Skip to main content
Log in

Modification of biomass furan-based PEF copolyester with glycerol

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In order to solve the problem of low molecular weight in the synthesis of poly(ethylene 2,5-furandicarboxylate) (PEF) copolyester with titanium-based catalysts, this paper introduce an appropriate amount of glycerol (GC) into PEF to branch the straight chain polyester though the transesterification-melt polycondensation method, which solve the problem of low resin viscosity and low molecular weight. The structures of the copolymers were characterized by 1H-NMR and 13C-NMR, and the results showed that the modified PEF copolyesters and poly(ethylene-co-glycerol 2,5-furandicarboxylate) (PEGFs) were successfully prepared. The intrinsic viscosity ([η]) of PEGFs copolyesters was characterized by Ubbelohde viscosity, and the results showed that the copolyester [η] was increased from 0.25 dL/g to 0.755 dL/g. The thermal properties of copolyester were characterized by differential scanning calorimetry and thermo gravimetry, and it was found that the glass transition temperature of PEGFs copolyester increased from 67.8 °C to 89.5 °C, and the maximum pyrolysis rate temperature increased from 386.6 °C to 402.8 °C. We characterized the UV resistance of PEGFs copolyester, and the results showed that PEGFs copolyester could be well degraded under ultraviolet light.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Scheme 3
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Singh, B.B. Krishna, J. Kumar, T. Bhaskar, Opportunities for utilization of non-conventional energy sources for biomass pretreatment. Bioresource Technol. 199, 398–407 (2016). https://doi.org/10.1016/j.biortech.2015.08.117

    Article  CAS  Google Scholar 

  2. H. Kobayashi, A. Fukuoka, Development of Solid Catalyst-Solid Substrate Reactions for Efficient Utilization of Biomass. B. Chem. Soc. Jpn. 91, 29–43 (2018). https://doi.org/10.1246/bcsj.20170263

    Article  CAS  Google Scholar 

  3. K. Vavrova, J. Knapek, J. Weger, Short-term boosting of biomass energy sources-Determination of biomass potential for prevention of regional crisis situations. Renew. Sust. Energ. Rev. 67, 426–436 (2017). https://doi.org/10.1016/j.rser.2016.09.015

    Article  Google Scholar 

  4. M. Sajid, X.B. Zhao, D.H. Liu, Production of 2, 5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF): recent progress focusing on the chemical-catalytic routes. Green Chem. 20, 5427–5453 (2018). https://doi.org/10.1039/C8GC02680G

    Article  CAS  Google Scholar 

  5. J. Deng, H.J. Song, M.S. Cui, Y.P. Du, Y. Fu, Aerobic Oxidation of Hydroxymethylfurfural and furfural by using heterogeneous CoxOy-N@C catalysts. Chemsuschem 29, 3334–3340 (2014). https://doi.org/10.1002/cssc.201402843

    Article  CAS  Google Scholar 

  6. A.F. Sousa, M. Matos, C.S.R. Freire, A.J.D. Silvestre, J.F.J. Coelho, New copolyesters derived from terephthalic and 2,5-furandicarboxylic acids: a step forward in the development of biobased polyesters. Polymer 54, 513–519 (2013). https://doi.org/10.1016/j.polymer.2012.11.081

    Article  CAS  Google Scholar 

  7. M. Matos, A.F. Sousa, N.H.C.S. Silva, C.S.R. Freire, M. Andrade, A. Mendes, A.J.D. Silvestre, Furanoate-based nanocomposites: a case study using poly (Butylene 2, 5-Furanoate) and Poly (Butylene 2, 5-Furanoate)-co-(Butylene Diglycolate) and bacterial cellulose. Polymers 10, 810–826 (2018). https://doi.org/10.3390/polym10080810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Y. Jiang, A.J.J. Woortman, G.O.R.A. van Ekenstein, K. Loos, A biocatalytic approach towards sustainable furanic-aliphatic polyesters. Polym. Chem. 6, 5198–5211 (2015). https://doi.org/10.1039/C5PY00629E

    Article  CAS  Google Scholar 

  9. G.Z. Papageorgiou, D.G. Papageorgiou, Z. Terzopoulou, D.N. Bikiaris, Production of bio-based 2,5-furan dicarboxylate polyesters: Recent progress and critical aspects in their synthesis and thermal properties. Eur. Polym. J. 83, 202–229 (2016). https://doi.org/10.1016/j.eurpolymj.2016.08.004

    Article  CAS  Google Scholar 

  10. S. Thiyagarajan, W. Vogelzang, R.J.I. Knoop, A.E. Frissen, J. van Haveren, D.S. van Es, Biobased furandicarboxylic acids (FDCAs): effects of isomeric substitution on polyester synthesis and properties. Green Chem. 16, 1957–1966 (2014). https://doi.org/10.1039/C3GC42184H

