Skip to main content

Advertisement

Log in

Clinical practice guidelines for molecular tumor markers, 2nd edition review part 1

  • Special Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

With advances in gene and protein analysis technologies, many target molecules that may be useful in cancer diagnosis have been reported. Therefore, the “Tumor Marker Study Group” was established in 1981 with the aim of “discovering clinically” useful molecules. Later, the name was changed to “Japanese Society for Molecular Tumor Marker Research” in 2000 in response to the remarkable progress in gene-related research. Currently, the world of cancer treatment is shifting from the era of representative tumor markers of each cancer type used for tumor diagnosis and treatment evaluation to the study of companion markers for molecular-targeted therapeutics that target cancer cells. Therefore, the first edition of the Molecular Tumor Marker Guidelines, which summarizes tumor markers and companion markers in each cancer type, was published in 2016. After publication of the first edition, the gene panel testing using next-generation sequencing became available in Japan in June 2019 for insured patients. In addition, immune checkpoint inhibitors have been indicated for a wide range of cancer types. Therefore, the 2nd edition of the Molecular Tumor Marker Guidelines was published in September 2021 to address the need to revise the guidelines. Here, we present an English version of the review (Part 1) of the Molecular Tumor Marker Guidelines, Second Edition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Naito Y, Aburatani H, Amano T et al (2021) Clinical practice guidance for next-generation sequencing in cancer diagnosis and treatment (edition 2.1). Int J Clin Oncol 26(2):233–283

    Article  PubMed  Google Scholar 

  2. Naito Y, Mishima S, Akagi K et al (2020) Japan Society of clinical oncology/Japanese Society of medical oncology-led clinical recommendations on the diagnosis and use of tropomyosin receptor kinase inhibitors in adult and pediatric patients with neurotrophic receptor tyrosine kinase fusion-positive advanced solid tumors, cooperated by the Japanese society of pediatric hematology/oncology. Int J Clin Oncol 25(3):403–417

    Article  PubMed  PubMed Central  Google Scholar 

  3. Sunami K, Bando H, Yatabe Y et al (2021) Appropriate use of cancer comprehensive genome profiling assay using circulating tumor DNA. Cancer Sci 112(9):3911–3917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Yatabe Y, Sunami K, Goto K et al (2020) Multiplex gene-panel testing for lung cancer patients. Pathol Int 70(12):921–931

    Article  PubMed  Google Scholar 

  5. Sunami K, Hatanaka Y, Koyama T (2020) Practical guide to cancer genome medicine gene panel testing. Igaku-Shoin Press (in Japanese)

  6. Yabana N (2018) Trends in regulation and evaluation of companion diagnostics. Proc Jpn Soc Pathol 107(1):199 (in Japanese)

    Google Scholar 

  7. Hatanaka Y, Kuwata T, Morii E et al (2021) The Japanese Society of Pathology Practical Guidelines on the handling of pathological tissue samples for cancer genomic medicine. Pathol Int 71(11):725–740

    Article  PubMed  PubMed Central  Google Scholar 

  8. Morii E, Hatanaka Y, Motoi N et al (2023) Guidelines for handling of cytological specimens in cancer genomic medicine. Pathobiology 8:1–23

    Google Scholar 

  9. Yanagihara R (2018) Regulatory perspectives on NGS-based IVDs. Japanese Society of medical oncology annual meeting. Proc Jpn Soc Med Oncol 16(1):91 (in Japanese)

    Google Scholar 

  10. Davies KD, Aisner DL (2019) Wake up and smell the fusions: single-modality molecular testing misses drivers. Clin Cancer Res 25(15):4586–4588

    Article  PubMed  CAS  Google Scholar 

  11. Marchiò C, Scaltriti M, Ladanyi M et al (2019) ESMO recommendations on the standard methods to detect NTRK fusions in daily practice and clinical research. Ann Oncol 30(9):1417–1427

    Article  PubMed  Google Scholar 

  12. Ministry of Health, Labour and Welfare Meeting Material (2022) Designation requirements for core hospitals and cooperative hospitals for cancer genomic medicine" https://www.mhlw.go.jp/content/10901000/000962791.pdf (in Japanese)

  13. Kohno T, Kato M, Kohsaka S et al (2022) C-CAT: the national datacenter for cancer genomic medicine in Japan. Cancer Discov 12(11):2509–2515

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ministry of Health, Labour and Welfare Director Notification (2016) Handling of the manufacture and sale of DNA sequencers, etc. for use in genetic testing systems https://www.pmda.go.jp/files/000213137.pdf (in Japanese)

  15. Mano H (2020) Cancer genomic medicine in Japan. Proc Jpn Acad Ser B Phys Biol Sci 96:316–321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Brunet JF, Denizot F, Luciani MF et al (1987) A new member of the immunoglobulin superfamily–CTLA-4. Nature 328:267–270

