Skip to main content
Log in

Flavonoids: a review on biosynthesis and transportation mechanism in plants

  • Review
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

A Correction to this article was published on 02 October 2023

This article has been updated

Abstract

In recent years, significant progress has been made in understanding the biosynthetic pathway and regulation of flavonoids through forward genetic approaches. However, there remains a notable gap in knowledge regarding the functional characterization and underlying processes of the transport framework responsible for flavonoid transport. This aspect requires further investigation and clarification to achieve a comprehensive understanding. Presently, there are a total of four proposed transport models associated with flavonoids, namely glutathione S-transferase (GST), multidrug and toxic compound extrusion (MATE), multidrug resistance-associated protein (MRPs), and bilitranslocase-homolog (BTL). Extensive research has been conducted on the proteins and genes related to these transport models. However, despite these efforts, numerous challenges still exist, leaving much to be explored in the future. Gaining a deeper understanding of the mechanisms underlying these transport models holds immense potential for various fields such as metabolic engineering, biotechnological approaches, plant protection, and human health. Therefore, this review aims to provide a comprehensive overview of recent advancements in the understanding of flavonoid transport mechanisms. By doing so, we aim to paint a clear and coherent picture of the dynamic trafficking of flavonoids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Change history

Abbreviations

BTL:

Bilirubin bilitranslocase

MRP:

Multidrug resistance-associated protein

GST:

Glutathione S-transferase

ABC:

ATP-binding cassette

AVIs:

Anthocyanic vacuolar inclusions

ER:

Endoplasmic reticulum

References

  • Aamir M, Cheng X, Li G, Su X, Abdullah M, Cai Y (2020) Gene structure, evolution and expression analysis of the P-ATPase gene family in Chinese pear ( Pyrus bretschneideri ). Comput Biol Chem 88:107346–107346. https://doi.org/10.1016/j.compbiolchem.2020.107346

    Article  CAS  Google Scholar 

  • Abdullah M, Cao Y, Cheng X, Meng D, Chen Y, Shakoor A, Gao J, Cai Y (2018) The sucrose synthase gene family in Chinese pear (Pyrus bretschneideri Rehd.): structure, expression, and evolution. Molecules 23:1144

    Article  PubMed  PubMed Central  Google Scholar 

  • Alburquerque N, García-Montiel F, Carrillo A, Burgos L (2008) Chilling and heat requirements of sweet cherry cultivars and the relationship between altitude and the probability of satisfying the chill requirements. Environ Exp Bot 64:162–170

    Article  Google Scholar 

  • Alfenito MR, Souer E, Goodman CD, Buell R, Mol J, Koes R, Walbot V (1998) Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell 10:1135–1149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Appelhagen I, Nordholt N, Seidel T, Spelt K, Koes R, Quattrochio F, Sagasser M, Weisshaar B (2015) TRANSPARENT TESTA 13 is a tonoplast P3A-ATPase required for vacuolar deposition of proanthocyanidins in Arabidopsis thaliana seeds. Plant J 82:840–849. https://doi.org/10.1111/tpj.12854

    Article  PubMed  CAS  Google Scholar 

  • Bertolini A, Peresson C, Petrussa E, Braidot E, Passamonti S, Macrì F, Vianello A (2009) Identification and localization of the bilitranslocase homologue in white grape berries (Vitis vinifera L.) during ripening. J Exp Bot 60:3861–3871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Braidot E, Petrussa E, Bertolini A, Peresson C, Ermacora P, Loi N, Terdoslavich M, Passamonti S, Macrì F, Vianello A (2008) Evidence for a putative flavonoid translocator similar to mammalian bilitranslocase in grape berries (Vitis vinifera L.) during ripening. Planta 228:203–213

    Article  PubMed  CAS  Google Scholar 

  • Chanoca A, Kovinich N, Burkel B, Stecha S, Bohorquez-Restrepo A, Ueda T, Eliceiri KW, Grotewold E, Otegui MS (2015) Anthocyanin vacuolar inclusions form by a microautophagy mechanism. Plant Cell 27:2545–2559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen C, Chen H, Zhang Y, Thomas HR, Frank MH, He Y, Xia R (2020) TBtools: an integrative toolkit developed for interactive analyses of big biological data. Molecular plant 13(8):1194–1202