    Article  CAS  Google Scholar 

  11. Z.H. Zhang, K.J. Deng, Recent Advances in the catalytic synthesis of 2, 5-furandicarboxylic acid and its derivatives. ACS Catal. 11, 6529–6544 (2015). https://doi.org/10.1021/acscatal.5b01491

    Article  CAS  Google Scholar 

  12. L. Papadopoulos, A. Zamboulis, N. Kasmi, M. Wahbi, C. Nannou, D.A. Lambropoulou, M. Kostoglou, G.Z. Papageorgiou, D.N. Bikiaris, Investigation of the catalytic activity and reaction kinetic modeling of two antimony catalysts in the synthesis of poly (ethylene furanoate). Green Chem. 23, 2507–2524 (2021). https://doi.org/10.1039/D0GC04254D

    Article  CAS  Google Scholar 

  13. G.Z. Papageorgiou, V. Tsanaktsis, D.N. Bikiaris, Synthesis of poly (ethylene furandicarboxylate) polyester using monomers derived from renewable resources: thermal behavior comparison with PET and PEN. Phys. Chem. Chem. Phys. 16, 7946–7958 (2014). https://doi.org/10.1039/C4CP00518J

    Article  CAS  PubMed  Google Scholar 

  14. L. Papadopoulos, A. Magaziotis, M. Nerantzaki, Z. Terzopoulou, G.Z. Papageorgiou, D.N. Bikiaris, Synthesis and characterization of novel poly (ethylene furanoate-co-adipate) random copolyesters with enhanced biodegradability. Polym. Degrad. Stabil. 156, 32–42 (2018). https://doi.org/10.1016/j.polymdegradstab.2018.08.002

    Article  CAS  Google Scholar 

  15. X.L. Qu, G.Y. Zhou, R. Wang, H.Y. Zhang, Z.P. Wang, M. Jiang, J. Tang, Insights into high molecular weight poly (ethylene 2, 5-furandicarboxylate) with satisfactory appearance: Roles of in-situ catalysis of metal zinc. J. Ind. Eng. Chem. 99, 422–430 (2021). https://doi.org/10.1016/j.jiec.2021.04.052

    Article  CAS  Google Scholar 

  16. Z. Terzopoulou, E. Karakatsianopoulou, N. Kasmi, M. Majdoub, G.Z. Papageorgiou, D.N. Bikiaris, Effect of catalyst type on recyclability and decomposition mechanism of poly (ethylene furanoate) biobased polyester. J. Anal. Appl. Pyrol. 126, 357–370 (2017). https://doi.org/10.1016/j.jaap.2017.05.010

    Article  CAS  Google Scholar 

  17. J.G. Wang, X.Q. Liu, Y.J. Zhang, F. Liu, J. Zhu, Modification of poly (ethylene 2, 5-furandicarboxylate) with 1, 4-cyclohexanedimethylene: Influence of composition on mechanical and barrier properties. Polymer 103, 1–8 (2016). https://doi.org/10.1016/j.polymer.2016.09.030

    Article  CAS  Google Scholar 

  18. Y. Chebbi, N. Kasmi, M. Majdoub, G.Z. Papageorgiou, D.S. Achilias, D.N. Bikiaris, Solid-State Polymerization of Poly (Ethylene Furanoate) Biobased Polyester, III: Extended Study on Effect of Catalyst Type on Molecular Weight Increase. Polymers 11, 438–463 (2019). https://doi.org/10.3390/polym11030438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. S. Gu, M. Yang, T. Yu, T. Ren, J. Ren, Synthesis and characterization of biodegradable lactic acid-based polymers by chain extension. Polym. Int. 57, 982–986 (2010). https://doi.org/10.1002/pi.2435

    Article  CAS  Google Scholar 

  20. H.H. Yang, J. He, B.R. Liang, Transesterification kinetics of poly (ethylene terephthalate) and poly (ethylene 2, 6-naphthalate) blends with the addition of 2, 2′-bis (1, 3-oxazoline). J. Polym. Sci. B Polym. Phys. 39, 2607–2614 (2010). https://doi.org/10.1002/polb.10021

    Article  Google Scholar 

  21. Q.Y. Zhu, Y.S. He, J.B. Zeng, Q. Huang, Y.Z. Wang, Synthesis and characterization of a novel multiblock copolyester containing poly (ethylene succinate) and poly (butylene succinate) Mater. Chem. Phys. 130, 943–949 (2011). https://doi.org/10.1016/j.matchemphys.2011.08.012

