Skip to main content
Log in

Unique two-way free-standing thermo- and photo-responsive shape memory azobenzene-containing polyurethane liquid crystal network

优异的无应力双向光热响应形状记忆偶氮液晶聚 氨酯网络

  • Articles
  • Published:
Science China Materials Aims and scope Submit manuscript

Abstract

In this work, azobenzene-containing polyurethane liquid crystal networks (PULCN(AZO)s) were synthesized using a one-pot strategy to demonstrate excellent two-way free-standing thermo-/photo-responsive shape memory effects. Based on the step-growth nature of hydroxyls and isocyanates, the architectures of the networks were adjusted by controlling the stoichiometries of chemical materials. A uniform monodomain sample was prepared by external stress relaxation via a reversible addition reaction of a dynamic carbamate bond. Two independent transition temperatures assigned to glass transition temperature/melting temperature and liquid crystal phase transition temperature were employed to thermally trigger triple shape memory effects and two-way autonomous actuation. In addition, taking advantage of the trans-cis photoisomerization of azobenzene, the programmed network showed a reversible bending and unbending shape change upon irradiation by visible light at 450 and 550 nm, respectively. Coupling the autonomously thermo-induced contraction/extension actuation and reversible photo-induced bending/unbending behaviors of PULCN(AZO)s in one system will expand their potential applications in emerging multifunctional devices.

摘要

本文以羟基修饰偶氮液晶小分子为单体、异氰酸酯为扩链 剂、四臂聚乙二醇为交联剂一锅法合成了一系列液晶聚氨酯网络 (PULCN(AZO)s), 并通过调节反应原料的投料比精确控制网络结 构. 该交联网络呈现两个独立的热转变温度 (Ttrans), 以此为驱动温 度可实现热致三重形状记忆效应. 进一步利用氨酯键在高温下的 动态热交换获得单畴化液晶交联网络, 该交联网络不仅可呈现热 致无应力双向形状记忆效应, 同时利用偶氮苯光致异构转变特性, 还可以在450和550 nm 可见光的照射下分别展示出弯曲与回复的 光致形变能力. 将光、热响应的无应力可逆形变结合在单一循环 中, 可实现材料在多个形状之间的可逆变化. 该材料有望应用于多功能设备中

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Warner M, Terentjev EM. Liquid crystal elastomers. Oxford: Oxford University Press, 2007

    Google Scholar 

  2. Ohm C, Brehmer M, Zentel R. Liquid crystalline elastomers as actuators and sensors. Adv Mater, 2010, 22: 3366–3387

    CAS  Google Scholar 

  3. White TJ, Broer DJ. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat Mater, 2015, 14: 1087–1098

    CAS  Google Scholar 

  4. Ge F, Zhao Y. Microstructured actuation of liquid crystal polymer networks. Adv Funct Mater, 2020, 30: 1901890–1901909

    CAS  Google Scholar 

  5. Wen ZB, Yang KK, Raquez JM. A review on liquid crystal polymers in free-standing reversible shape memory materials. Molecules, 2020, 25: 1241–1254

    CAS  Google Scholar 

  6. Li MH, Keller P. Artificial muscles based on liquid crystal elastomers. Philos Trans R Soc A-Math Phys Eng Sci, 2006, 364: 2763–2777

    CAS  Google Scholar 

  7. Zhan Y, Schenning APHJ, Broer DJ, et al. Light-driven electro-hydrodynamic instabilities in liquid crystals. Adv Funct Mater, 2018, 28: 1707436

    Google Scholar 

  8. Liu D, Bastiaansen CWM, den Toonder JMJ, et al. Photo-switchable surface topologies in chiral nematic coatings. Angew Chem Int Ed, 2012, 51: 892–896

    CAS  Google Scholar 

  9. Maria LV, Liu DQ, Broer DJ, et al. 4D printed actuators with soft-robotic functions. Macromol Rapid Commun, 2018, 39: 1700710–1700717