    Article  PubMed  CAS  Google Scholar 

  • Conn S, Zhang W, Franco C (2003) Anthocyanic vacuolar inclusions (AVIs) selectively bind acylated anthocyanins in Vitis vinifera L. (grapevine) suspension culture. Biotech Lett 25:835–839

    Article  CAS  Google Scholar 

  • Conn S, Franco C, Zhang W (2010) Characterization of anthocyanic vacuolar inclusions in Vitis vinifera L. cell suspension cultures. Planta 231:1343–1360

    Article  PubMed  CAS  Google Scholar 

  • Darbani B, Motawia MS, Olsen CE, Nour-Eldin HH, Møller BL, Rook F (2016) The biosynthetic gene cluster for the cyanogenic glucoside dhurrin in Sorghum bicolor contains its co-expressed vacuolar MATE transporter. Sci Rep 6:1–8

    Article  Google Scholar 

  • Debeaujon I, Peeters AJ, Léon-Kloosterziel KM, Koornneef M (2001) The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13:853–871

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Diener AC, Gaxiola RA, Fink GR (2001) Arabidopsis ALF5, a multidrug efflux transporter gene family member, confers resistance to toxins. Plant Cell 13:1625–1638

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Doshi R, McGrath AP, Piñeros M, Szewczyk P, Garza DM, Kochian LV, Chang G (2017) Functional characterization and discovery of modulators of SbMATE, the agronomically important aluminium tolerance transporter from Sorghum bicolor. Sci Rep 7:1–16

    Article  Google Scholar 

  • Dube G, Kadoo N, Prashant R (2018) Exploring the biological roles of Dothideomycetes ABC proteins: Leads from their phylogenetic relationships with functionally-characterized Ascomycetes homologs. PLoS ONE 13:e0197447

    Article  PubMed  PubMed Central  Google Scholar 

  • Francisco RM, Regalado A, Ageorges A, Burla BJ, Bassin B, Eisenach C, Zarrouk O, Vialet S, Marlin T, Chaves MM (2013) ABCC1, an ATP binding cassette protein from grape berry, transports anthocyanidin 3-O-glucosides. Plant Cell 25:1840–1854

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gomez C, Terrier N, Torregrosa L, Vialet S, Fournier-Level A, Verries C, Souquet J-M, Mazauric J-P, Klein M, Cheynier V (2009) Grapevine MATE-type proteins act as vacuolar H+-dependent acylated anthocyanin transporters. Plant Physiol 150:402–415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goodman CD, Casati P, Walbot V (2004) A multidrug resistance–associated protein involved in anthocyanin transport in Zea mays. Plant Cell 16:1812–1826

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780

    Article  PubMed  CAS  Google Scholar 

  • He J, Giusti MM (2010) Anthocyanins: natural colorants with health-promoting properties. Annu Rev Food Sci Technol 1:163–187

    Article  PubMed  CAS  Google Scholar 

  • Hu B, Zhao J, Lai B, Qin Y, Wang H, Hu G (2016) LcGST4 is an anthocyanin-related glutathione S-transferase gene in Litchi chinensis Sonn. Plant Cell Rep 35:831–843

    Article  PubMed  CAS  Google Scholar 

  • Ichino T, Fuji K, Ueda H, Takahashi H, Koumoto Y, Takagi J, Tamura K, Sasaki R, Aoki K, Shimada T (2014) GFS 9/TT 9 contributes to intracellular membrane trafficking and flavonoid accumulation in A rabidopsis thaliana. Plant J 80:410–423

    Article  PubMed  CAS  Google Scholar 

  • Kallam K, Appelhagen I, Luo J, Albert N, Zhang H, Deroles S, Hill L, Findlay K, Andersen ØM, Davies K (2017) Aromatic decoration determines the formation of anthocyanic vacuolar inclusions. Curr Biol 27:945–957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khoo HE, Azlan A, Tang ST, Lim SM (2017) Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 61:1361779

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitamura S, Shikazono N, Tanaka A (2004) TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant J 37:104–114

