Skip to main content
Log in

Programming Shape-Morphing Behavior of Zwitterionic Polymer/Liquid Crystal Composite with Humidity-responsive Self-healing Performance

  • Research Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

In this study, a zwitterionic polymer/liquid crystals composite film with programming shape-morphing behavior and humidityresponsive self-healing performance was prepared by blending a zwitterionic polymer and liquid crystalline azobenzene compound in solution, followed by film-forming in a mold without tedious or multistep synthetic route. The as-obtained zwitterionic polymer/liquid crystal composite film exhibited programming shape-morphing behavior under different stimuli. In this process, the temporary shape of the composite film was memorized after the removal of the stimuli. Such characteristics would fit the requirements of intelligence and energy-saving for stimuliresponsive shape-changing materials. Moreover, the composite film showed humidity-responsive self-healing performances under wet conditions at room temperature. In summary, the simple design and preparation route of the zwitterionic polymer/liquid crystal composite film with programming shape-morphing behavior and mild condition-responsive self-healing performance look promising for the fabrication and practical application of novel photo-driven devices and soft robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shang, Y.; Wang, J.; Ikeda, T.; Jiang, L. Bio-inspired liquid crystal actuator materials. J. Mater. Chem. C 2019, 7, 3413–3428.

    Article  CAS  Google Scholar 

  2. Li, G.; Wang, S.; Liu, Z.; Liu, Z.; Xia, H.; Zhang, C.; Lu, X.; Jiang, J.; Zhao, Y. 2D-to-3D shape transformation of room-temperature-programmable shape-memory polymers through selective suppression of strain relaxation. ACS Appl. Mater. Interfaces 2018, 10, 40189–40197.

    Article  CAS  Google Scholar 

  3. Wani, O. M.; Zeng, H.; Priimagi, A. A light-driven artificial flytrap. Nat. Commun. 2017, 8, 15546.

    Article  CAS  Google Scholar 

  4. van Manen, T.; Janbaz, S.; Zadpoor, A. A. Programming the shapes-hifting of flat soft matter. Mater. Today 2018, 21, 144–163.

    CAS  Google Scholar 

  5. Ma, C.; Lu, W.; Yang, X.; He, J.; Le, X.; Wang, L.; Zhang, J.; Serpe, M. J.; Huang, Y.; Chen, T. Bioinspired anisotropic hydrogel actuators with on-off switchable and color-tunable fluorescence behaviors. Adv. Funct. Mater. 2018, 28, 1704568.

    Article  Google Scholar 

  6. Nojoomi, A.; Arslan, H.; Lee, K.; Yum, K. Bioinspired 3D structures with programmable morphologies and motions. Nat. Commun. 2018, 9, 3705.

    Article  Google Scholar 

  7. Duan, L.; Lai, J. C.; Li, C. H.; Zuo, J. L. A dielectric elastomer actuator that can self-heal integrally. ACS Appl. Mater. Interfaces 2020, 12, 44137–44146.

    Article  CAS  Google Scholar 

  8. Xia, Y.; He, Y.; Zhang, F.; Liu, Y.; Leng, J. A review of shape memory polymers and composites: mechanisms, materials, and applications. Adv. Mater. 2021, 33, 2000713.

    Article  CAS  Google Scholar 

  9. Zhao, Q.; Qi, H. J.; Xie, T. Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 2015, 49-50, 79–120.

    Article  CAS  Google Scholar 

  10. Shen, W.; Du, B.; Liu, J.; Zhuo, H.; Yang, C.; Chen, S. A facile preparation of liquid crystalline polyurethane for lightresponsive actuator film with self-healing performance. Mater. Chem. Front. 2021, 5, 3192–3200.

    Article  CAS  Google Scholar 

  11. Kularatne, R. S.; Kim, H.; Boothby, J. M.; Ware, T. H. Liquid crystal elastomer actuators: synthesis, alignment, and applications. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 395–411.

    Article  CAS  Google Scholar 

  12. White, T. J.; Broer, D. J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 2015, 14, 1087–1098.

    Article  CAS  Google Scholar 

  13. Liu, Y.; Xu, B.; Sun, S.; Wei, J.; Wu, L.; Yu, Y. Humidity- and photoinduced mechanical actuation of cross-linked liquid crystal polymers. Adv. Mater. 2017, 29, 1604792.

    Article  Google Scholar 

  14. Gelebart, A. H.; Jan Mulder, D.; Varga, M.; Konya, A.; Vantomme, G.; Meijer, E. W.; Selinger, R. L. B.; Broer, D. J. Making waves in a photoactive polymer film. Nature 2017, 546, 632–636.

    Article  CAS  Google Scholar 

  15. Yang, H.; Buguin, A.; Taulemesse, J.-M.; Kaneko, K.; Méry, S.; Bergeret, A.; Keller, P. Micron-sized main-chain liquid crystalline elastomer actuators with ultralarge amplitude contractions. J. Am. Chem. Soc. 2009, 131, 15000–15004.