    Article  CAS  Google Scholar 

  22. A.A. Haralabakopoulos, D. Tsiourvas, C.M. Paleos, Chain extension of poly (ethylene terephthalate) by reactive blending using diepoxides. J. Appl. Polym. Sci. 71, 2121–2127 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990328)71:13%3c2121::AID-APP1%3e3.0.CO;2-Y

    Article  CAS  Google Scholar 

  23. J.N.B. Zhao, X.F. Wu, W.T. Yang, Synthesis of aliphatic polyesters by a chain-extending reaction with octamethylcyclotetrasilazane and hexaphenylcyclotrisilazane as chain extenders. J. Appl. Polym. Sci. 92, 3333–3337 (2010). https://doi.org/10.1002/app.20330

    Article  CAS  Google Scholar 

  24. A. Takasu, A. Takemoto, T. Hirabayashi, Polycondensation of dicarboxylic acids and diols in water catalyzed by surfactant-combined catalysts and successive chain extension. Biomacromol 7, 16–29 (2006). https://doi.org/10.1021/bm050485p

    Article  CAS  Google Scholar 

  25. W.F. Fan, Y. Zhao, A.J. Zhang, Y.X. Cao, J.Z. Chen, Effect of a chain extender on the properties of poly(lactic acid)/zinc oxide/copper chlorophyll acid antibacterial nanocomposites. J. Appl. Polym. Sci. 132, 41–61 (2015). https://doi.org/10.1002/app.41561

    Article  CAS  Google Scholar 

  26. B.H. Bimestre, C. Saron, Chain extension of poly (ethylene terephthalate) by reactive extrusion with secondary stabilizer. Mat. Res. 15, 467–472 (2012). https://doi.org/10.1590/S1516-14392012005000058

    Article  CAS  Google Scholar 

  27. R. Singh, B.B. Krishna, J. Kumar, T. Bhaskar, Opportunities for utilization of non-conventional energy sources for biomass pretreatment. Bioresour. 199, 398–407 (2016). https://doi.org/10.1016/j.biortech.2015.08.117

    Article  CAS  Google Scholar 

  28. C. Chatterjee, F. Pong, A. Sen, Chemical conversion pathways for carbohydrates. Green Chem. 17, 40–71 (2014). https://doi.org/10.1039/C4GC01062K

    Article  CAS  Google Scholar 

  29. J.P. Wu, H.Z. Xie, L.B. Wu, B.G. Li, P. Duboi, DBU-catalyzed biobased poly (ethylene 2, 5-furandicarboxylate) polyester with rapid melt crystallization: synthesis, crystallization kinetics and melting behavior. Rsc Adv. 6, 13877–13887 (2016). https://doi.org/10.1039/C6RA21135F

    Article  CAS  Google Scholar 

  30. G.Z. Papageorgiou, V. Tsanaktsis, D.N. Bikiaris, Synthesis of poly(ethylene furandicarboxylate) polyester using monomers derived from renewable resources: Thermal behavior comparison with PET and PEN. Phys. Chem. Chem. Phys. 16, 7946–7951 (2014). https://doi.org/10.1039/C4CP00518J

    Article  CAS  PubMed  Google Scholar 

  31. K.H. Hsu, C.W. Chen, L.Y. Wang, H.W. Chan, C.L. He, C.J. Cho, S.P. Rwei, C.C. Kuo, Bio-based Thermoplastic Poly (Butylene Succinate-co-Propylene Succinate) Copolyesters: Effect of Glycerol on Thermal and Mechanical Properties. Soft Matter 15, 9710–9720 (2019). https://doi.org/10.1039/C9SM01958H

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank the National Natural Science Foundation of China (Nos. 21878231), Tianjin Natural Science Foundation of China (19JCZDJC37300) and the China National Textile and Apparel Council (J201406) for their financial supports. We would like to thank the Analytical & Testing Center of Tiangong University for differential scanning calorimetry work.

Author information

Authors and Affiliations

Authors

Contributions

Chengzhi Liu: investigation, experiments and data processing, writing—original draft. Dongsheng Zhao: data curation, writing—review and editing. Maliang Zhang: conceptualization, investigation. Kunmei Su: writing—review and editing, resources, supervision. Zhenhuan Li: project administration, writing—review and editing, resources.

Corresponding authors

Correspondence to Kunmei Su or Zhenhuan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Zhao, D., Zhang, M. et al. Modification of biomass furan-based PEF copolyester with glycerol. Macromol. Res. 32, 59–70 (2024). https://doi.org/10.1007/s13233-023-00208-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-023-00208-8

Keywords

Navigation