    Google Scholar 

  10. Li MH, Keller P, Li B, et al. Light-driven side-on nematic elastomer actuators. Adv Mater, 2003, 15: 569–572

    CAS  Google Scholar 

  11. Buguin A, Li MH, Silberzan P, et al. Micro-actuators: When artificial muscles made of nematic liquid crystal elastomers meet soft lithography. J Am Chem Soc, 2006, 128: 1088–1089

    CAS  Google Scholar 

  12. Yang H, Buguin A, Taulemesse JM, et al. Micron-sized main-chain liquid crystalline elastomer actuators with ultralarge amplitude contractions. J Am Chem Soc, 2009, 131: 15000–15004

    CAS  Google Scholar 

  13. Ohm C, Serra C, Zentel R. A continuous flow synthesis of micrometer-sized actuators from liquid crystalline elastomers. Adv Mater, 2009, 21: 4859–4862

    CAS  Google Scholar 

  14. Krause S, Zander F, Bergmann G, et al. Nematic main-chain elastomers: Coupling and orientational behavior. Comptes Rendus Chimie, 2009, 12: 85–104

    CAS  Google Scholar 

  15. Chen Q, Wei Y, Ji Y. Photo-responsive liquid crystalline vitrimer containing oligoanilines. Chin Chem Lett, 2017, 28: 2139–2142

    CAS  Google Scholar 

  16. Ahir SV, Terentjev EM. Photomechanical actuation in polymer-nanotube composites. Nat Mater, 2005, 4: 491–495

    CAS  Google Scholar 

  17. Yu Y, Nakano M, Ikeda T. Directed bending of a polymer film by light. Nature, 2003, 425: 145

    CAS  Google Scholar 

  18. Lee KM, Koerner H, Vaia RA, et al. Light-activated shape memory of glassy, azobenzene liquid crystalline polymer networks. Soft Matter, 2011, 7: 4318–4324

    CAS  Google Scholar 

  19. Zhong HY, Chen L, Ding XM, et al. Physio- and chemo-dual crosslinking toward thermo and photo-response of azobenzene-containing liquid crystalline polyester. Sci China Mater, 2018, 61: 1225–1236

    CAS  Google Scholar 

  20. Wie JJ, Shankar MR, White TJ. Photomotility of polymers. Nat Commun, 2016, 7: 13260–13268

    CAS  Google Scholar 

  21. Serak S, Tabiryan N, Vergara R, et al. Liquid crystalline polymer cantilever oscillators fueled by light. Soft Matter, 2010, 6: 779–783

    CAS  Google Scholar 

  22. Liu Y, Xu B, Sun S, et al. Humidity- and photo-induced mechanical actuation of cross-linked liquid crystal polymers. Adv Mater, 2017, 29: 1604792

    Google Scholar 

  23. Yamada M, Kondo M, Mamiya J, et al. Photomobile polymer materials: Towards light-driven plastic motors. Angew Chem Int Ed, 2008, 47: 4986–4988

    CAS  Google Scholar 

  24. Jiang Z, Xu M, Li F, et al. Red-light-controllable liquid-crystal soft actuators via low-power excited ppconversion based on triplet-triplet annihilation. J Am Chem Soc, 2013, 135: 16446–16453

    CAS  Google Scholar 

  25. Lv J, Liu Y, Wei J, et al. Photocontrol of fluid slugs in liquid crystal polymer microactuators. Nature, 2016, 537: 179–184

    CAS  Google Scholar 

  26. Kumar K, Knie C, Bléger D, et al. A chaotic self-oscillating sunlight-driven polymer actuator. Nat Commun, 2016, 7: 11975–11983

    CAS  Google Scholar 

  27. Gelebart AH, Vantomme G, Meyer EW, et al. Mastering the photothermal effect in liquid crystal networks: A general approach for self-sustained mechanical oscillators. Adv Mater, 2017, 29: 1606712–1606718

    Google Scholar 

  28. Wen ZB, Liu D, Li XY, et al. Fabrication of liquid crystalline polyurethane networks with a pendant azobenzene group to access thermal/photoresponsive shape-memory effects. ACS Appl Mater Interfaces, 2017, 9: 24947–24954