    Article  PubMed  CAS  Google Scholar 

  17. Leach DR, Krummel MF, Allison JP (1996) Enhancement of antitumor immunity by CTLA-4 blockade. Science 271:1734–1736

    Article  PubMed  CAS  Google Scholar 

  18. Hoos A, Ibrahim R, Korman A et al (2010) Development of ipilimumab: contribution to a new paradigm for cancer immunotherapy. Semin Oncol 37:533–546

    Article  CAS  Google Scholar 

  19. Lipson EJ, Drake CG (2011) Ipilimumab: an anti-CTLA-4 antibody for metastatic melanoma. Clin Cancer Res 17:6958–6962

    Article  PubMed Central  CAS  Google Scholar 

  20. Riaz N, Havel JJ, Makarov V et al (2017) Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171(934–949):e16

    Google Scholar 

  21. Tanaka A, Sakaguchi S (2017) Regulatory T cells in cancer immunotherapy. Cell Res 27:109–118

    Article  PubMed  CAS  Google Scholar 

  22. Arce Vargas F, Furness AJS, Litchfield K et al (2018) Fc effector function contributes to the activity of human anti-CTLA-4 antibodies. Cancer Cell 33(649–663):e4

    Google Scholar 

  23. Hui E, Cheung J, Zhu J et al (2017) T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 355:1428–1433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Kumagai S, Togashi Y, Kamada T et al (2020) The PD-1 expression balance between effector and regulatory T cells predicts the clinical efficacy of PD-1 blockade therapies. Nat Immunol 21:1346–1358

    Article  PubMed  CAS  Google Scholar 

  25. Francisco LM, Salinas VH, Brown KE et al (2009) PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 206:3015–3029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Topalian SL, Drake CG, Pardoll DM (2012) Targeting the PD-1/B7-H1 (PD-L1) pathway to activate anti-tumor immunity. Curr Opin Immunol 24:207–212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Butte MJ, Keir ME, Phamduy TB et al (2007) Programmed death-1 ligand 1 interacts specifically with the B7–1 costimulatory molecule to inhibit T cell responses. Immunity 27:111–122

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Park JJ, Omiya R, Matsumura Y et al (2010) B7–H1/CD80 interaction is required for the induction and maintenance of peripheral T-cell tolerance. Blood 116:1291–1298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Topalian SL, Taube JM, Anders RA et al (2016) Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 16:275–287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Boland CR, Thibodeau SN, Hamilton SR et al (1998) A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 58:5248–5257

    PubMed  CAS  Google Scholar 

  31. Le DT, Uram JN, Wang H et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372:2509–2520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Rizvi NA, Hellmann MD, Snyder A et al (2015) Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Dudley JC, Lin MT, Le DT et al (2016) Microsatellite Instability as a Biomarker for PD-1 Blockade. Clin Cancer Res 22:813–820

    Article  PubMed  CAS  Google Scholar 

  34. Japan Society of Clinical Oncology, Japanese Society of Medical Oncology (2019) Guidelines for cross-organ genomic practice in adult and pediatric advanced solid tumors, 2nd edn (in Japanese). Tokyo Japan

  35. Mishima S, Taniguchi H, Akagi K, et al (2020) Japan society of clinical oncology provisional clinical opinion for the diagnosis and use of immunotherapy in patients with deficient DNA mismatch repair tumors, cooperated by Japanese Society of Medical Oncology, First Edition. Int J Clin Oncol 25: 217–239

  36. Yoshino T, Pentheroudakis G, Mishima S et al (2020) JSCO-ESMO-ASCO-JSMO-TOS: international expert consensus recommendations for tumour-agnostic treatments in patients with solid tumours with microsatellite instability or NTRK fusions. Ann Oncol 31:861–872

    Article  PubMed  CAS  Google Scholar 

  37. Doebele RC, Drilon A, Paz-Ares L et al (2020) Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: integrated analysis of three phase 1–2 trials. Lancet Oncol 21:271–282

    Article  PubMed  CAS  Google Scholar 

  38. Hong DS, DuBois SG, Kummar S et al (2020) Larotrectinib in patients with TRK fusion-positive solid tumours: a pooled analysis of three phase 1/2 clinical trials. Lancet Oncol 21:531–540

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Bebb DG, Banerji S, Blais N et al (2021) Canadian consensus for biomarker testing and treatment of TRK fusion cancer in adults. Curr Oncol 28:523–548

    Article  PubMed  PubMed Central  Google Scholar 

  40. Demetri GD, Antonescu CR, Bjerkehagen B et al (2020) Diagnosis and management of tropomyosin receptor kinase (TRK) fusion sarcomas: expert recommendations from the World Sarcoma Network. Ann Oncol 31:1506–1517