    Article  PubMed  CAS  Google Scholar 

  • Kitamura S, Yusuke A, Hiroshi I, Issay N, Atsushi T (2012) Molecular characterization of an anthocyanin-related glutathione S-transferase gene in cyclamen. J Plant Physiol 169(6):636–642

    Article  PubMed  CAS  Google Scholar 

  • Kitamura S, Oono Y, Narumi I (2016) Arabidopsis pab1, a mutant with reduced anthocyanins in immature seeds from banyuls, harbors a mutation in the MATE transporter FFT. Plant Mol Biol 90:7–18

    Article  PubMed  CAS  Google Scholar 

  • Klein M, Burla B, Martinoia E (2006) The multidrug resistance-associated protein (MRP/ABCC) subfamily of ATP-binding cassette transporters in plants. FEBS Lett 580:1112–1122

    Article  PubMed  CAS  Google Scholar 

  • Lane TS, Rempe CS, Davitt J, Staton ME, Peng Y, Soltis DE, Melkonian M, Deyholos M, Leebens-Mack JH, Chase M (2016) Diversity of ABC transporter genes across the plant kingdom and their potential utility in biotechnology. BMC Biotechnol 16:1–10

    Article  Google Scholar 

  • Luo H, Dai C, Li Y, Feng J, Liu Z, Kang C (2018) Reduced anthocyanins in petioles codes for a GST anthocyanin transporter that is essential for the foliage and fruit coloration in strawberry. J Exp Bot 69:2595–2608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu P, Magwanga RO, Guo X, Kirungu JN, Lu H, Ca, X, ... Liu F (2018) Genome-wide analysis of multidrug and toxic compound extrusion (MATE) family in Gossypium raimondii and Gossypium arboreum and its expression analysis under salt, cadmium, and drought stress. G3: Genes, Genomes, Genetics 8(7):2483–2500. https://doi.org/10.1534/g3.118.200232

  • Lu Y-P, Li Z-S, Drozdowicz YM, Hörtensteiner S, Martinoia E, Rea PA (1998) AtMRP2, an Arabidopsis ATP binding cassette transporter able to transport glutathione S-conjugates and chlorophyll catabolites: functional comparisons with AtMRP1. Plant Cell 10:267–282

    PubMed  PubMed Central  CAS  Google Scholar 

  • Maars K, Alfenito M, Lloyd A, Walbot V (1995) A glutathione stransferase involved in vacuolar transfer encoded by the maize gene Bronw2. Nature 375:397–400

    Article  Google Scholar 

  • Magalhaes JV (2010) How a microbial drug transporter became essential for crop cultivation on acid soils: aluminium tolerance conferred by the multidrug and toxic compound extrusion (MATE) family. Ann Bot 106:199–203. https://doi.org/10.1093/aob/mcq115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Manzoor MA, Manzoor MM, Li G, Abdullah M, Han W, Wenlong H, Shakoor A, Riaz MW, Rehman S, Cai Y (2021a) Genome-wide identification and characterization of bZIP transcription factors and their expression profile under abiotic stresses in Chinese pear (Pyrus bretschneideri). BMC Plant Biol 21:1–16. https://doi.org/10.1186/s12870-021-03191-3

    Article  CAS  Google Scholar 

  • Manzoor MA, Sabir IA, Shah IH, Wang H, Yu Z, Rasool F, Mazhar MZ, Younas S, Abdullah M, Cai Y (2021b) Comprehensive comparative analysis of the GATA transcription factors in four Rosaceae species and phytohormonal response in Chinese pear (Pyrus bretschneideri) fruit. Int J Mol Sci 22:12492

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marinova K, Kleinschmidt K, Weissenböck G, Klein M (2007) Flavonoid biosynthesis in barley primary leaves requires the presence of the vacuole and controls the activity of vacuolar flavonoid transport. Plant Physiol 144:432–444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Markham KR, Gould KS, Winefield CS, Mitchell KA, Bloor SJ, Boase MR (2000) Anthocyanic vacuolar inclusions—their nature and significance in flower colouration. Phytochemistry 55:327–336

