Skip to main content
Log in

Chemical Recycling of Poly(ethylene furanoate) into Value-added Poly(ethylene-co)-isosorbide furanoate)

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

We present here a novel strategy for the chemical recycling of bio-based poly(ethylene furanoate)s (PEF) to value-added high-performance bio-based poly(ethylene-co-isosorbide furanoate) (PEIF) copolyesters by the combination of cyclodepolymerization method with rapid cascade polycondensation-coupling ring-opening polymerization (PROP). The solution cyclodepolymerization of commercially available PEF affords cyclic oligo(ethylene 2,5-furandicarboxylate)s (COEFs), and the effects of reaction conditions on the yield of COEFs were studied. PEIF copolyesters with different isosorbide (IS) contents were synthesized via the cascade PROP of COEFs with IS, which show significant enhanced glass transition temperature. By melt spinning, PEIF fibers with different orientation factors were prepared, with excellent thermal stability and mechanical performance. The obtained PEIF fibers can lift a weight ∼25000 times higher than its weight. The PEIF fibers are stable under ambient conditions but are biodegradable following the “surface erosion” mechanism. These sustainable value-added biodegradable PEIF fibers offer a solution to the environmentally friendly fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rahimi, A.; García, J. M. Chemical recycling of waste plastics for new materials production. Nat. Rev. Chem. 2017, 1, 0046.

    Article  Google Scholar 

  2. Getzler, Y.; Mathers, R. T. Sustainable polymers: our evolving understanding. Acc. Chem. Res. 2022, 55, 1869–1878.

    Article  CAS  PubMed  Google Scholar 

  3. Haque, F. M.; Ishibashi, J. S. A.; Lidston, C. A. L.; Shao, H.; Bates, F. S.; Chang, A. B.; Coates, G. W.; Cramer, C. J.; Dauenhauer, P. J.; Dichtel, W. R.; Ellison, C. J.; Gormong, E. A.; Hamachi, L. S.; Hoye, T. R.; Jin, M.; Kalow, J. A.; Kim, H. J.; Kumar, G.; LaSalle, C. J.; Liffland, S.; Lipinski, B. M.; Pang, Y.; Parveen, R.; Peng, X.; Popowski, Y.; Prebihalo, E. A.; Reddi, Y.; Reineke, T. M.; Sheppard, D. T.; Swartz, J. L.; Tolman, W. B.; Vlaisavljevich, B.; Wissinger, J.; Xu, S.; Hillmyer, M. A. Defining the macromolecules of tomorrow through synergistic sustainable polymer research. Chem. Rev. 2022, 122, 6322–6373.

    Article  CAS  PubMed  Google Scholar 

  4. Tang, X.; Chen, E. Y. X. Toward infinitely recyclable plastics derived from renewable cyclic esters. Chem 2019, 5, 284–312.

    Article  CAS  Google Scholar 

  5. Halonen, N.; Pálvölgyi, P. S.; Bassani, A.; Fiorentini, C.; Nair, R.; Spigno, G.; Kordas, K. Bio-based smart materials for food packaging and sensors—a review. Front. Mater. 2020, 7, 82.

    Article  Google Scholar 

  6. Cywar, R. M.; Rorrer, N. A.; Hoyt, C. B.; Beckham, G. T.; Chen, E. Y. X. Bio-based polymers with performance-advantaged properties. Nat. Rev. Mater. 2021, 7, 83–103.

    Article  Google Scholar 

  7. Hong, K.; Sun, Q.; Zhang, X.; Fan, L.; Wu, T.; Du, J.; Zhu, Y. Fully bio-based high-performance thermosets with closed-loop recyclability. ACS Sustainable Chem. Eng. 2022, 10, 1036–1046.

    Article  CAS  Google Scholar 

  8. Rosenboom, J. G.; Hohl, D. K.; Fleckenstein, P.; Storti, G.; Morbidelli, M. Bottle-grade polyethylene furanoate from ring-opening polymerisation of cyclic oligomers. Nat. Commun. 2018, 9, 2701.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Loos, K.; Zhang, R.; Pereira, I.; Agostinho, B.; Hu, H.; Maniar, D.; Sbirrazzuoli, N.; Silvestre, A. J. D.; Guigo, N.; Sousa, A. F. A perspective on PEF synthesis, properties, and end-life. Front. Chem. 2020, 8, 585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fei, X.; Wang, J.; Zhang, X.; Jia, Z.; Jiang, Y.; Liu, X. Recent progress on bio-based polyesters derived from 2,5-furandicarbonxylic acid (FDCA). Polymers 2022, 14, 625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Burgess, S. K.; Kriegel, R. M.; Koros, W. J. Carbon dioxide sorption and transport in amorphous poly(ethylene furanoate). Macromolecules 2015, 48, 2184–2193.