    Article  PubMed  CAS  Google Scholar 

  41. Marchiò C, Scaltriti M, Ladanyi M et al (2019) ESMO recommendations on the standard methods to detect NTRK fusions in daily practice and clinical research. Ann Oncol 30:1417–1427

    Article  PubMed  Google Scholar 

  42. Vogelstein B, Fearon ER, Hamilton SR et al (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319:525–532

    Article  PubMed  CAS  Google Scholar 

  43. Rodenhuis S, Slebos RJ (1992) Clinical significance of ras oncogene activation in human lung cancer. Cancer Res 52:2665s–2669s

    PubMed  CAS  Google Scholar 

  44. Smith MR, DeGudicibus SJ, Stacey DW (1986) Requirement for c-ras proteins during viral oncogene transformation. Nature 320:540–543

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Davies H, Bignell GR, Cox C et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  PubMed  CAS  Google Scholar 

  46. Andreyev HJ, Norman AR, Cunningham D et al (1998) Kirsten ras mutations in patients with colorectal cancer: the multicenter “RASCAL” study. J Natl Cancer Inst 90:675–684

    Article  PubMed  CAS  Google Scholar 

  47. Watanabe T, Yoshino T, Uetake H et al (2013) KRAS mutational status in Japanese patients with colorectal cancer: results from a nationwide, multicenter, cross-sectional study. Jpn J Clin Oncol 43:706–712

    Article  PubMed  Google Scholar 

  48. Cutsem EV, Cevantes A, Nordlinger B et al (2014) Metastatic colorectal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 25(Suppl 3):iii1-9

    Article  PubMed  Google Scholar 

  49. Benson AB 3rd, Venook AP, Bekaii-Saab T et al (2015) National comprehensive cancer network (NCCN) clinical practice guidelines in oncology. Rectal Cancer (Version 2. 2015 NCCN, org). J Natl Compr Canc Netw 13(6): 719–72

  50. Douillard JY, Siena S, Cassidy J et al (2010) Randomized, phase III trial of panitumumab with infusional fluorouracil, leucovorin, and oxaliplatin (FOLFOX4) versus FOLFOX4 alone as first-line treatment in patients with previously untreated metastatic colorectal cancer: the PRIME study. J Clin Oncol 28:4697–4705

    Article  PubMed  CAS  Google Scholar 

  51. Schwartzberg LS, Rivera F, Karthaus M et al (2014) PEAK: a randomized, multicenter phase II study of panitumumab plus modified fluorouracil, leucovorin, and oxaliplatin (mFOLFOX6) or bevacizumab plus mFOLFOX6 in patients with previously untreated, unresectable, wild-type KRAS exon 2 metastatic colorectal cancer. J Clin Oncol 32:2240–2247

    Article  PubMed  CAS  Google Scholar 

  52. Amado RG, Wolf M, Peeters M et al (2008) Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol 26:1626–1634

    Article  PubMed  CAS  Google Scholar 

  53. Peeters M, Price TJ, Cervantes A et al (2010) Randomized phase III study of panitumumab with fluorouracil, leucovorin, and irinotecan (FOLFIRI) compared with FOLFIRI alone as second-line treatment in patients with metastatic colorectal cancer. J Clin Oncol 28:4706–4713

    Article  PubMed  CAS  Google Scholar 

  54. Heinemann V, von Weikersthal LF, Decker T et al (2014) FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol 15:1065–1075

    Article  PubMed  CAS  Google Scholar 

  55. Bokemeyer C, Bondarenko I, Hartmann JT et al (2011) Efficacy according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for metastatic colorectal cancer: the OPUS study. Ann Oncol 22:1535–1546

    Article  PubMed  CAS  Google Scholar 

  56. Buttitta F, Barassi F, Fresu G et al (2006) Mutational analysis of the HER2 gene in lung tumors from Caucasian patients: mutations are mainly present in adenocarcinomas with bronchioloalveolar features. Int J Cancer 119:2586–2591

    Article  PubMed  CAS  Google Scholar 

  57. Suzuki M, Shigematsu H, Iizasa T et al (2006) Exclusive mutation in epidermal growth factor receptor gene, HER-2, and KRAS, and synchronous methylation of nonsmall cell lung cancer. Cancer 106:2200–2207

    Article  PubMed  CAS  Google Scholar 

  58. Schiller JH, Adak S, Feins RH et al (2001) Lack of prognostic significance of p53 and K-ras mutations in primary resected non-small-cell lung cancer on E4592: a Laboratory Ancillary Study on an Eastern Cooperative Oncology Group Prospective Randomized Trial of Postoperative Adjuvant Therapy. J Clin Oncol 19:448–457