    Article  CAS  Google Scholar 

  16. McBride, M. K.; Hendrikx, M.; Liu, D.; Worrell, B. T.; Broer, D. J.; Bowman, C. N. Photo-induced plasticity in cross-linked liquid crystalline networks. Adv. Mater. 2017, 29, 1606509.

    Article  Google Scholar 

  17. Dong, L.; Zhao, Y. Photothermally driven liquid crystal polymer actuators. Mater. Chem. Front. 2018, 2, 1932–1943.

    Article  CAS  Google Scholar 

  18. Lan, R.; Sun, J.; Shen, C.; Huang, R.; Zhang, L.; Yang, H. Reversibly and irreversibly humidity-responsive motion of liquid crystalline network gated by SO2 gas. Adv. Funct. Mater. 2019, 29, 1900013.

    Article  Google Scholar 

  19. Han, S. Q.; Chen, Y. Y.; Xu, B.; Wei, J.; Yu, Y. L. An azoestercontaining photoresponsive linear liquid crystal polymer with good mesophase stability. Chinese J. Polym. Sci. 2020, 38, 806–813.

    Article  CAS  Google Scholar 

  20. Yu, H.; Dong, C.; Zhou, W.; Kobayashi, T.; Yang, H. Wrinkled liquidcrystalline microparticle-enhanced photoresponse of PDLC-like films by coupling with mechanical stretching. Small 2011, 7, 3039–3045.

    Article  CAS  Google Scholar 

  21. Cheng, Z.; Wang, T.; Li, X.; Zhang, Y.; Yu, H. NIR-Vis-UV lightresponsive actuator films of polymer-dispersed liquid crystal/graphene oxide nanocomposites. ACS Appl. Mater. Interfaces 2015, 7, 27494–27501.

    Article  CAS  Google Scholar 

  22. Yu, L.; Cheng, Z.; Dong, Z.; Zhang, Y.; Yu, H. Photomechanical response of polymer-dispersed liquid crystals/graphene oxide nanocomposites. J. Mater. Chem. C 2014, 2, 8501–8506.

    Article  CAS  Google Scholar 

  23. Ube, T.; Kawasaki, K.; Ikeda, T. Photomobile liquid-crystalline elastomers with rearrangeable networks. Adv. Mater. 2016, 28, 8212–8217.

    Article  CAS  Google Scholar 

  24. Wu, Y.; Yang, Y.; Qian, X.; Chen, Q.; Wei, Y.; Ji, Y. Liquid-crystalline soft actuators with switchable thermal reprogrammability. Angew. Chem. Int. Ed. 2020, 59, 4778–4784.

    Article  CAS  Google Scholar 

  25. Wang, S.; Urban, M. W. Self-healing polymers. Nat. Rev. Mater. 2020, 5, 562–583.

    Article  CAS  Google Scholar 

  26. Utrera-Barrios, S.; Verdejo, R.; López-Manchado, M. A.; Hernández Santana, M. Evolution of self-healing elastomers, from extrinsic to combined intrinsic mechanisms: a review. Mater. Horiz. 2020, 7, 2882–2902.

    Article  CAS  Google Scholar 

  27. Li, C. H.; Zuo, J. L. Self-healing polymers based on coordination bonds. Adv. Mater. 2020, 32, 1903762.

    CAS  Google Scholar 

  28. Pei, Z.; Yang, Y.; Chen, Q.; Terentjev, E. M.; Wei, Y.; Ji, Y. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat. Mater. 2014, 13, 36–41.

    Article  CAS  Google Scholar 

  29. Zhou, L.; Liu, Q.; Lv, X.; Gao, L.; Fang, S.; Yu, H. Photoinduced triple shape memory polyurethane enabled by doping with azobenzene and GO. J. Mater. Chem. C 2016, 4, 9993–9997.

    Article  CAS  Google Scholar 

  30. Thompson, C. B.; Korley, L. T. J. 100th Anniversary of macromolecular science viewpoint: engineering supramolecular materials for responsive applications-design and functionality. ACS Macro Lett. 2020, 9, 1198–1216.

    Article  CAS  Google Scholar 

  31. Wilson, A. J. Non-covalent polymer assembly using arrays of hydrogen-bonds. Soft Matter 2007, 3, 409–425.

    Article  CAS  Google Scholar 

  32. Lugger, S. J. D.; Houben, S. J. A.; Foelen, Y.; Debije, M. G.; Schenning, A.; Mulder, D. J. Hydrogen-bonded supramolecular liquid crystal polymers: smart materials with stimuli-responsive, self-healing, and recyclable properties. Chem. Rev. 2022, 122(5), 4946–4975.