    Article  PubMed  CAS  Google Scholar 

  • Marrs KA, Alfenito MR, Lloyd AM, Walbot V (1995) A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375:397–400

    Article  PubMed  CAS  Google Scholar 

  • M’mbone ME, Cheng W, Xu L, Wang Y, Karanja BK, Zhu X, Cao Y, Liu L (2018) Identification and transcript analysis of MATE genes involved in anthocyanin transport in radish (Raphanus sativus L.). Sci Horticult 238:195–203

    Article  Google Scholar 

  • Morita Y, Kodama K, Shiota S, Mine T, Kataoka A, Mizushima T, Tsuchiya T (1998) NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli. Antimicrob Agents Chemother 42:1778–1782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mueller LA, Goodman CD, Silady RA, Walbot V (2000) AN9, a petunia glutathione S-transferase required for anthocyanin sequestration, is a flavonoid-binding protein. Plant Physiol 123:1561–1570

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nozue M, Baba S, Kitamura Y, Xu W, Kubo H, Nogawa M, Shioiri H, Kojima M (2003) VP24 found in anthocyanic vacuolar inclusions (AVIs) of sweet potato cells is a member of a metalloprotease family. Biochem Eng J 14:199–205

    Article  CAS  Google Scholar 

  • Omote H, Hiasa M, Matsumoto T, Otsuka M, Moriyama Y (2006) The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci 27:587–593. https://doi.org/10.1016/j.tips.2006.09.001

    Article  PubMed  CAS  Google Scholar 

  • Passamonti S, Vrhovsek U, Mattivi F (2002) The interaction of anthocyanins with bilitranslocase. Biochem Biophys Res Commun 296:631–636

    Article  PubMed  CAS  Google Scholar 

  • Passamonti S, Cocolo A, Braidot E, Petrussa E, Peresson C, Medic N, Macri F, Vianello A (2005) Characterization of electrogenic bromosulfophthalein transport in carnation petal microsomes and its inhibition by antibodies against bilitranslocase. FEBS J 272:3282–3296

    Article  PubMed  CAS  Google Scholar 

  • Passeri V, Koes R, Quattrocchio FM (2016) New challenges for the design of high value plant products: stabilization of anthocyanins in plant vacuoles. Front Plant Sci 7:153

    Article  PubMed  PubMed Central  Google Scholar 

  • Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, Vianello A (2013) Plant flavonoids—biosynthesis, transport and involvement in stress responses. Int J Mol Sci 14:14950–14973

    Article  PubMed  PubMed Central  Google Scholar 

  • Pourcel L, Irani NG, Lu Y, Riedl K, Schwartz S, Grotewold E (2010) The formation of anthocyanic vacuolar inclusions in Arabidopsis thaliana and implications for the sequestration of anthocyanin pigments. Mol Plant 3:78–90

    Article  PubMed  CAS  Google Scholar 

  • Sabir IA, Liu X, Jiu S, Whiting M, Zhang C (2021) Plant growth regulators modify fruit set, fruit quality, and return bloom in sweet cherry. HortScience 56:922–931

    Article  CAS  Google Scholar 

  • Sabir IA, Manzoor MA, Shah IH, Abbas F, Liu X, Fiaz S, Shah AN, Jiu S, Wang J, Abdullah M (2022a) Evolutionary and integrative analysis of gibberellin-dioxygenase gene family and their expression profile in three rosaceae genomes (F. vesca, P. mume, and P. avium) Under Phytohormone Stress. Front Plant Sci 13

  • Sabir IA, Manzoor MA, Shah IH, Liu X, Zahid MS, Jiu S, Wang J, Abdullah M, Zhang C (2022b) MYB transcription factor family in sweet cherry (Prunus avium L.): genome-wide investigation, evolution, structure, characterization and expression patterns. BMC Plant Biol 22:1–20

    Article  Google Scholar 

  • Schulz B, Kolukisaoglu HÜ (2006) Genomics of plant ABC transporters: the alphabet of photosynthetic life forms or just holes in membranes? FEBS Lett 580:1010–1016