    Article  PubMed  CAS  Google Scholar 

  59. Eberhard DA, Johnson BE, Amler LC et al (2005) Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol 23:5900–5909

    Article  PubMed  CAS  Google Scholar 

  60. Shigematsu H, Lin L, Takahashi T et al (2005) Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst 97:339–346

    Article  PubMed  CAS  Google Scholar 

  61. Massarelli E, Varella-Garcia M, Tang X et al (2007) KRAS mutation is an important predictor of resistance to therapy with epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. Clin Cancer Res 13:2890–2896

    Article  PubMed  CAS  Google Scholar 

  62. Douillard JY, Shepherd FA, Hirsh V et al (2010) Molecular predictors of outcome with gefitinib and docetaxel in previously treated non-small-cell lung cancer: data from the randomized phase III INTEREST trial. J Clin Oncol 28:744–752

    Article  PubMed  CAS  Google Scholar 

  63. O’Byrne KJ, Gatzemeier U, Bondarenko I et al (2011) Molecular biomarkers in non-small-cell lung cancer: a retrospective analysis of data from the phase 3 FLEX study. Lancet Oncol 12:795–805

    Article  PubMed  Google Scholar 

  64. Finberg KE, Sequist LV, Joshi VA et al (2007) Mucinous differentiation correlates with absence of EGFR mutation and presence of KRAS mutation in lung adenocarcinomas with bronchioloalveolar features. J Mol Diagn 9:320–326

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Sholl LM, Aisner DL, Varella-Garcia M et al (2015) Multi-institutional oncogenic driver mutation analysis in lung adenocarcinoma: the lung cancer mutation consortium experience. J Thorac Oncol 10:768–777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Ali G, Proietti A, Pelliccioni S et al (2014) ALK rearrangement in a large series of consecutive nonsmall cell lung cancers: comparison between a new immunohistochemical approach and fluorescence in situ hybridization for the screening of patients eligible for crizotinib treatment. Arch Pathol Lab Med 138:1449–1458

    Article  PubMed  Google Scholar 

  67. Febbo PG, Ladanyi M, Aldape KD et al (2011) NCCN Task Force report: Evaluating the clinical utility of tumor markers in oncology. J Natl Compr Canc Netw 9(Suppl 5):S1–S32 (quiz S33)

    Article  PubMed  CAS  Google Scholar 

  68. Kerr KM, Bubendorf L, Edelman MJ et al (2014) Second ESMO consensus conference on lung cancer: pathology and molecular biomarkers for non-small cell lung cancer. Ann Oncol 25:1681–1690

    Article  PubMed  CAS  Google Scholar 

  69. Roberts PJ, Stinchcombe TE (2013) KRAS mutation: should we test for it, and does it matter? J Clin Oncol 31:1112–1121

    Article  PubMed  CAS  Google Scholar 

  70. Hruban RH, van Mansfeld AD, Offerhaus GJ et al (1993) K-ras oncogene activation in adenocarcinoma of the human pancreas. A study of 82 carcinomas using a combination of mutant-enriched polymerase chain reaction analysis and allele-specific oligonucleotide hybridization. Am J Pathol 143:545–554

    PubMed  PubMed Central  CAS  Google Scholar 

  71. van Eijk R, van Puijenbroek M, Chhatta AR et al (2010) Sensitive and specific KRAS somatic mutation analysis on whole-genome amplified DNA from archival tissues. J Mol Diagn 12:27–34

    Article  PubMed  PubMed Central  Google Scholar 

  72. Fukushima T, Suzuki S, Mashiko M et al (2003) BRAF mutations in papillary carcinomas of the thyroid. Oncogene 22:6455–6457

    Article  PubMed  CAS  Google Scholar 

  73. Forbes SA, Bindal N, Bamford S et al (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucl Acids Res 39:D945–D950

    Article  PubMed  CAS  Google Scholar 

  74. Schubbert S, Shannon K, Bollag G (2007) Hyperactive Ras in developmental disorders and cancer. Nat Rev Cancer 7:295–308

    Article  PubMed  CAS  Google Scholar 

  75. Wan PT, Garnett MJ, Roe SM et al (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116:855–867

    Article  PubMed  CAS  Google Scholar 

  76. Lavoie H, Therrien M (2015) Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol 16:281–298

    Article  PubMed  CAS  Google Scholar 

  77. Yokota T, Ura T, Shibata N et al (2011) BRAF mutation is a powerful prognostic factor in advanced and recurrent colorectal cancer. Br J Cancer 104:856–862

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Kawazoe A, Shitara K, Fukuoka S et al (2015) A retrospective observational study of clinicopathological features of KRAS, NRAS, BRAF and PIK3CA mutations in Japanese patients with metastatic colorectal cancer. BMC Cancer 15:258

    Article  PubMed  PubMed Central  Google Scholar 

  79. Hashiguchi Y, Muro K, Saito Y et al (2020) Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2019 for the treatment of colorectal cancer. Int J Clin Oncol 25(1):1–42