    Article  Google Scholar 

  33. Bhatti, M. R. A.; Bilotti, E.; Zhang, H.; Varghese, S.; Verpaalen, R. C. P.; Schenning, A. P. H. J.; Bastiaansen, C. W. M.; Peijs, T. Ultra-high actuation stress polymer actuators as light-driven artificial muscles. ACS Appl. Mater. Interfaces 2020, 12, 33210–33218.

    Article  CAS  Google Scholar 

  34. Zheng, L.; Sundaram, H. S.; Wei, Z.; Li, C.; Yuan, Z. Applications of zwitterionic polymers. React. Funct. Polym. 2017, 118, 51–61.

    Article  CAS  Google Scholar 

  35. Li, M.; Zhuang, B.; Yu, J. Functional zwitterionic polymers on surface: structures and applications. Chem. Asian J. 2020, 15, 2060–2075.

    Article  CAS  Google Scholar 

  36. Wang, H.; Hu, Y.; Lynch, D.; Young, M.; Li, S.; Cong, H.; Xu, F. J.; Cheng, G. Zwitterionic polyurethanes with tunable surface and bulk properties. ACS Appl. Mater. Interfaces 2018, 10, 37609–37617.

    Article  CAS  Google Scholar 

  37. Chen, S.; Mo, F.; Yang, Y.; Stadler, F. J.; Chen, S.; Yang, H.; Ge, Z. Development of zwitterionic polyurethanes with multi-shape memory effects and self-healing properties. J. Mater. Chem. A 2015, 3, 2924–2933.

    Article  CAS  Google Scholar 

  38. Shen, W.; Wang, L.; Chen, G.; Li, C.; Zhang, L.; Yang, Z.; Yang, H. A facile route towards controllable electric-optical performance of polymer-dispersed liquid crystal via the implantation of liquid crystalline epoxy network in conventional resin. Polymer 2019, 167, 67–77.

    Article  CAS  Google Scholar 

  39. Shen, W.; Wang, L.; Cao, Y.; Zhang, L.; Yang, Z.; Yuan, X.; Yang, H.; Jiang, T.; Chen, H. Cationic photopolymerization of liquid crystalline epoxide in mesogenic solvents and its application in polymer-stabilized liquid crystals. Polymer 2019, 172, 231–238.

    Article  CAS  Google Scholar 

  40. Shen, W.; Wang, L.; Zhong, T.; Chen, G.; Li, C.; Chen, M.; Zhang, C.; Zhang, L.; Li, K.; Yang, Z.; Yang, H. Electrically switchable light transmittance of epoxy-mercaptan polymer/nematic liquid crystal composites with controllable microstructures. Polymer 2019, 160, 53–64.

    Article  CAS  Google Scholar 

  41. Jin, Y. W.; Im, S. J.; Sung, J. H.; Noh, C. H.; Sakong, D. S. Thermomechanical and electro-optical properties of polymer dispersed liquid crystal films. Liq. Cryst. 1995, 19, 755–758.

    Article  CAS  Google Scholar 

  42. Ma, S.; Li, X.; Huang, S.; Hu, J.; Yu, H. A light-activated polymer composite enables on-demand photocontrolled motion: transportation at the liquid/air interface. Angew. Chem. Int. Ed. 2019, 58, 2655–2659.

    Article  CAS  Google Scholar 

  43. Wang, J.; Huang, S.; Zhang, Y.; Liu, J.; Yu, M.; Yu, H. Hydrogen bond enhances photomechanical swing of liquid-crystalline polymer bilayer films. ACS Appl. Mater. Interfaces 2021, 13, 6585–6596.

    Article  CAS  Google Scholar 

  44. Du, W.; Jin, Y.; Shi, L.; Shen, Y.; Lai, S.; Zhou, Y. NIR-light-induced thermoset shape memory polyurethane composites with selfhealing and recyclable functionalities. Compos. Part B-Eng. 2020, 195, 108092.

    Article  CAS  Google Scholar 

  45. Zheng, N.; Fang, Z.; Zou, W.; Zhao, Q.; Xie, T. Thermoset shapememory polyurethane with intrinsic plasticity enabled by transcarbamoylation. Angew. Chem. Int. Ed. 2016, 55, 11421–11425.

    Article  CAS  Google Scholar 

  46. Shen, W.; Cao, Y.; Zhang, C.; Yuan, X.; Yang, Z.; Zhang, L. Network morphology and electro-optical characterisations of epoxy-based polymer stabilised liquid crystals. Liq. Cryst. 2020, 47, 481–488.

    Article  CAS  Google Scholar 

  47. Zhang, P.; Cai, F.; Wang, G. J.; Yu, H. F. UV-Vis-NIR light-deformable shape-memory polyurethane doped with liquid-crystal mixture and GO towards biomimetic applications. Chinese J. Polym. Sci. 2022, 40, 166–174.