    Article  PubMed  CAS  Google Scholar 

  • Shah IH, Manzoor MA, Sabir IA, Ashraf M, Haq F, Arif S, Abdullah M, Niu Q, Zhang Y (2022) Genome-wide identification and comparative analysis of MATE gene family in Cucurbitaceae species and their regulatory role in melon (Cucumis melo) under salt stress. Hortic Environ Biotechnol 63:595–612

    Article  CAS  Google Scholar 

  • Shi M-Z, Xie D-Y (2014) Biosynthesis and metabolic engineering of anthocyanins in Arabidopsis thaliana. Recent Pat Biotechnol 8:47–60

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shimada T, Takagi J, Ichino T, Shirakawa M, Hara-Nishimura I (2018) Plant vacuoles. Annu Rev Plant Biol 69:123–145

    Article  PubMed  CAS  Google Scholar 

  • Singh RS, Kesari R, Kumar U, Jha VK, Kumar A, Kumar T, Pal AK, Singh PK (2018) Candidate genes of flavonoid biosynthesis in Selaginella bryopteris (L.) Baker identified by RNA-Seq. Funct Integr Genomics 18:505–517

    Article  PubMed  CAS  Google Scholar 

  • Song J, Gao Z, Huo X, Sun H, Xu Y, Shi T, Ni Z (2015) Genome-wide identification of the auxin response factor (ARF) gene family and expression analysis of its role associated with pistil development in Japanese apricot (Prunus mume Sieb. et Zucc). Acta Physiol Plant 37:1–13

    Article  Google Scholar 

  • Su X, Sun X, Cheng X, Wang Y, Abdullah M, Li M, Li D, Gao J, Cai Y, Lin Y (2017) Comparative genomic analysis of the PKS genes in five species and expression analysis in upland cotton. PeerJ 5:e3974

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Li H, Huang J-R (2012) Arabidopsis TT19 functions as a carrier to transport anthocyanin from the cytosol to tonoplasts. Mol Plant 5:387–400

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y (2008) Plant pigments for coloration: anthocyanins, betalains and carotenoids. Plant J 54:733–749

    Article  PubMed  CAS  Google Scholar 

  • Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M, Klein M, Kolukisaoglu Ü, Lee Y, Martinoia E (2008) Plant ABC proteins—a unified nomenclature and updated inventory. Trends Plant Sci 13:151–159

    Article  PubMed  CAS  Google Scholar 

  • Verweij W, Spelt C, Di Sansebastiano G-P, Vermeer J, Reale L, Ferranti F, Koes R, Quattrocchio F (2008) An H+ P-ATPase on the tonoplast determines vacuolar pH and flower colour. Nat Cell Biol 10:1456–1462

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Pan D, Lv X, Song X, Qiu Z, Huang C, Huang R, Chen W (2016) Proteomic approach reveals that starch degradation contributes to anthocyanin accumulation in tuberous root of purple sweet potato. J Proteomics 143:298–305

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Li Z, Ahmad N, Sheng X, Iqbal B, Naeem M, Wang N, Li F, Yao N, Liu X (2023) Unraveling the functional characterization of a jasmonate-induced flavonoid biosynthetic CYP45082G24 gene in Carthamus tinctorius. Funct Integr Genomics 23:172

    Article  PubMed  Google Scholar 

  • Welch CR, Wu QSJE (2008) Recent advances in anthocyanin analysis and characterization curr. Anal Chem 4:75–101

    CAS  Google Scholar 

  • Xu W, Moriya K, Yamada K, Nishimura M, Shioiri H, Kojima M, Nozue M (2000) Detection and characterization of a 36-kDa peptide in C-terminal region of a 24-kDa vacuolar protein (VP24) precursor in anthocyanin-producing sweet potato cells in suspension culture. Plant Sci 160:121–128

    Article  PubMed  CAS  Google Scholar 

  • Xu F, Ning Y, Zhang W, Liao Y, Li L, Cheng H, Cheng S (2014) An R2R3-MYB transcription factor as a negative regulator of the flavonoid biosynthesis pathway in Ginkgo biloba. Funct Integr Genomics 14:177–189

    Article  PubMed  Google Scholar 

  • Xu L, Li Y, Dai Y, Peng J (2018) Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacol Res 130:451–465. https://doi.org/10.1016/j.phrs.2018.01.015