    CAS  Google Scholar 

  29. Kupfer J, Finkelmann H. Nematic liquid single crystal elastomers. Makromol Chem Rapid Commun, 1991, 12: 717–726

    Google Scholar 

  30. Tajbakhsh AR, Terentjev EM. Spontaneous thermal expansion of nematic elastomers. Eur Phys J E, 2001, 6: 181–188

    CAS  Google Scholar 

  31. Yakacki CM, Saed M, Nair DP, et al. Tailorable and programmable liquid-crystalline elastomers using a two-stage thiol-acrylate reaction. RSC Adv, 2015, 5: 18997–19001

    CAS  Google Scholar 

  32. White TJ, Serak SV, Tabiryan NV, et al. Polarization-controlled, photodriven bending in monodomain liquid crystal elastomer cantilevers. J Mater Chem, 2009, 19: 1080–1085

    CAS  Google Scholar 

  33. Urayama K, Arai YO, Takigawa T. Volume phase transition of monodomain nematic polymer networks in isotropic solvents accompanied by anisotropic shape variation. Macromolecules, 2005, 38: 3469–3474

    CAS  Google Scholar 

  34. Ichimura K. Photoalignment of liquid-crystal systems. Chem Rev, 2000, 100: 1847–1874

    CAS  Google Scholar 

  35. Zeng H, Wani OM, Wasylczyk P, et al. Self-regulating iris based on light-actuated liquid crystal elastomer. Adv Mater, 2017, 29: 1701814–1701821

    Google Scholar 

  36. Gebhard E, Zentel R. Ferroelectric liquid crystalline elastomers. 2. Variation of mesogens and network density. Macromol Chem Phys, 2000, 201: 911–922

    CAS  Google Scholar 

  37. Krause S, Dersch R, Wendorff JH, et al. Photocrosslinkable liquid crystal main-chain polymers: thin films and electrospinning. Macromol Rapid Commun, 2007, 28: 2062–2068

    CAS  Google Scholar 

  38. Minemawari H, Yamada T, Matsui H, et al. Inkjet printing of single-crystal films. Nature, 2011, 475: 364–367

    CAS  Google Scholar 

  39. van Oosten CL, Bastiaansen CWM, Broer DJ. Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat Mater, 2009, 8: 677–682

    CAS  Google Scholar 

  40. Kotikian A, Truby RL, Boley JW, et al. 3D printing of liquid crystal elastomeric actuators with spatially programed nematic order. Adv Mater, 2018, 30: 1706164–1706170

    Google Scholar 

  41. Wu JJ, Huang LM, Zhao Q, et al. 4D printing: History and recent progress. Chin J Polym Sci, 2018, 36: 563–575

    CAS  Google Scholar 

  42. Yang Z, Herd GA, Clarke SM, et al. Thermal and UV shape shifting of surface topography. J Am Chem Soc, 2006, 128: 1074–1075

    CAS  Google Scholar 

  43. Yang H, Ye G, Wang X, et al. Micron-sized liquid crystalline elastomer actuators. Soft Matter, 2011, 7: 815–823

    CAS  Google Scholar 

  44. Montarnal D, Capelot M, Tournilhac F, et al. Silica-like malleable materials from permanent organic networks. Science, 2011, 334: 965–968

    CAS  Google Scholar 

  45. Kloxin CJ, Bowman CN. Covalent adaptable networks: Smart, re-configurable and responsive network systems. Chem Soc Rev, 2013, 42: 7161–7173

    CAS  Google Scholar 

  46. Chen QM, Yang Y, Wei Y, et al. Liquid crystalline polymer actuators with exchangeable dynamic covalent bonds. Acta Polym Sin, 2019, 5: 451–468

    Google Scholar 

  47. Lu X, Zhang H, Fei G, et al. Liquid-crystalline dynamic networks doped with gold nanorods showing enhanced photocontrol of actuation. Adv Mater, 2018, 30: e1706597