    Article  PubMed  Google Scholar 

  80. Paik PK, Arcila ME, Fara M et al (2011) Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol 29:2046–2051

    Article  PubMed  PubMed Central  Google Scholar 

  81. Pao W, Girard N (2011) New driver mutations in nonsmall-cell lung cancer. Lancet Oncol 12:175–180

    Article  PubMed  CAS  Google Scholar 

  82. Gray-Schopfer V, Wellbrock C, Marais R (2007) Melanoma biology and new targeted therapy. Nature 445:851–857

    Article  PubMed  CAS  Google Scholar 

  83. Curtin JA, Fridlyand J, Kageshita T et al (2005) Distinct sets of genetic alterations in melanoma. N Engl J Med 353:2135–2147

    Article  PubMed  CAS  Google Scholar 

  84. Davies MA, Samuels Y (2010) Analysis of the genome to personalize therapy for melanoma. Oncogene 29:5545–5555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Ashida A, Uhara H, Kiniwa Y et al (2012) Assessment of BRAF and KIT mutations in Japanese melanoma patients. J Dermatol Sci 66:240–242

    Article  PubMed  CAS  Google Scholar 

  86. Bastian BC (2014) The molecular pathology of melanoma: an integrated taxonomy of melanocytic neoplasia. Annu Rev Pathol 9:239–271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Bastian BC, de la Fouchardiere A, Elder DE et al. (2018) WHO classification of skin tumors, 4th ed. IARC

  88. Van Cutsem E, Kohne CH, Lang I et al (2011) Cetuximab plus irinotecan, fluorouracil, and leucovorin as first-line treatment for metastatic colorectal cancer: updated analysis of overall survival according to tumor KRAS and BRAF mutation status. J Clin Oncol 29:2011–2019

    Article  PubMed  Google Scholar 

  89. Maughan TS, Adams RA, Smith CG et al (2011) Addition of cetuximab to oxaliplatin-based first-line combination chemotherapy for treatment of advanced colorectal cancer: results of the randomised phase 3 MRC COIN trial. Lancet 377:2103–2114

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Tveit KM, Guren T, Glimelius B et al (2012) Phase III trial of cetuximab with continuous or intermittent fluorouracil, leucovorin, and oxaliplatin (Nordic FLOX) versus FLOX alone in first-line treatment of metastatic colorectal cancer: the NORDIC-VII study. J Clin Oncol 30:1755–1762

    Article  PubMed  CAS  Google Scholar 

  91. Langer C, Kopit J, Awad M et al: Analysis of K-Ras mutations in patients with metastatic colorectal cancer receiving cetuximab in combination with irinotecan: Results from the EPIC trial. Ann Oncol 19(Suppl 8) : Abstract 385P, viii133, 2008

  92. Seymour MT, Brown SR, Middleton G et al (2013) Panitumumab and irinotecan versus irinotecan alone for patients with KRAS wild-type, fluorouracil-resistant advanced colorectal cancer (PICCOLO): a prospectively stratified randomised trial. Lancet Oncol 14:749–759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Karapetis CS, Khambata-Ford S, Jonker DJ et al (2008) K-ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359:1757–1765

    Article  PubMed  CAS  Google Scholar 

  94. Douillard JY, Oliner KS, Siena S et al (2013) Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer. N Engl J Med 369:1023–1034

    Article  PubMed  CAS  Google Scholar 

  95. Van Cutsem E, Lenz HJ, Kohne CH et al (2015) Fluorouracil, leucovorin, and irinotecan plus cetuximab treatment and RAS mutations in colorectal cancer. J Clin Oncol 33:692–700

    Article  PubMed  Google Scholar 

  96. Peeters M, Oliner KS, Price TJ et al (2014) Analysis of KRAS/NRAS mutations in phase 3 study 20050181 of panitumumab(pmab) plus FOLFIRI versus FOLFIRI for second-line treatment(tx) of metastatic colorectal cancer(mCRC). J Clin Oncol 32(suppl):abstr LBA387

    Article  Google Scholar 

  97. Patterson SD, Peeters M, Siena S et al (2013) Comprehensive analysis of KRAS and NRAS mutations as predictive biomarkers for single agent panitumumab(pmab) response in a randomized, phase III metastatic colorectal cancer(mCRC) study(20020408). J Clin Oncol 31(suppl):abstr 3617

    Article  Google Scholar 

  98. Tejpar S, Lenz HJ, Claus-Henning K et al (2014) Effect of KRAS and NRAS mutations on treatment outcomes in patients with metastatic colorectal cancer(mCRC) treated first-line with cetuximab plus FOLFOX4: new results from the OPUS study. J Clin Oncol 32(suppl 3):abstr LBA444