    Article  CAS  Google Scholar 

  12. Araujo, C. F.; Nolasco, M. M.; Ribeiro-Claro, P. J. A.; Rudić, S.; Silvestre, A. J. D.; Vaz, P. D.; Sousa, A. F. Inside PEF: chain conformation and dynamics in crystalline and amorphous domains. Macromolecules 2018, 51, 3515–3526.

    Article  CAS  Google Scholar 

  13. van Berkel, J. G.; Guigo, N.; Visser, H. A.; Sbirrazzuoli, N. Chain structure and molecular weight dependent mechanics of poly(ethylene 2,5-furandicarboxylate) compared to poly(ethylene terephthalate). Macromolecules 2018, 51, 8539–8549.

    Article  CAS  Google Scholar 

  14. Takarada, W.; Sugimoto, K.; Nakajima, H.; Visser, H. A.; Gruter, G. M.; Kikutani, T. Melt-spun fibers from bio-based polyester-fiber structure development in high-speed melt spinning of poly(ethylene 2,5-furandicarboxylate) (PEF). Materials 2021, 14, 1174.

    Article  Google Scholar 

  15. Hohnemann, T.; Steinmann, M.; Schindler, S.; Hoss, M.; Konig, S.; Ota, A.; Dauner, M.; Buchmeiser, M. R. Poly(ethylene furanoate) along its life-cycle from a polycondensation approach to high-performance yarn and its recyclate. Materials 2021, 14, 1044.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hong, S.; Min, K. D.; Nam, B. U.; Park, O. O. High molecular weight bio furan-based co-polyesters for food packaging applications: synthesis, characterization and solid-state polymerization. Green Chem. 2016, 18, 5142–5150.

    Article  CAS  Google Scholar 

  17. Saxon, D. J.; Nasiri, M.; Mandal, M.; Maduskar, S.; Dauenhauer, P. J.; Cramer, C. J.; LaPointe, A. M.; Reineke, T. M. Architectural control of isosorbide-based polyethers via ring-opening polymerization. J. Am. Chem. Soc. 2019, 141, 5107–5111.

    Article  CAS  PubMed  Google Scholar 

  18. Qian, W.; Liu, L.; Zhang, Z.; Su, Q.; Zhao, W.; Cheng, W.; Dong, L.; Yang, Z.; Bai, R.; Xu, F.; Zhang, Y.; Zhang, S. Synthesis of bioderived polycarbonates with adjustable molecular weights catalyzed by phenolic-derived ionic liquids. Green Chem. 2020, 22, 2488–2497.

    Article  CAS  Google Scholar 

  19. Weinland, D. H.; van Putten, R. J.; Gruter, G.-J. M. Evaluating the commercial application potential of polyesters with 1,4:3,6-dianhydrohexitols (isosorbide, isomannide and isoidide) by reviewing the synthetic challenges in step growth polymerization. Eur. Polym. J. 2022, 164, 110964.

    Article  CAS  Google Scholar 

  20. Zhou, C.; Wei, Z.; Yu, Y.; Wang, Y.; Li, Y. Biobased copolyesters from renewable resources: synthesis and crystallization kinetics of poly(propylene sebacate-co-isosorbide sebacate). RSC Adv. 2015, 5, 68688–68699.

    Article  CAS  Google Scholar 

  21. Nguyen, H. T. H.; Qi, P.; Rostagno, M.; Feteha, A.; Miller, S. A. The quest for high glass transition temperature bioplastics. J. Mater. Chem. A 2018, 6, 9298–9331.

    Article  CAS  Google Scholar 

  22. Ouyang, Q.; Liu, J.; Li, C.; Zheng, L.; Xiao, Y.; Wu, S.; Zhang, B. A facile method to synthesize bio-based and biodegradable copolymers from furandicarboxylic acid and isosorbide with high molecular weights and excellent thermal and mechanical properties. Polym. Chem. 2019, 10, 5594–5601.

    Article  CAS  Google Scholar 

  23. Chen, J.; Wu, J.; Qi, J.; Wang, H. Systematic study of thermal and (bio)degradable properties of semiaromatic copolyesters based on naturally occurring isosorbide. ACS Sustainable Chem. Eng. 2018, 7, 1061–1071.