    Google Scholar 

  48. Chen Q, Li Y, Yang Y, et al. Durable liquid-crystalline vitrimer actuators. Chem Sci, 2019, 10: 3025–3030

    CAS  Google Scholar 

  49. Pei Z, Yang Y, Chen Q, et al. Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds. Nat Mater, 2014, 13: 36–41

    CAS  Google Scholar 

  50. Wen ZB, McBride MK, Zhang XP, et al. Reconfigurable LC elastomers: Using a thermally programmable monodomain to access two-way free-standing multiple shape memory polymers. Macromolecules, 2018, 51: 5812–5819

    CAS  Google Scholar 

  51. Saed MO, Gablier A, Terentejv EM. Liquid crystalline vitrimers with full or partial boronic-ester bond exchange. Adv Funct Mater, 2020, 30: 1906458–1906466

    CAS  Google Scholar 

  52. Wang Z, He Q, Wang Y, et al. Programmable actuation of liquid crystal elastomers via “living” exchange reaction. Soft Matter, 2019, 15: 2811–2816

    CAS  Google Scholar 

  53. Deng XY, Xie H, Du L, et al. Polyurethane networks based on disulfide bonds: From tunable multi-shape memory effects to simultaneous self-healing. Sci China Mater, 2019, 62: 437–447

    CAS  Google Scholar 

  54. McBride MK, Hendrikx M, Liu D, et al. Photoinduced plasticity in cross-linked liquid crystalline networks. Adv Mater, 2017, 29: 1606509–1606515

    Google Scholar 

  55. McBride MK, Martinez AM, Cox L, et al. A readily programmable, fully reversible shape-switching material. Sci Adv, 2018, 4: eaat4634

    CAS  Google Scholar 

  56. Davidson EC, Kotikian A, Li S, et al. 3D printable and re-configurable liquid crystal elastomers with light-induced shape memory via dynamic bond exchange. Adv Mater, 2020, 32: 1905682–1905688

    CAS  Google Scholar 

  57. Wen ZB, Zhang TH, Hui Y, et al. Elaborate fabrication of well-defined side-chain liquid crystalline polyurethane networks with triple-shape memory capacity. J Mater Chem A, 2015, 3: 13435–13444

    CAS  Google Scholar 

Download references

Acknowledgements

Wen ZB gratefully acknowledges the use of facilities and instrumentation supported by the National Science Foundation of Materials Research Science and Engineering Centers Grant (DMR-1420736, University of Colorado, Boulder). This work was supported financially by the National Natural Science Foundation of China (51773131 and 51721091) and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Contributions

Wen ZB designed the structure, performed the experiments, analyzed the data and wrote the draft of manuscript with support from Yang KK; Yang KK and Wang YZ proposed the project and gave critical comments of the manuscript; Snap RF and Clark NA analyzed the experimental results of POM and WAXD; Raquez JM checked and approved the manuscript. All authors contributed to the general discussion.

Corresponding authors

Correspondence to Zhi-Bin Wen  (文志斌) or Ke-Ke Yang  (杨科珂).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

Experimental details and supporting data are available in the online version of the paper.

Zhi-Bin Wen received his PhD degree in polymer chemistry and physics from Sichuan University in 2018. He currently does his post-doctoral research at the University of Mons. His research focuses on shape-memory polymers, liquid crystal materials and covalent adaptable networks.

Ke-Ke Yang received her BSc degree in polymer materials (1994), MSc degree in chemical fiber (1997), and PhD degree in material science from Sichuan University in China. She joined Sichuan University in 1997, and now is a full professor in polymer chemistry and physics. Her research focuses on biodegradable polymers, polymer composites, shape-memory polymers and self-healing materials.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, ZB., Snap, RF., Raquez, JM. et al. Unique two-way free-standing thermo- and photo-responsive shape memory azobenzene-containing polyurethane liquid crystal network. Sci. China Mater. 63, 2590–2598 (2020). https://doi.org/10.1007/s40843-020-1406-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40843-020-1406-1

Keywords

Navigation