    Article  Google Scholar 

  99. Sartore-Bianchi A, Pietrantonio F, Lonardi S et al (2022) Circulating tumor DNA to guide rechallenge with panitumumab in metastatic colorectal cancer: the phase 2 CHRONOS trial. Nat Med 28(8):1612–1618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Kopetz S, Grothey A, Yaeger R et al (2019) (2008) Encorafenib, binimetinib, and cetuximab in BRAF V600E-mutated colorectal cancer. N Engl J Med 381:1632–1643

    Article  PubMed  CAS  Google Scholar 

  101. Miller VA, Riely GJ, Zakowski MF et al (2008) Molecular characteristics of bronchioloalveolar carcinoma and adenocarcinoma, bronchioloalveolar carcinoma subtype, predict response to erlotinib. J Clin Oncol 26:1472–1478

    Article  PubMed  CAS  Google Scholar 

  102. Slebos RJ, Kibbelaar RE, Dalesio O et al (1990) K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N Engl J Med 323:561–565

    Article  PubMed  CAS  Google Scholar 

  103. Tsao MS, Aviel-Ronen S, Ding K et al (2007) Prognostic and predictive importance of p53 and RAS for adjuvant chemotherapy in non small-cell lung cancer. J Clin Oncol 25:5240–5247

    Article  PubMed  Google Scholar 

  104. Mitsudomi T, Steinberg SM, Oie HK et al (1991) Ras gene mutations in non-small cell lung cancers are associated with shortened survival irrespective of treatment intent. Cancer Res 51:4999–5002

    PubMed  CAS  Google Scholar 

  105. Ettinger DS, Aisner DL, Wood DE et al (2018) NCCN Guidelines Insights: non-Small Cell Lung Cancer, Version 5.2018. J Natl Compr Netw 16(7):807–821

    Article  Google Scholar 

  106. Sequist LV, Heist RS, Shaw AT et al (2011) Implementing multiplexed genotyping of non-small-cell lung cancers into routine clinical practice. Ann Oncol 22:2616–2624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Calles A, Liao X, Sholl LM et al (2015) Expression of PD-1 and Its ligands, PD-L1 and PD-L2, in smokers and never smokers with KRAS-mutant lung cancer. J Thorac Oncol 10:1726–1735

    Article  PubMed  CAS  Google Scholar 

  108. Stinchcombe TE (2014) Novel agents in development for advanced non-small cell lung cancer. Ther Adv Med Oncol 6:240–253

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Jänne PA, Shaw AT, Pereira JR et al (2013) Selumetinib plus docetaxel for KRAS-mutant advanced nonsmall-cell lung cancer: a randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol 14:38–47

    Article  PubMed  Google Scholar 

  110. Takiguchi Y, Okumura M, Ishikawa H et al (2022) Lung cancer practice guidelines 2022 Edition. KANEHARA & Co. (in Japanese)

  111. Liu SL, Chen G, Zhao YP et al (2013) Diagnostic accuracy of K-ras mutation for pancreatic carcinoma: a meta-analysis. Hepatob Pancreat Dis Int 12:458–464

    Article  CAS  Google Scholar 

  112. da Cunha SG, Dhani N, Tu D et al (2010) Molecular predictors of outcome in a phase 3 study of gemcitabine and erlotinib therapy in patients with advanced pancreatic cancer: national cancer institute of canada clinical trials group study PA.3. Cancer 116:5599–5607

    Article  Google Scholar 

  113. Ogura T, Yamao K, Hara K et al (2013) Prognostic value of K-ras mutation status and subtypes in endoscopic ultrasound-guided fine-needle aspiration specimens from patients with unresectable pancreatic cancer. J Gastroenterol 48:640–646

    Article  PubMed  CAS  Google Scholar 

  114. Boeck S, Jung A, Laubender RP et al (2013) EGFR pathway biomarkers in erlotinib-treated patients with advanced pancreatic cancer: translational results from the randomised, crossover phase 3 trial AIOPK0104. Br J Cancer 108:469–476

    Article  PubMed  CAS  Google Scholar 

  115. Boeck S, Jung A, Laubender RP et al (2013) KRAS mutation status is not predictive for objective response to anti-EGFR treatment with erlotinib in patients with advanced pancreatic cancer. J Gastroenterol 48:544–548

    Article  PubMed  CAS  Google Scholar 

  116. Coit DG, Thompson JA, Albertini MR et al (2019) Cutaneous melanoma, version 2.2019, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw 17:367–402

    Article  PubMed  CAS  Google Scholar 

  117. Nakamura Y, Asai J, Igaki H et al (2020) Japanese dermatological association guidelines: outlines of guidelines for cutaneous melanoma 2019. J Dermatol 47(2):89–103