    Article  Google Scholar 

  24. Weinland, D. H.; van der Maas, K.; Wang, Y.; Bottega Pergher, B.; van Putten, R. J.; Wang, B.; Gruter, G. M. Overcoming the low reactivity of biobased, secondary diols in polyester synthesis. Nat. Commun. 2022, 13, 7370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Noordover, B. A. J.; Staalduinen, V. G. V.; Duchateau, R.; Koning, C. E.; Benthem, V.; Mak, M.; Heise, A.; Frissen, A. E.; Haveren, J. V. Co-and terpolyesters based on isosorbide and succinic acid for coating applications: synthesis and characterization. Biomacromolecules 2006, 7, 3406–3416.

    Article  CAS  PubMed  Google Scholar 

  26. Wu, J.; Thiyagarajan, S.; Fonseca Guerra, C.; Eduard, P.; Lutz, M.; Noordover, B. A. J.; Koning, C. E.; van Es, D. S. Isohexide dinitriles: a versatile family of renewable platform chemicals. ChemSusChem 2017, 10, 3202–3211.

    Article  CAS  PubMed  Google Scholar 

  27. Xie, H.; Lu, H.; Zhang, Z.; Li, X.; Yang, X.; Tu, Y. Effect of block number and weight fraction on the structure and properties of poly(butylene terephthalate)-block-poly(tetramethylene oxide) multiblock copolymers. Macromolecules 2021, 54, 2703–2710.

    Article  CAS  Google Scholar 

  28. Tu, Y. Cascade polymerization. Acta Polymerica Sinica (in Chinese) 2019, 50, 1146–1155.

    CAS  Google Scholar 

  29. Huan, J.; Li, J.; Lan, Y.; Wang, S.; Li, X.; Yang, X.; Lu, H.; Tu, Y. Effect of oligo(ethylene glycol) length on properties of poly(oligoethylene glycol terephthalate)s and their cyclic oligomers. Polymer 2022, 260, 125369.

    Article  CAS  Google Scholar 

  30. Li, H.; Yan, X.; Huan, J.; Wang, S.; Li, X.; Wang, Y.; Tu, Y.; Li, Z. An efficient cyclo-depolymerization route for the chemical recycling of poly(ethylene adipate). Polym. Chem. 2023, 14, 1019–1026.

    Article  CAS  Google Scholar 

  31. Wang, W.; Wu, F.; Lu, H.; Li, X.; Yang, X.; Tu, Y. A cascade polymerization method for the property modification of poly(butylene terephthalate) by the incorporation of isosorbide. ACS Appl. Polym. Mater. 2019, 1, 2313–2321.

    Article  CAS  Google Scholar 

  32. Li, J.; Wang, S.; Lu, H.; Tu, Y.; Wan, X.; Li, X.; Tu, Y.; Li, C. Y. Helical crystals in aliphatic copolyesters: From chiral amplification to mechanical property enhancement. ACS Macro Lett. 2023, 12, 369–375.

    Article  CAS  PubMed  Google Scholar 

  33. Xiao, Y.; He, C.; Yang, Z. F.; Chen, E. Q.; Lu, H. J.; Li, X. H.; Tu, Y. F. The shackling effect in cyclic azobenzene liquid crystal. Chinese J. Polym. Sci. 2022, 40, 584–592.

    Article  CAS  Google Scholar 

  34. Hubbard, P.; Brittain, W. J.; William J. Simonsick, J.; Charles W. Ross, I. Synthesis and ring-opening polymerization of poly(alkylene 2,6-naphthalenedicarboxylate) cyclic oligomers. Macromolecules 1996, 29, 8304–8307.

    Article  CAS  Google Scholar 

  35. Fukushima, K.; Coulembier, O.; Lecuyer, J. M.; Almegren, H. A.; Alabdulrahman, A. M.; Alsewailem, F. D.; McNeil, M. A.; Dubois, P.; Waymouth, R. M.; Horn, H. W.; Rice, J. E.; Hedrick, J. L. Organocatalytic depolymerization of poly(ethylene terephthalate). J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 1273–1281.

    Article  CAS  Google Scholar 

  36. Hodge, P. Entropically driven ring-opening polymerization of strainless organic macrocycles. Chem. Rev. 2014, 114, 2278–2312.