    Article  CAS  Google Scholar 

  48. Zhang, P.; Wu, B.; Huang, S.; Cai, F.; Wang, G.; Yu, H. UV-vis-NIR light-induced bending of shape-memory polyurethane composites doped with azobenzene and upconversion nanoparticles. Polymer 2019, 178, 121644.

    Article  CAS  Google Scholar 

  49. Jiang, Z.-C.; Xiao, Y.-Y.; Tong, X.; Zhao, Y. Selective decrosslinking in liquid crystal polymer actuators for optical reconfiguration of origami and light-fueled locomotion. Angew. Chem. Int. Ed. 2019, 58, 5332–5337.

    Article  CAS  Google Scholar 

  50. Chakraborty, K.; Shinoda, W.; Loverde, S. M. Molecular simulation of the shape deformation of a polymersome. Soft Matter 2020, 16, 3234–3244.

    Article  CAS  Google Scholar 

  51. Madsen, F. B.; Yu, L.; Skov, A. L. Self-healing, high-permittivity silicone dielectric elastomer. ACS Macro Lett. 2016, 5, 1196–1200.

    Article  CAS  Google Scholar 

  52. Sun, H.; Liu, X.; Liu, S.; Yu, B.; Ning, N.; Tian, M.; Zhang, L. A supramolecular silicone dielectric elastomer with a high dielectric constant and fast and highly efficient self-healing under mild conditions. J. Mater. Chem. A 2020, 8, 23330–23343.

    Article  CAS  Google Scholar 

  53. Xu, X.; Fan, P.; Ren, J.; Cheng, Y.; Ren, J.; Zhao, J.; Song, R. Self-healing thermoplastic polyurethane (TPU)/polycaprolactone (PCL) /multi-wall carbon nanotubes (MWCNTs) blend as shapememory composites. Compos. Sci. Technol. 2018, 168, 255–262.

    Article  CAS  Google Scholar 

  54. Bai, J.; Shi, Z. Dynamically cross-linked elastomer hybrids with light-induced rapid and efficient self-healing ability and reprogrammable shape memory behavior. ACS Appl. Mater. Interfaces 2017, 9, 27213–27222.

    Article  CAS  Google Scholar 

  55. Wang, Z.; van Andel, E.; Pujari, S. P.; Feng, H.; Dijksman, J. A.; Smulders, M. M. J.; Zuilhof, H. Water-repairable zwitterionic polymer coatings for anti-biofouling surfaces. J. Mat. Chem. B 2017, 5, 6728–6733.

    Article  CAS  Google Scholar 

  56. Kang, J.; Kim, J.; Choi, K.; Hong, P. H.; Park, H. J.; Kim, K.; Kim, Y. K.; Moon, G.; Jeon, H.; Lee, S.; Ko, M. J.; Hong, S. W. A water-triggered highly self-healable elastomer with enhanced mechanical properties achieved using localized zwitterionic assemblies. Chem. Eng. J. 2020, 127636.

    Google Scholar 

  57. Wang, Z.; Fei, G.; Xia, H.; Zuilhof, H. Dual water-healable zwitterionic polymer coatings for anti-biofouling surfaces. J. Mat. Chem. B 2018, 6, 6930–6935.

    Article  CAS  Google Scholar 

  58. Lei, Z.; Wu, P. Zwitterionic skins with a wide scope of customizable functionalities. ACS Nano 2018, 12, 12860–12868.

    Article  CAS  Google Scholar 

  59. Lei, Z.; Wu, P. A supramolecular biomimetic skin combining a wide spectrum of mechanical properties and multiple sensory capabilities. Nat. Commun. 2018, 9, 1134.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 51773120 and 51802201), the Guangdong Basic and Applied Basic Research Foundation (No. 2022A1515011985), the Shenzhen Science and Technology Planning Project (Nos. JCYJ20190808115609663 and JCYJ20190808123207674), and the Scientific Research Project of Guangdong Provincial Department of Education (No. 2020ZDZX2040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Tao Zhuo.

Additional information

Notes

The authors declare no competing financial interest.

Electronic Supplementary Information

10118_2022_2883_MOESM1_ESM.pdf

Programming Shape-Morphing Behavior of Zwitterionic Polymer/Liquid Crystal Composite with Humidity-responsive Self-healing Performance

Supplementary material, approximately 8.43 MB.

Supplementary material, approximately 3.95 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, SJ., Cheng, HF., Du, B. et al. Programming Shape-Morphing Behavior of Zwitterionic Polymer/Liquid Crystal Composite with Humidity-responsive Self-healing Performance. Chin J Polym Sci 41, 212–221 (2023). https://doi.org/10.1007/s10118-022-2883-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-022-2883-1

Keywords

Navigation