    Article  PubMed  Google Scholar 

  118. Hauschild A, Grob JJ, Demidov LV et al (2012) Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380:358–365

    Article  PubMed  CAS  Google Scholar 

  119. Medical & Biological Laboratories Co., Ltd (https://ivd.mbl.co.jp/diagnostics/search/detail/?cd=2385) (in Japanese)

  120. Shimada H, Ochiai T, Nomura F (2003) Japan p53 antibody research group. Titration of serum p53 antibodies in 1,085 patients with various types of malignant tumors: a multi-institutional analysis by the Japan p53 Antibody Research Group. Cancer 97:682–689

    Article  PubMed  Google Scholar 

  121. Zhang J, Xu Z, Yu L et al (2014) Assessment of the potential diagnostic value of serum p53 antibody for cancer: a meta-analysis. PLoS One 9:e99255. https://doi.org/10.1371/journal.pone.0099255.eCollection

    Article  PubMed  PubMed Central  Google Scholar 

  122. Oshima Y, Suzuki T, Yajima S et al (2020) Serum p53 antibody: useful for detecting gastric cancer but not for predicting prognosis after surgery. Surg Today. https://doi.org/10.1007/s00595-020-02030-6

    Article  PubMed  Google Scholar 

  123. Mattioni M, Soddu S, Prodosmo A (2015) Prognostic role of serum p53 antibodies in lung cancer. BMC Cancer 15:148. https://doi.org/10.1186/s12885-015-1174-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Bourhis J, Lubin R, Roche B (1996) Analysis of p53 serum antibodies in patients with head and neck squamous cell carcinoma. J Natl Cancer Inst 88(17):1228–1233

    Article  PubMed  CAS  Google Scholar 

  125. Yang Z-C, Ling Li, Zhi-Wei Xu et al (2016) Are p53 antibodies a diagnostic indicator for patients with oral squamous cell carcinoma? Systematic review and meta-analysis. Asian Pac J Cancer Prev 17(1):109–115

    Article  PubMed  Google Scholar 

  126. Suzuki T, Yajima S, Ishioka N et al (2018) Prognostic significance of high serum p53 antibody titers in patients with esophageal squamous cell carcinoma. Esophagus 15(4):294–300

    Article  PubMed  Google Scholar 

  127. Shimada H, Takeda A, Arima M et al (2000) Serum p53 antibody is a useful tumor marker in superficial esophageal squamous cell carcinoma. Cancer 89:1677–1683

    Article  PubMed  CAS  Google Scholar 

  128. Iwamuro M, Kawai Y, Matsumoto T et al (2015) Serum anti-p53 antibody as a tumour marker for colorectal cancer screening. Ecancermedicalscience 29(9):560. https://doi.org/10.3332/ecancer.2015.560.eCollectio

    Article  Google Scholar 

  129. Yamaguchi T, Takii Y, Maruyama S (2014) Usefulness of serum p53 antibody measurement in colorectal cancer: an examination of 1384 primary colorectal cancer patients. Surg Today 44:1529–1535

    Article  PubMed  CAS  Google Scholar 

  130. Pedersen JW, Gentry-Maharaj A, Fourkala EO et al (2013) Early detection of cancer in the general population: a blinded case-control study of p53 autoantibodies in colorectal cancer. Br J Cancer 108:107–114

    Article  PubMed  CAS  Google Scholar 

  131. Ochiai H, Ohishi T, Osumi K et al (2012) Reevaluation of serum p53 antibody as a tumor marker incolorectal cancer patients. Surg Today 42:164–168

    Article  PubMed  CAS  Google Scholar 

  132. Yamamoto S, Chishima T, Adachi S et al (2014) Serum p53 antibody in breast cancer. Cancer Biomark 14:203–206

    Article  PubMed  CAS  Google Scholar 

  133. Nozoe T, Mori E, Kono M et al (2012) Serum appearance of anti-p53 antibody in triple negative breast cancer. Breast Cancer 19:11–15

    Article  PubMed  Google Scholar 

  134. Jin Y, Kim SC, Kim HJ et al (2017) Use of autoantibodies against tumor-associated antigens as serum biomarkers for primary screening of cervical cancer. Oncotarget 8(62):105425–105439

    Article  PubMed  PubMed Central  Google Scholar 

  135. Kaaks R, Fortner RT, Hüsing A et al (2018) Tumor-associated autoantibodies as early detection markers for ovarian cancer? A prospective evaluation. Int J Cancer 143:515–526

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Suzuki H, Akakura K, Igarashi T et al (2004) Clinical usefulness of serum antip53 antibodies for prostate cancer detection: a comparative study with prostate specific antigen parameters. J Urol 171(1):182–186

    Article  PubMed  CAS  Google Scholar 

  137. Miyashita M, Tajiri T, Sasajima K et al (2003) Cancer screening using p53 antibody. Jpn Assoc Cancer Detect Diagn 10(2):64–67 (in Japanese)

    Google Scholar 

  138. Teras LR, Gapstur SM, Maliniak ML et al (2018) Prediagnostic antibodies to serum p53 and subsequent colorectal cancer. Cancer Epidemiol Biomarkers Prev 27(2):219–223