    Article  CAS  PubMed  Google Scholar 

  37. Tian, G. Q.; Yang, Z. H.; Zhang, W.; Chen, S. C.; Chen, L.; Wu, G.; Wang, Y. Z. Integration of upcycling and closed-loop recycling through alternative cyclization-depolymerization. Green Chem. 2022, 24, 4490–4497.

    Article  CAS  Google Scholar 

  38. Yang, R.; Xu, G.; Dong, B.; Hou, H.; Wang, Q. A “Polymer to Polymer” chemical recycling of PLA plastics by the “DE-RE Polymerization” strategy. Macromolecules 2022, 55, 1726–1735.

    Article  CAS  Google Scholar 

  39. Xu, G.; Wang, Q. Chemically recyclable polymer materials: polymerization and depolymerization cycles. Green Chem. 2022, 24, 2321–2346.

    Article  CAS  Google Scholar 

  40. Li, X. L.; Clarke, R. W.; Jiang, J. Y.; Xu, T. Q.; Chen, E. Y. A circular polyester platform based on simple gem-disubstituted valerolactones. Nat. Chem. 2023, 15, 278–285.

    Article  CAS  PubMed  Google Scholar 

  41. Brunelle, D. J.; Bradt, J. E.; Serth-Guzzo, J.; Takekoshi, T.; Evans, T. L.; Pearce, E. J.; Wilson, P. R. Semicrystalline polymers via ring-opening polymerization: Preparation and polymerization of alkylene phthalate cyclic oligomers. Macromolecules 1998, 31, 4782–4790.

    Article  CAS  PubMed  Google Scholar 

  42. Pfister, D.; Storti, G.; Tancini, F.; Costa, L. I.; Morbidelli, M. Synthesis and ring-opening polymerization of cyclic butylene 2,5-furandicarboxylate. Macromol. Chem. Phys. 2015, 216, 2141–2146.

    Article  CAS  Google Scholar 

  43. Carlos Morales-Huerta, J.; Martínez de Ilarduya, A.; Muñoz-Guerra, S. Poly(alkylene 2,5-furandicarboxylate)s (PEF and PBF) by ring opening polymerization. Polymer 2016, 87, 148–158.

    Article  CAS  Google Scholar 

  44. Papageorgiou, G. Z.; Papageorgiou, D. G.; Tsanaktsis, V.; Bikiaris, D. N. Synthesis of the bio-based polyester poly(propylene 2,5-furan dicarboxylate). Comparison of thermal behavior and solid state structure with its terephthalate and naphthalate homologues. Polymer 2015, 62, 28–38.

    Article  CAS  Google Scholar 

  45. Gan, Z.; Qu, S.; Li, S.; Tan, T.; Yang, J. Facile synthesis of PET-based poly(ether ester)s with striking physical and mechanical properties. React. Funct. Polym. 2021, 164, 104936.

    Article  CAS  Google Scholar 

  46. Zhu, J.; Cai, J.; Xie, W.; Chen, P.-H.; Gazzano, M.; Scandola, M.; Gross, R. A. Poly(butylene 2,5-furan dicarboxylate), a biobased alternative to PBT: synthesis, physical properties, and crystal structure. Macromolecules 2013, 46, 796–804.

    Article  CAS  Google Scholar 

  47. Knoop, R. J. I.; Vogelzang, W.; van Haveren, J.; van Es, D. S. High molecular weight poly(ethylene-2,5-furanoate); critical aspects in synthesis and mechanical property determination. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 4191–4199.

    Article  CAS  Google Scholar 

  48. Burkersroda, F. V.; Schedl, L.; Gopferich, A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 2002, 23, 4221–4231.

    Article  Google Scholar 

  49. Herzog, K.; Müller, R. J.; Deckwer, W. D. Mechanism and kinetics of the enzymatic hydrolysis of polyester nanoparticles by lipases. Polym. Degrad. Stabil. 2006, 91, 2486–2498.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 22231008 and 22071167) and the Natural Science Foundation of Jiangsu Higher Education Institutions of China (Nos. 22KJB150011 and 22KJA150005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng Wang or Ying-Feng Tu.

Ethics declarations

The authors declare no interest conflict.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, S., Lu, HJ. et al. Chemical Recycling of Poly(ethylene furanoate) into Value-added Poly(ethylene-co)-isosorbide furanoate). Chin J Polym Sci 41, 1533–1542 (2023). https://doi.org/10.1007/s10118-023-2996-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-023-2996-1

Keywords

Navigation