic castration-resistant prostate cancer (mCRPC). J Immunother Cancer. 2021. https://doi.org/10.1136/jitc-2021-002374.

    Article  PubMed  PubMed Central  Google Scholar 

  217. Kimura T, et al. muc1 vaccine for individuals with advanced adenoma of the colon: a cancer immunoprevention feasibility study. Cancer Prev Res. 2013;6:18–26.

    Article  CAS  Google Scholar 

  218. NCT02134925. Vaccine Therapy in Treating Patients With Newly Diagnosed Advanced Colon Polyps. (2014).

  219. NCT01521143. Cvac as Maintenance Treatment in Patients With Epithelial Ovarian Cancer in Complete Remission Following First-line Chemotherapy or Second-line Treatment. https://clinicaltrials.gov/show/nct01521143 (2012).

  220. Ahmad R, et al. Targeting MUC1-C inhibits the AKT-S6K1-elF4A pathway regulating TIGAR translation in colorectal cancer. Mol Cancer. 2017;16:1–9.

    Article  Google Scholar 

  221. Gongsun X, Jiang B, Wang Q, Liu X. Inhibition of MUC1-C regulates metabolism by AKT pathway in esophageal squamous cell carcinoma. J Cell Physiol. 2019. https://doi.org/10.1002/jcp.27863.

    Article  PubMed  Google Scholar 

  222. Sacko, K., Thangavel, K. & Shoyele, S. A. Codelivery of genistein and miRNA-29b to a549 cells using aptamer-hybrid nanoparticle bioconjugates. Nanomaterials 9, (2019).

  223. Perepelyuk M, Sacko K, Thangavel K, Shoyele SA. Evaluation of MUC1-aptamer functionalized hybrid nanoparticles for targeted delivery of miRNA-29b to nonsmall cell lung cancer. Mol Pharm. 2018;15:985–93.

    Article  CAS  PubMed  Google Scholar 

  224. Wang X, Zhou X, Zeng F, Wu X, Li H. miR-485-5p inhibits the progression of breast cancer cells by negatively regulating MUC1. Breast Cancer. 2020;27:765–75.

    Article  PubMed  Google Scholar 

  225. Liang X, et al. miR-326 functions as a tumor suppressor in human prostatic carcinoma by targeting Mucin1. Biomed Pharmacother. 2018;108:574–83.

    Article  CAS  PubMed  Google Scholar 

  226. Tréhoux S, et al. Micro-RNAs miR-29a and miR-330–5p function as tumor suppressors by targeting the MUC1 mucin in pancreatic cancer cells. Biochim Biophys Acta–Mol Cell Res. 2015;1853:2392–403.

    Article  Google Scholar 

  227. Zeinali T, Mansoori B, Mohammadi A, Baradaran B. Regulatory mechanisms of miR-145 expression and the importance of its function in cancer metastasis. Biomed Pharmacother. 2019;109:195–207.

    Article  CAS  PubMed  Google Scholar 

  228. Yin L, Kufe T, Avigan D, Kufe D. Targeting MUC1-C is synergistic with bortezomib in downregulating TIGAR and inducing ROS-mediated myeloma cell death. J Am Soc Hematol. 2014;123:2997–3006.

    CAS  Google Scholar 

  229. Hiraki M, et al. MUC1-C stabilizes MCL-1 in the oxidative stress response of triple-negative breast cancer cells to BCL-2 inhibitors. Sci Rep. 2016;6:1–11.

    Article  Google Scholar 

  230. Wei X, et al. PSCA and MUC1 in non-small-cell lung cancer as targets of chimeric antigen receptor T cells. Oncoimmunology. 2017;6(3):e1284722.

    Article  PubMed  PubMed Central  Google Scholar 

  231. Nath S, et al. MUC1 induces drug resistance in pancreatic cancer cells via upregulation of multidrug resistance genes. Oncogenesis. 2013;2(6):e51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Shukla SK, et al. MUC1 and HIF-1alpha Signaling Crosstalk Induces Anabolic Glucose Metabolism to Impart Gemcitabine Resistance to Pancreatic Cancer. Cancer Cell. 2017;32:71-87.e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct Targ Ther. 2022;7(1):1–25.

    Google Scholar 

  234. Dean AQ, Luo S, Twomey JD, Zhang B. Targeting cancer with antibody-drug conjugates: promises and challenges. MAbs. 2021;13:1–23.

    Article  Google Scholar 

  235. Tong JTW, Harris PWR, Brimble MA, Kavianinia I. An insight into FDA approved antibody-drug conjugates for cancer therapy. Molecules. 2021;26:5847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Nicolazzi C, et al. An antibody–drug conjugate targeting MUC1-associated carbohydrate CA6 shows promising antitumor activities. Mol Cancer Ther. 2020;19:1660–9.

    Article  CAS  PubMed  Google Scholar 

  237. Brassard J, Hughes MR, Roskelley CD, McNagny KM. Antibody-drug conjugates targeting tumor-specific mucin glycoepitopes. Front Biosci. 2022;27:301.

    Article  CAS  Google Scholar 

  238. Hamann PR, et al. An anti-MUC1 antibody-calicheamicin conjugate for treatment of solid tumors. Choice of linker and overcoming drug resistance. Bioconjug Chem. 2005;16:346–53.