    Article  PubMed  CAS  Google Scholar 

  139. Toritani K, Kimura H, Kunisaki R et al (2020) Uselessness of serum p53 antibody for detecting colitis-associated cancer in the era of immunosuppressive therapy. In vivo 34:723–728

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Shimada H, Shiratori T, Takeda A et al (2009) Perioperative changes of serum p53 antibody titer is a predictor for survival in patients with esophageal squamous cell carcinoma. World J Surg 33:272–277

    Article  PubMed  Google Scholar 

  141. Takeda A, Shimada H, Nakajima K et al (2001) Serum p53 antibody as a useful marker for monitoring of treatment of superficial colorectal adenocarcinoma after endoscopic resection. Int J Clin Oncol 6:45–49

    Article  PubMed  CAS  Google Scholar 

  142. Ushigome M, Shimada H, Miura Y et al (2020) Changing pattern of tumor markers in recurrent colorectal cancer patients before surgery to recurrence: serum p53 antibodies, CA19-9 and CEA. Int J Clin Oncol 25(4):622–632

    Article  PubMed  CAS  Google Scholar 

  143. Sangrajrang S, Arpornwirat W, Cheirsilpa A et al (2003) p53 autoantibodies can be indicative of the development of breast cancer relapse. Cancer Detect Prev 27:182–186

    Article  PubMed  CAS  Google Scholar 

  144. Regele S, Vogl FD, Kohler T et al (2003) p53 autoantibodies can be indicative of the development of breast cancer relapse. Anticancer Res 23:761–764

    PubMed  Google Scholar 

  145. Shimada H, Okazumi S, Takeda A et al (2001) Presence of serum p53 antibodies is associated with decreased in vitro chemosensitivity in patients with esophageal cancer. Surg Today 31(7):591–596

    Article  PubMed  CAS  Google Scholar 

  146. Shimada H, Kitabayashi H, Nabeya Y et al (2003) Treatment response and prognosis of patients after recurrence of esophageal cancer. Surgery 133:24–31

    Article  PubMed  Google Scholar 

  147. Blanchard P, Quero L, Pacault V et al (2012) Prognostic significance of anti-p53 and anti-KRas circulating antibodies in esophageal cancer patients treated with chemoradiotherapy. BMC Cancer 12:119

    Article  PubMed  PubMed Central  Google Scholar 

  148. Shimada H, Nabeya Y, Okazumi S et al (2002) Prognostic significance of serum p53 antibody in patients with esophageal squamous cell carcinoma. Surgery 132:41–47

    Article  PubMed  Google Scholar 

  149. Kressner U, Glimelius B, Bergström R et al (1998) Increased serum p53 antibody levels indicate poor prognosis in patients with colorectal cancer. Br J Cancer 77(11):1848–1851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Tang R, Ko MC, Wang JY et al (2001) Humoral response to p53 in human colorectal tumors: a prospective study of 1209 patients. Int J Cancer 94(6):859–863

    Article  PubMed  CAS  Google Scholar 

  151. Yamaguchi T, Takii Y, Maruyama S (2014) Usefulness of serum p53 antibody measurement in colorectal cancer: an examination of 1384 primary colorectal cancer patients. Surg Today 44(8):1529–1535

    Article  PubMed  CAS  Google Scholar 

  152. Osumi H, Shinozaki E, Suenaga M et al (2015) Does anti-p53 antibody status predict for clinical outcomes in metastatic colorectal cancer patients treated with fluoropyrimidine, oxaliplatin, plus bevacizumab as first-line chemotherapy? BMC Cancer 15:760

    Article  PubMed  PubMed Central  Google Scholar 

  153. Daitoku N, Yuji Miyamoto Y, Yuki Sakamoto Y et al (2020) Prognostic significance of serum p53 antibody according to KRAS status in metastatic colorectal cancer patients. Int J Clin Oncol 25:651–659

    Article  PubMed  CAS  Google Scholar 

  154. Suzuki T, Funahashi K, Ushigome M et al (2017) Diagnostic and prognostic impact of serum p53 antibody titration in colorectal cancer toho. J Med 3(4):107–115

    Google Scholar 

  155. Kubota Y, Shimada H, Saito F et al (2017) Perioperative monitoring of serum p53 antibody titers in Japanese women undergoing surgical treatment after neoadjuvant chemotherapy for locally advanced breast cancer. Toho J Med 3(2):58–65

    Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideaki Shimada.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kikuchi, Y., Shimada, H., Hatanaka, Y. et al. Clinical practice guidelines for molecular tumor markers, 2nd edition review part 1. Int J Clin Oncol 29, 1–19 (2024). https://doi.org/10.1007/s10147-023-02430-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-023-02430-x

Keywords

Navigation