Skip to main content
Log in

Hypoxia-induced circRTN4IP1 promotes progression and glycolysis of hepatocellular carcinoma cells

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Hypoxia is one of the hallmarks of solid tumors, especially in hepatocellular carcinoma (HCC). CircRNAs are reported to be tightly connected to hypoxia and also have essential roles in cancer progression. However, many circRNAs implicated in hypoxia-mediated HCC progression are still unclear and require further exploration. In this study, a hypoxia cell model was structured by exposing cells to hypoxia conditions (1% O2) and normoxia conditions (21% O2) as a control. The effects of hypoxia and normoxia on cell viability, migration, invasion, and glycolysis were examined. The expressions of circRNARTN4IP1 under hypoxia were identified. Finally, molecular mechanisms and biological function of circRTN4IP1 were explored. We confirmed that hypoxia treatment facilitated capacities of proliferation, migration, invasion, and glycolysis in tumor cells. Hypoxia induced a significant increase expression of circRTN4IP1 in cells. Functionally, knockdown of circRTN4IP1 inhibited cell malignant progression and glycolysis under hypoxia HCC cells. Mechanistically, HIF1A targeted the promoter region of circRTN4IP1 and positively regulated the expression of circRTN4IP1. In addition, circRTN4IP1 targeted miR-532-5p/G6PC3 axis. In short, hypoxia induced activation of the HIF1A/circRTN4IP1/miR-532-5p/G6PC3 signaling axis, which promoted proliferation, migration, invasion, and glycolysis of HCC cells. This study may reveal a possible mechanism driving the progression of hypoxia HCC, so as to find potential effective candidates for targeting hypoxia microenvironment therapy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

Download references

Author information

Authors and Affiliations

Authors

Contributions

XY and CL designed the study, and drafted the manuscript. CY collected the clinical data and processed statistical data. QZ analyzed and interpreted the data. GL and YD partly contributed to the experiment. CY and QZ designed, supervised the study, and revised the manuscript. All authors read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Qian Zhang or Chun Ye.

Ethics declarations

Ethics approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(JPG 2026 kb)

ESM 2

(JPG 2571 kb)

ESM 3

(PDF 2255 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Lou, C., Zhang, Q. et al. Hypoxia-induced circRTN4IP1 promotes progression and glycolysis of hepatocellular carcinoma cells. Funct Integr Genomics 23, 339 (2023). https://doi.org/10.1007/s10142-023-01256-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10142-023-01256-0

Keywords

Navigation