    Article  CAS  PubMed  Google Scholar 

  239. Detappe A, et al. Anti-MUC1-C antibody-conjugated nanoparticles potentiate the efficacy of fractionated radiation therapy. Int J Radiat Oncol Biol Phys. 2020;108:1380–9.

    Article  PubMed  PubMed Central  Google Scholar 

  240. Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody–drug conjugates for cancer therapy. Nat Rev Clin Oncol. 2021;18:327–44.

    Article  PubMed  PubMed Central  Google Scholar 

  241. Wu G, et al. A novel humanized MUC1 antibody-drug conjugate for the treatment of trastuzumab-resistant breast cancer. Acta Biochim Biophys Sin (Shanghai). 2021;53:1625–39.

    Article  CAS  PubMed  Google Scholar 

  242. Nessler I, Menezes B, Thurber GM. Key metrics to expanding the pipeline of successful antibody–drug conjugates. Trends Pharmacol Sci. 2021;42:803–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Xie H, Audette C, Hoffee M, Lambert JM, Blättler WA. Pharmacokinetics and Biodistribution of the Antitumor Immunoconjugate, Cantuzumab Mertansine (huC242-DM1), and its two components in mice. J Pharmacol Exp Ther. 2004;308:1073–82.

    Article  CAS  PubMed  Google Scholar 

  244. Gold DV, Modrak DE, Schutsky K, Cardillo TM. Combined 90Yttrium-Dota-Labeled PAM4 antibody radioimmunotherapy and gemcitabine radiosensitization for the treatment of a human pancreatic cancer xenograft. Int J Cancer. 2004;109:618–26.

    Article  CAS  PubMed  Google Scholar 

  245. Chan SY, et al. A phase 2 study of the cytotoxic immunoconjugate CMB-401 (hCTM01-calicheamicin) in patients with platinum-sensitive recurrent epithelial ovarian carcinoma. Canc Immunol Immunother. 2003;52:243–8.

    Article  CAS  Google Scholar 

  246. Mayo MF, et al. 533 POSTER In vivo stability in mice of SAR566658 (huDS6-DM4), an immunoconjugate targeting solid tumours. Eur J Cancer Suppl. 2008;6:169.

    Article  Google Scholar 

  247. Pan D, et al. An antibody-drug conjugate targeting a GSTA glycosite-signature epitope of MUC1 expressed by non-small cell lung cancer. Cancer Med. 2020;9:9529–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Mehla K, et al. Combination of mAb-AR20. 5, anti-PD-L1 and PolyICLC inhibits tumor progression and prolongs survival of MUC1. Tg mice challenged with pancreatic tumors. Canc Immunol Immunother. 2018;67:445–57.

    Article  CAS  Google Scholar 

  249. Panchamoorthy G, et al. Targeting the human MUC1-C oncoprotein with an antibody-drug conjugate. JCI insight. 2018. https://doi.org/10.1172/jci.insight.99880.

    Article  PubMed  PubMed Central  Google Scholar 

  250. Xie G, et al. CAR-NK cells: a promising cellular immunotherapy for cancer. EBioMedicine. 2020;59:102975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Quoix E, et al. TG4010 immunotherapy and first-line chemotherapy for advanced non-small-cell lung cancer (TIME): Results from the phase 2b part of a randomised, double-blind, placebo-controlled, phase 2b/3 trial. Lancet Oncol. 2016;17:212–23.

    Article  CAS  PubMed  Google Scholar 

  252. Panasiuk M, et al. Chimeric virus-like particles presenting tumour-associated MUC1 epitope result in high titers of specific IgG antibodies in the presence of squalene oil-in-water adjuvant: towards safe cancer immunotherapy. J Nanobiotechnol. 2022;20:1–13.

    Article  Google Scholar 

  253. Raina D, Agarwal P, Lee J, Bharti A, Mcknight CJ. Characterization of the MUC1-C cytoplasmic domain as a cancer target. Plos One. 2015;1:1–17.

    Google Scholar 

  254. Quoix E, et al. Therapeutic vaccination with TG4010 and first-line chemotherapy in advanced non-small-cell lung cancer: a controlled phase 2B trial. Lancet Oncol. 2011;12:1125–33.

    Article  CAS  PubMed  Google Scholar 

  255. Jain S, et al. Decitabine priming enhances mucin 1 inhibition mediated disruption of redox homeostasis in cutaneous T-cell lymphoma. Mol Cancer Ther. 2017;16:2304–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Weiqiu Jin and Mengwei Zhang would like to thank Dr. Quanfu Li for his instruction during their Research-based Learning program in Prof. Huang’s laboratory during September 2020 to March 2021. Weiqiu Jin would also like to show his great gratitude to Dr. Ni yingyin in Huang’s lab, who gave important suggestions to this review. Figures 3 and 4 are prepared with biorender.com.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Weiqiu Jin, Mengwei Zhang, and Changzi Dong wrote the main manuscript text. Changzi Dong prepared figure 2. Weiqiu Jin prepared other figures. Lei Huang and Qingquan Luo supervised the writting. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Lei Huang or Qingquan Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, W., Zhang, M., Dong, C. et al. The multifaceted role of MUC1 in tumor therapy resistance. Clin Exp Med 23, 1441–1474 (2023). https://doi.org/10.1007/s10238-022-00978-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-022-00978-y

Keywords

Navigation