    Article  PubMed  CAS  Google Scholar 

  • Yaffe D, Forrest LR, Schuldiner S (2018) The ins and outs of vesicular monoamine transporters. J Gen Physiol 150:671–682

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yazaki K, Sugiyama A, Morita M, Shitan N (2008) Secondary transport as an efficient membrane transport mechanism for plant secondary metabolites. Phytochem Rev 7:513–524

    Article  CAS  Google Scholar 

  • You Q, Wang B, Chen F, Huang Z, Wang X, Luo PG (2011) Comparison of anthocyanins and phenolics in organically and conventionally grown blueberries in selected cultivars. Food Chem 125:201–208

    Article  CAS  Google Scholar 

  • Zhang H, Wang L, Deroles S, Bennett R, Davies K (2006a) New insight into the structures and formation of anthocyanic vacuolar inclusions in flower petals. BMC Plant Biol 6:1–14

    Article  Google Scholar 

  • Zhang JH, Liu YP, Pan QH, Zhan JC, Wang XQ, Huang WD (2006b) Changes in membrane-associated H+-ATPase activities and amounts in young grape plants during the cross adaptation to temperature stresses. Plant Sci 170:768–777. https://doi.org/10.1016/j.plantsci.2005.11.009

    Article  CAS  Google Scholar 

  • Zhang N, Qi Y, Zhang H-J, Wang X, Li H, Shi Y, Guo Y-D (2016a) Genistein: a novel anthocyanin synthesis promoter that directly regulates biosynthetic genes in red cabbage in a light-dependent way. Front Plant Sci 7:1804

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Sun T, Liu S, Dong L, Liu C, Song W, Liu J, Gai S (2016b) MYC cis-elements in PsMPT promoter is involved in chilling response of Paeonia suffruticosa. PLoS ONE 11:e0155780

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao J (2015) Flavonoid transport mechanisms: how to go, and with whom. Trends Plant Sci 20:576–585. https://doi.org/10.1016/j.tplants.2015.06.007

    Article  PubMed  CAS  Google Scholar 

  • Zhao J, Dixon RA (2010) The “ins” and “outs” of flavonoid transport. Trends Plant Sci 15:72–80. https://doi.org/10.1016/j.tplants.2009.11.006

    Article  PubMed  CAS  Google Scholar 

  • Zhao D, Tao J (2015) Recent advances on the development and regulation of flower color in ornamental plants. Front Plant Sci 6:261

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao J, Huhman D, Shadle G, He X-Z, Sumner LW, Tang Y, Dixon RA (2011) MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula. Plant Cell 23:1536–1555

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou H, Peng Q, Zhao J, Owiti A, Ren F, Liao L, Wang L, Deng X, Jiang Q, Han Y (2016) Multiple R2R3-MYB transcription factors involved in the regulation of anthocyanin accumulation in peach flower. Front Plant Sci 7:1557

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Chu SJ, Luo YL, Fu JY, Tang CY, Lu GH, Pang YJ, Wang XM, Yang RW, Qi JL (2018) Involvement of Le MRP, an ATP-binding cassette transporter, in shikonin transport and biosynthesis in Lithospermum erythrorhizon. Plant Biol 20:365–373

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We extend our thanks to Professor Yongping Cai and Professor Rashid Ahmed khan for their comments and critical reading and improving the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MAM conceived and designed the experiments; IAS, IHS, MWH, SR, CS, LG, MSM, GAA, and MSH contributed reagents/materials/analysis tools; YC and MA provided guidance on the whole manuscript. MAM wrote the article.

Corresponding authors

Correspondence to Yunpeng Cao or Muhammad Abdullah.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

A study did not require ethics approval.

Conflict of interest

The authors declare no conflict interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The original version of this article contains an error in author name and affiliation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manzoor, M.A., Sabir, I.A., Shah, I.H. et al. Flavonoids: a review on biosynthesis and transportation mechanism in plants. Funct Integr Genomics 23, 212 (2023). https://doi.org/10.1007/s10142-023-01147-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10142-023-01147-4

Keywords

Navigation